当前位置:文档之家› 变压器运行中短路损坏的原因分析(正式)

变压器运行中短路损坏的原因分析(正式)

变压器运行中短路损坏的原因分析(正式)
变压器运行中短路损坏的原因分析(正式)

编订:__________________

单位:__________________

时间:__________________

变压器运行中短路损坏的原因分析(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.

Word格式 / 完整 / 可编辑

文件编号:KG-AO-6019-52 变压器运行中短路损坏的原因分析

(正式)

使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。

根据近几年的变压器因出口短路而发生损坏的情况,变压器在短路故障时,其损坏主要有以下几种特征及产生的原因。

1.1轴向失稳

这种损坏主要是在辐向漏磁产生的轴向电磁力作用下,导致变压器绕组轴向变形,该类事故占整个损坏事故的32.9%。

1.1.1线饼上下弯曲变形

这种损坏是由于两个轴向垫块间的导线在轴向电磁力作用下,因弯矩过大产生永久性变形,通常两饼间的变形是对称的。

1.1.2绕组或线饼倒塌

这种损坏是由于导线在轴向力作用下,相互挤压

或撞击,导致倾斜变形。如果导线原始稍有倾斜,则轴向力促使倾斜增加,严重时就倒塌;导线高宽比例大,就愈容易引起倒塌。

端部漏磁场除轴向分量外,还存在辐向分量,二个方向的漏磁所产生的合成电磁力致使内绕组导线向内翻转,外绕组向外翻转。

1.1.1绕组升起将压板撑开

这种损坏往往是因为轴向力过大或存在其端部支撑件强度、刚度不够或装配有缺陷。

1.2辐向失稳

这种损坏主要是在轴向漏磁产生的辐向电磁力作用下,导致变压器绕组辐向变形,占整个损坏事故的21.2%。

1.2.1外绕组导线伸长导致绝缘破损

辐向电磁力企图使外绕组直径变大,当作用在导线的拉应力过大会产生永久性变形。这种变形通常伴随导线绝缘破损而造成匝间短路,严重时会引起线圈嵌进、乱圈而倒塌,甚至断裂。

1.2.2绕组端部翻转变形

端部漏磁场除轴向分量外,还存在辐向分量,二个方向的漏磁所产生的合成电磁力致使绕组导线向内翻转,外绕组向外翻转。

1.2.3内绕组导线弯曲或曲翘

辐向电磁力使内绕组直径变小,弯曲是由两个支撑(内撑条)间导线弯矩过大而产生永久性变形的结果。如果铁心绑扎足够紧实及绕组辐向撑条有效支撑,并且辐向电动力沿圆周方向均布的话,这种变形是对称的,整个绕组为多边星形。然而,由于铁芯受压变形,撑条受支撑情况不相同,沿绕组圆周受力是不均匀的,实际上常常发生局部失稳形成曲翘变形。

1.3引线固定失稳

这种损坏主要由于引线间的电磁力作用下,造成引线振动,导致引线间短路,这种事故较少见。

2 变压器短路损坏的常见部位

根据近几年的变压器因出口短路而发生损坏的情况,变压器在短路故障时,其绕组损坏部位主要有以

下几种。

2.1对应铁轭下的部位

该部位发生变形原因有:(1)短路电流所产生的磁场是通过油和箱壁或铁心闭合,由于铁轭的磁阻相对较小,故大多通过油路和铁轭间闭合,磁场相对集中,作用在线饼的电磁力也相对较大;(2)内绕组套装间隙过大或铁心绑扎不够紧实,导致铁心片二侧收缩变形,致使铁轭侧绕组曲翘变形;(1)在结构上,轭部对应绕组部分的轴向压紧是最不可靠的,该部位的线饼往往难以达到应有的预紧力,因而该部位的线饼最易变形。

2.2调压分接区域及对应其他绕组的部位

该区域由于:(1)安匝不平衡使漏磁分布不均衡,其幅向额外产生的漏磁场在线圈中产生额外轴向外力,这些力的方向总是使产生这些力的不对称性增大。轴向外力和正常幅向漏磁所产生的轴向内力一样,使线饼向竖直方向弯曲,并压缩线饼件的垫块,除此之外,这些力还部分地或全部地传到铁轭上,力求使其离开心柱,出现线饼向绕组中部变形或翻转现象;

