▪ 应用:在约束优化计算、聚类优化计算、非线 性优化控制、神经网络优化、滤波器设计、阵列 天线方向图综合及其它方面得到广泛应用。
引言
开始
根据实际问题进行编码 设置参数
生成初始种群
计算个体适应值
是否满足进 化终止条件
是
算法结束, 输出最优个体
一般演化算法的过程
问题
遗传操作, 生成新种群
否
1、遗传操作象 ✓ 种群中所有个体 ✓ 种群中部分个体 2、遗传操作顺序 ✓ 重叠 ✓ 非重叠 3、新种群重组方式
DE的改进方法
为了提高DE的寻优能力、加快收敛速度、 克服启发式算法常见的早熟收敛现象,许多学 者对DE算法进行改进:
▪ 控制参数的改进。 ▪ 差分策略的改进。 ▪ 选择策略的改进。 ▪ 种群重构 ▪ 混合算法。
DE的改进方法---多种扩展模式
DE算法的多种变形形式常用符号DE /x/y/ z 以 示区分,其中:
开开开开开
基本原理
求解非线性函数f (x 1, x 2, ⋯, x n)的最小值问题, x i满足:
xi t xi,1 t , xi,2 t , , xi,n t
i 1, 2, , M ; t 1, 2, tmax.
令xi 是t 第t代的第i个染色体, 则
xiLj xij xiUj j 1, 2, n
行变异操作;
▪ :一般在[ 0, 2 ]之间选择, 通常取0. 5;
▪ CR:一般在[ 0, 1 ]之间选择, 比较好的选择应在0. 3 左右,
CR 大些收敛速度会加快, 但易发生早熟现象。
差异演化算法的优缺点
和其它进化算法相比, 差异演化具有以下优点:
▪ 差异演化在求解非凸、多峰、非线性函数优化问题表 现极强的稳健性。