(2)该部位的线饼为力求安匝平衡或分接区间的应有绝缘距离,往往要增加较多的垫块,较厚的垫块致使力的传递延时,因而对线饼撞击也较大;(1)绕组套装后不能确保中心电抗高度对齐,致使安匝进一步加剧不平衡;(2)运行一段时间后,较厚的垫块自然收缩量较大,一方面加剧安匝不平衡现象,另一方面受短路力时跳动加剧;(3)在设计时间为力求安匝平衡,分接区的电磁线选用了较窄或较小截面的线规,抗短力能力低。

2.3换位部位

这部位的变形常见于换位导线的换位和单螺旋的标准换位处。

换位导线的换位,由于其换位的爬坡较普通导线的换位为陡,使线匝半径不同的换位处产生相反的切向力,这对大小相等方向相反的切向力,致使内绕组的换位向直径变小,方向变形,外绕组的换位力求线匝半径相同,使换位拉直,内换位向中心变形,外换位向外变形,而且换位导线厚度越厚,爬坡越陡,变

形越严重。另外,换位处还存在轴向短路电流分量,所产生的附加力,致使线饼变形加剧。

单螺旋的标准换位,在空间上要占一匝的位置,造成该部位安匝不平衡,同时又具有换位导线换位变形特征,因此该部位的线饼更容易变形。

2.4绕组的引出线

常见于斜口螺旋结构的绕组,该结构的绕组,由于二个螺旋口安匝不平衡,轴向力大,同时又有轴向电流存在,使引出线拐角部位产生一个横向力而发生扭曲变形现象。另外螺旋绕组在绕制过程中,有剩余应力存在,会使绕组力求恢复原状现象,故螺旋结构的绕组,受短路电流冲击下更容易扭曲变形。

2.5引线间

常见于低压引线间,低压引线由于电压低流过电流大,相位120度,使引线相互吸引,如果引线固定不当的话,会发生相间短路。

3 变压器短路故障原因分析

因变压器出口短路导致变压器内部故障和事故的

原因很多,也比较复杂,它与结构设计、原材料的质量、工艺水平、运行工况等因数有关,但电磁线的选用是关键。从近几年解剖变压器,对其事故进行分析来看,与电磁线有关的大致有以下几个原因。

3.1基于变压器静态理论设计而选用的电磁线,与实际运行时作用在电磁线上的应力差异较大。

3.2目前各厂家的计算程序中是建立在漏磁场的均匀分布、线匝直径相同、等相位的力等理想化的模型基础上而编制的,而事实上变压器的漏磁场并非均匀分布,在铁轭部分相对集中,该区域的电磁线所受到机械力也较大;换位导线在换位处由于爬坡会改变力的传递方向,而产生扭矩;由于垫块弹性模量的因数,轴向垫块不等距分布,会使交变漏磁场所产生的交变力延时共振,这也是为什么处在铁心轭部、换位处、有调压分接的对应部位的线饼首先变形的根本原因。 3.3抗短路能力计算时没有考虑温度对电磁线的抗弯和抗拉强度的影响。按常温下设计的抗短路能力不能反映实际运行情况,根据试验结果,电磁线

变压器的空载试验和短路试验等各类知识点

变压器的空载试验和短路试验 变压器的空载试验指的是通过变压器的空载运行来测定变压器的空载电流和空载损耗。一般说来,空载试验可以在变压器的任何一侧进行。通常将额定频率的正弦电压加在低压线圈上而高压侧开路。为了测出空载电流和空载损耗随电压变化的曲线,外施电压要能在一定范围内进行调节。 变压器空载时,铁芯中主磁通的大小是由绕组端电压决定的,当变压器施加额定电压时,铁芯中的主磁通达到了变压器额定工作时的数值,这时铁芯中的功率损耗也达到了变压器额定工作下的数值,因此变压器空载时输入功率可以认为全部是变压器的铁损。一般电力变压器在额定电压时,空载损耗约为额定容量的0.1%~1%。 变压器的短路试验通常是将高压线圈接至电源,而将低压线圈直接短接。由于一般电力变压器的短路阻抗很小,为了避免过大的短路电流损坏变压器的线圈,短路试验应在降低电压的条件下进行。用自耦变压器调节外旋电压,使电流在0.1~1.3倍额定电流范围变化。原边电流达到额定值时,变压器的铜损相当于额定负载时的铜损,因外施电压较低,铁芯中的工作磁通比额定工作状态小得多,铁损可以忽略不计,所以短路试验的全部输入功率基本上都消耗在变压器绕组上,短路试验可测出铜损。通常电力变压器在额定电流下的短路损耗约为额定容量的0.4%~4%,其数值随变压器容量的增大而下降。 变压器空载试验和负载试验的目的和意义 变压器的损耗是变压器的重要性能参数,一方面表示变压器在运行过程中的效率,另一方面表明变压器在设计制造的性能是否满足要求。变压器空载损耗和空载电流测量、负载损耗和短路阻抗测量都是变压器的例行试验。 变压器的空载试验就是从变压器任一组线圈施加额定电压,其它线圈开路的情况下,测量变压器的空载损耗和空载电流。空载电流用它与额定电流的百分数表示,即: 进行空载试验的目的是:测量变压器的空载损耗和空载电流;验证变压器铁心的设计计算、工艺制造是否满足技术条件和标准的要求;检查变压器铁心是否存在缺陷,如局部过热,局部绝缘不良等。

变压器突发短路故障的缺陷分析

变压器突发短路故障的 缺陷分析 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

变压器突发短路故障的缺陷分析引言 近年来变压器突发短路冲击后损坏几率大增,已占全部损坏事故的40%以上。变压器经受突发短路事故后状况判断、能否投运,成为运行单位经常要决策的问题。以前变压器发生突发短路事故以后,需要组织各方面专家分析事故成因,然后确定试验方法,根据试验结果继续分析或者追加试验。这种分析、抢修机制已不适应当前电网停电时间限制、高可靠性以及事故严重性等情况。北京供电局修试处总结300余台110kV 及以上电压等级变压器多年运行维护经验形成了一套固定的短路突发事故试验分析方法,即油色谱分析、绝缘电阻试验、绕组直阻试验和绕组变形试验“四项分析”。实践证明,“四项分析”基本能够满足变压器突发事故的分析要求。 1 分析项目

1.1 变压器油中溶解气体色谱分析 用于判断变压器内是否发生过热或者放电性故障。该项目对变压器突发事故的故障判断十分敏感,但需要仪器精度高,仅适于在试验室进行,故比较费时。实践中,多数情况下对缺陷的初步定性要依靠它,综合分析也要结合色谱分析结果进行,而且该方法能判断出很多别的试验无法发现的缺陷,例如中兴庄变电站35kV原#1变压器突发事故后,无载分接开关处放电,但直阻试验反映不出来,只有色谱分析才能发现。 1.2 绝缘电阻试验 变压器各绕组、铁心、夹铁、外壳相互之间的绝缘电阻是否正常,是常用的简易检查项目。如老君堂变电站220kV原#1变压器事故掉闸后首先进行绝缘电阻试验,很快发现三侧绕组和铁心对地的绝缘电阻几乎为0,马上就判断为纵绝缘击穿且铁心烧损,与吊罩检查结果相符;又如下面述及的110kV林河变电站#2变压器,也是借助绝缘电阻试验确定了缺陷位置。 1.3 绕组直阻试验

变压器绕组匝间短路的简单判断

变压器绕组匝间短路的简单判断 张绍峰 摘要:针对电力生产中使用的变压器几多竟是用的电炉变等运行中出现的变压器绕组匝间短路,介绍一个简易的判断方法。 关键词:变压器、匝间短路、空升; 变压器是发送变企业和各行各业生产中最常用的设备之一,由于它体积大、价格高且长时间带电运行,流过高低压绕组的电流通常都很大,加上检修工质量不到位、环境污染、各类过电压等原因,容易产生各种缺陷,如果得不到准确的判断和及时的处理,将会造成很大的经济损失。一般的常规试验对于检查变压器的接触不良、绕组断股、绝缘(整体、局部)受潮、绝缘(整体、局部)老化等灵敏度很高。但这些试验项目对检查变压器绕组匝间短路可以说是个盲区,只用变压器的特性(空载、短路)试验才能对其作出准确判断。但进行变压器的特性(空载、短路)试验所需试验设备多且各种试验设备体积容量大,试验电源容量要求也很大,因此做起来也很不方便。下面将介绍一种既简单又行之有效的方法。具体情况作一下分析: 首先简单介绍一下变压器的绝缘结构:变压器的绝缘分为主绝缘和纵绝缘两部分。主绝缘分是指绕组对地和绕组之间的绝缘;纵绝缘是指线饼间、层间和匝间的绝缘。 接下来针对变压器常规检测绝缘的试验能够鉴定的各种缺陷的具体情况进行一下对比:

由以上对比结果可以看出,前四种试验根本无法测出纵绝缘中出现的各种缺陷;第五、六种试验仅能够对绕组的严重金属性匝间短路缺陷做出判断,但有些绕组的匝间短路缺陷是非金属性匝间短路,它们对此则无能为力了。后两种试验能够准确的检测出所有的绕组的匝间短路缺陷,但要进行这些大型试验对于一些大型变压器来说是有价值的,可是对较小型变压器来说则费时费力所需成本也太高了。下面就根据现场的实际经验介绍一个简单有效的方法来判断变压器绕组的非金属性匝间短路。 2009年09月24日武电多经碳素公司#3电炉变故障过流速断跳闸,变压器本体有烧焦气味放出。拆线后对本体进行试验。进行的试验项目有:1、绝缘电阻;2、所有档的直流电阻;3、所有档的电压比;4、交流耐压;以上所有试验

变压器的常见故障及处理方法

浅议变压器常见故障及处理 令狐采学 摘要:变压器在电力系统的安全、平稳运行中起着至关重要的作用。本文从变压器的结构和原理入手,结合我场变压器的实际情况,针对实际变电运行中变压器的主要异常现象和原因进行分析,提出一些自己的观点。 关键词:变压器原理结构参数异常处理 引言:电力是现在工业的主要能源,并且电能的输送能量之大、距离之远也决定了必须采用超高压输送电能,以减少此过程中的损耗。而实际中由于发电机结构上的限制,通常只能发出10kv 的电压,因此,必须经过变压器的升压才可以完成电能的输送。变压器也理所应当成为电力系统中核心设备之一。如果变压器出现了故障,就会在很大程度上影响电能的输送以及正常的变电运行,所以能够掌握和分析变压器常见的故障和异常现象,及主要原因,提出防范解决措施,就显得尤为重要。 电力变压器是利用电磁感应原理制成的一种静止的电力设备。它可以将某一电压等级的交流电能转换成频率相同的另一种或几种电压等级的交流电能,是电力系统中重要电气设备。下面将从变压器的分类、结构、异常现象和原因分析等几个方面进行介绍: 一、变压器的分类、结构及主要参数

(一)、变压器的分类 根据用途的不同,变压器可以分为电力变压器(220kv以上的是超高压变压器、35-110kv的是中压变压器、10kv为配电变压器)、特种变压器(电炉变压器、电焊变压器)、仪用互感器(电压、电流互感器)。 根据相数分为,单相变压器和三相变压器。 根据冷却方式分为,油浸自冷式、强迫风冷式、强迫油冷式和水冷式变压器。 根据分接开关的种类分为有载调压变压器和无载调压变压器。 根据绕组数分为,单绕组变压器、双绕组变压器和三绕组变压器。 (二)、变压器的结构 虽然变压器的种类依据不同方式进行分类,有很多种,但是一般常用的变压器的结构都很相似: 1、绕组:变压器的电路部分。 2、铁芯:变压器的磁路部分。 3、油箱:变压器的外壳,内装满变压器油(绝缘、散热)。 4、油枕:对油箱里的油起到缓冲作用,同时减小油箱里的油与空气的接触面积,不易受潮和氧化。 5、呼吸器:利用硅胶吸收空气中的水分。 6、绝缘套管:变压器的出线从油箱内穿过油箱盖时必须经过绝缘套管以使带电的引线与接地的油箱绝缘。

变压器短路阻抗测试和计算公式

概述 变压器短路阻抗试验的目的是判定变压器绕组有无变形。 变压器是电力系统中主要电气设备之一,对电力系统的安全运行起着重大的作用。在变压器的运行过程中,其绕组难免要承受各种各样的短路电动力的作用,从而引起变压器不同程度的绕组变形。绕组变形以后的变压器,其抗短路能力急剧下降,可能在再次承受短路冲击甚至在正常运行电流的作用下引起变压器彻底损坏。为避免变压器缺陷的扩大,对已承受过短路冲击的变压器,必须进行变压器绕组变形测试,即短路阻抗测试。 变压器的短路阻抗是指该变压器的负荷阻抗为零时变压器输入端的等效阻抗。短路阻抗可分为电阻分量和电抗分量,对于110kV及以上的大型变压器,电阻分量在短路阻抗中所占的比例非常小,短路阻抗值主要是电抗分量的数值。变压器的短路电抗分量,就是变压器绕组的漏电抗。变压器的漏电抗可分为纵向漏电抗和横向漏电抗两部分,通常情况下,横向漏电抗所占的比例较小。变压器的漏电抗值由绕组的几何尺寸所决定的,变压器绕组结构状态的改变势必引起变压器漏电抗的变化,从而引起变压器短路阻抗数值的改变。 二、额定条件下短路阻抗基本算法

三、非额定频率下的短路阻抗试验 当作试验的电源频率不是额定频率(一般为50Hz)时,应对测试结果进行校正。由于短路阻抗由直流电阻和绕组电流产生的漏磁场在变压器中引起的电抗组成。可以认为直流电阻与频率无关,而由绕组电流产生的漏磁场在变压器中引起的电抗与试验频率有关。当试验频率与额定频率偏差小于5%时,短路阻抗可以认为近似相等,阻抗电压则按下式折算: 式中u k75 --75℃下的阻抗电压,%; u kt—试验温度下的阻抗电压,%; f N --额定频率(Hz); f′--试验频率(Hz); P kt --试验温度下负载损耗(W); S N --变压器的额定容量(kVA); K—绕组的电阻温度因数。 四、三相变压器的分相短路阻抗试验 当没有三相试验电源、试验电源容量较小或查找负载故障时,通常要对三相变压器进行单相负载试验。 1、供电侧为Y接法 当高压绕组为Y联结时,另一侧为y或d联结时,分相试验是将试品低压三相线端短路,由高压侧AB、BC、CA分别施加试验电压。此时折算到三相阻抗电压和三相负载损耗可

变压器绕组匝间短路简单判断周

变压器绕组匝间短路的简单判断 评审工种:电气试验 评审等级:技师 姓名:周晓勇 单位:青铜峡铝业发电有限公司 日期:2013年04月

摘要:通过对电力变压器预防性试验,如绝缘、直流电阻测量、介质损耗因数、直流泄露、交流耐压、局部放电试验、线圈变形、油中溶解气体分析、油中含水量等等,探讨电力变压器预防性试验的检测方法。在进行变压器的故障检查试验时,怀疑存在匝间短路在进行直流电阻和变比测量不能判断时可用此方法进行简单判断,首先应在怀疑的电压等级侧进行加压试验。根据变压器的相数选择相应的单相或三相调压器进行变压器的空载接线试验,缓慢增压的同时观察电流变化,若电流变化很大远远超出额定空载电流则为存在非金属性匝间短路。如果选用单相或三相调压器不方便时也可直接用220V或380V电源直接合闸冲击监看电流进行判断,其效果相同。(注意:选用的合闸电源电压必须低于加压侧的额定电压。)这种方法的优点是:试验方法简单试验仪器少,效果明显同时花费时间少。 关键词:电力变压器预防性试验分析匝间短路空升 电力变压器是电力系统的重要设备,它承担着电压变换、电能分配和传输,并提供电力服务。它的安全运行具有极其重要意义,预防性试验是保证其安全运行的重要措施,对变压器故障诊断具有确定性影响,通过各种试验项目,获取准确可靠的试验结果是正确诊断变压器故障的基本前提。电力设备预防性试验规程规定的试验项目,主要包括绕组绝缘电阻的测量、绕组直流电阻的测量、油中溶解气体分析、介质损耗因数tgδ检测、直流泄露、交流耐压试验、线圈变形检测、局部放电测量等。一般的常规试验对于检查变压器的接触不良、绕组断股、绝缘(整体、局部)受潮、绝缘(整体、局部)老化等灵敏度很高。但这些试验项目对检查变压器绕组匝间短路(非金属性)可以说是个盲区,只用变压器的特性(空载、短路)试验才能对其作出准确判断。但进行变压器的特性(空载、短路)试验所需试验设备多且各种试验设备体积容量大,试验电源容量要求也很大,因此做起来也很不方便。下面将介绍一种既简单又行之有效的方法。具体情况作一下分析: 首先简单介绍一下变压器的绝缘结构:变压器的绝缘分为主绝缘和纵绝缘两部分。主绝缘分是指绕组对地和绕组之间的绝缘;纵绝缘是指线饼间、层间和匝间的绝缘。

变压器几种常见故障产生的原因及其处理方法

自爱迪生发明了电灯以后,电在人们生产、生活中的作用越来越重要。为满足人们各种用电需要,作为发电厂和变电站主要设备之一的变压器,不但能把电压降低为各级标准,而且能把电压升高为各级标准,进而将电能输送到各个不同的用电地区,这样有助于减少送电损失。 变压器几种常见故障产生的原因及其处理方法 袁世豪 (湛江中粤能源有限公司 广东 湛江 524099) 力运行人员应具备的基本技能,同时亦是其重点关注、研究的问题。 二、变压器故障产生的原因 1、自身原因 变压器在制造时,由于工艺不佳或者人为因素影响,而使得设备本身就存在着诸如焊接不良、端头松动、垫块松动、抗短路强度不足、铁心绝缘不良等问题。 2、运行原因 首先,变压器的超常负荷。变压器的长期超负荷工作,必然会使其内部零部件及连接件有着过高的温度,进而导致冷却装置不能正常运行,零部件受损。其次,变压器的使用不当。工作人员使用方式、方法不当,或者当设备出现问题时没有进行及时、正确维护,这必然加快变压器绝缘老化的速度。 3、线路干扰 线路干扰在致使变压器产生故障的所有因素中,它是最为重要的,其所引起的故障在所有故障中占有很大的比例。主要包括:在低负荷阶段出现的电压峰值、线路故障,合闸时产生的过电压,以及其他方面的异常现象 一、加强变压器故障及时、准确检修的必要性 在电力系统中占有至关重要地位的变压器,是电网传输电能的枢纽,它由油箱、油枕、铁心、线圈、绝缘导管、分接开关、散热器、防暴管、瓦斯继电器,以及热虹吸、温度计等附件组成,变压器运行、检修,及维护质量的高低,将直接影响电力生产安全和经济效益。 虽然变压器较于其他电力设备的故障率低,但据运行经验表明、相关数据显示,近几年电力系统变压器故障呈现出不断上升的趋势。按照故障发生的程度不同,故障有轻有重,当故障较轻时,虽然变压器能够继续运行,但若不及时处理,将会进一步损害其内部零部件或者外部辅助设备;当故障较重时,则直接影响变压器的正常运行,若不及时处理,将会损害设备的使用寿命,甚至发生安全事故。总之,变压器一旦发生故障,轻则影响电力系统的正常运作,并直接或间接地影响人民群众正常的生产、生活;重则带来较大的安全隐患及经济损失。因此,对变压器运行或停运后异常、故障问题的检修、确认与维护,是电 DOI :10.3969/j.issn.1001-8972.2011.03.032

变压器短路电流计算

这本身就不是一个简单的事! 你既然用到短路电流了,就肯定不是初中阶段的计算了吧 所以你就不用找省劲的法子了 当然你也可以找个计算软件嘛就不用自己计算了 供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作.为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件. 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多. 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限大.只要计算35KV及以下网络元件的阻抗. 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻. 3. 短路电流计算公式或计算图表,都以三相短路为计算条件.因为单相短路或二相短路时的短路电流都小于三相短路电流.能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流. 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要.一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法. 在介绍简化计算法之前必须先了解一些基本概念. 1.主要参数 Sd三相短路容量(MV A)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流 和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定

变压器短路电流的实用计算方法

变压器短路电流的实用计算方法 胡浩,杨斌文,李晓峰 (湖南文理学院,湖南常德415000) 基金项目:湖南省科技厅计划项目(2007FJ3046) 1前言 在电力系统中,对于电气设备的选用、电气接线方案的选择、继电保护装置的设计与整定以及有关设备热稳定与动稳定的校验等工作,都需要对变压器的短路电流进行计算。短路电流的计算,一般采用有名制或标幺值算法,再者是应用曲线法。然而,无论哪种方法应用起来都比较繁琐,尤其是对于企业的技术人员与农村的电工,因缺乏相应的技术资料,又不能从变压器铭牌上查到所有计算短路电流的数据,所以想快速算出短路电流值是相当困难的。笔者在多年的实际工作中,依据变压器的基本原理与基本关系式,总结出快速计算短路电流值的实用方法,以满足现场与工程上的需要。 2变压器低压三相短路时高压侧短路电流的计算 变压器的阻抗电压是在额定频率下,变压器低压绕组短接,高压绕组施加逐步增大的电压,当高压绕组中的电流达到额定电流时,所施加的电压为阻抗电压Ud,一般以高压侧额定电压U1N为基础来表示: Ud%=Ud/U1N×100% (1) 由变压器的等值电路可知,低压侧短路后的阻抗折算到高压侧,与高压侧阻抗相加后得总的阻抗Zd,在阻抗电压Ud时,高压绕组电流为额定值I1N, 即: I1N=Ud/Zd (2) 如果高压绕组的电压为U1,则此时高压绕组的电流I1为: I1=U1/Zd (3) 由式(2)和式(3)可得: I1=U1/Ud*I1N (4) 对于单个变压器,其容量远小于电力系统的容量,故可以认为当变压器低压侧出现短路时,高压侧电压不变,即为U1N,代入式(4)就可得到变压器低压侧短路时,高压侧的短路电流I1d: I1d=U1N/Ud*I1N (5) 将式(1)中的Ud代入式(5)得: I1d=I1N/Ud%×100 (6) 而变压器高压绕组的额定电流I1N可表示为: I1N=SN/√3U1N (7) 式中SN———变压器的额定容量 将式(7)代入式(6)可得: I1d=100SN/√3U1NUd% (8) 由式(6)或式(8)可计算出变压器低压三相短路时,高压侧的短路电流值。 3变压器低压三相短路时低压侧短路电流的计算 由于变压器的励磁电流仅为I1N的1%~3%,忽略励磁电流,则高、低压绕组的电流I1、I2与电压U1、 U2的关系为: I1/I2=U2/U1=U2N/U1N 式中

变压器突发短路故障的缺陷分析详细版

文件编号:GD/FS-8626 (解决方案范本系列) 变压器突发短路故障的缺 陷分析详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

变压器突发短路故障的缺陷分析详 细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 引言 近年来变压器突发短路冲击后损坏几率大增,已占全部损坏事故的40%以上。变压器经受突发短路事故后状况判断、能否投运,成为运行单位经常要决策的问题。以前变压器发生突发短路事故以后,需要组织各方面专家分析事故成因,然后确定试验方法,根据试验结果继续分析或者追加试验。这种分析、抢修机制已不适应当前电网停电时间限制、高可靠性以及事故严重性等情况。北京供电局修试处总结300余台110kV及以上电压等级变压器多年运行维护经

验形成了一套固定的短路突发事故试验分析方法,即油色谱分析、绝缘电阻试验、绕组直阻试验和绕组变形试验“四项分析”。实践证明,“四项分析”基本能够满足变压器突发事故的分析要求。 1 分析项目 1.1 变压器油中溶解气体色谱分析 用于判断变压器内是否发生过热或者放电性故障。该项目对变压器突发事故的故障判断十分敏感,但需要仪器精度高,仅适于在试验室进行,故比较费时。实践中,多数情况下对缺陷的初步定性要依靠它,综合分析也要结合色谱分析结果进行,而且该方法能判断出很多别的试验无法发现的缺陷,例如中兴庄变电站35kV原#1变压器突发事故后,无载分接

三绕组变压器的短路容量计算

短路容量计算 (1)110kV : 最大短路容量 m a x 1825d S M VA =; 最小短路容量 m i n 855d S M VA =; 110 kV :m in 6.630s X =Ω ; m i n 21.104s L m H =; max 14.152s X =Ω ; m a x 45.047s L m H =; 10kV :min 0.0548s X =Ω ; m i n 0.1744s L m H =; m a x 0.11696s X =Ω ; m a x 0.3723s L m H =; 6kV :m in 0.01973s X =Ω; m i n 0.0628s L m H =; m a x 0.0421s X =Ω; m a x 0.1340s L m H = ; (2) 3#主变: 6kV :2 6 0.10090.145325 T X = ?Ω=Ω;T 0.4625L m H = ; (3) 1#或2#主变阻抗计算 11%(10.1 18.0 6.5)% 10.8%2 k u = +-=; 21%(10.1 6.518.0)%0.7%2k u =+-=-; 31%(18.0 6.510.1)%7.2% 2 k u = +-=; 10kV :2 110 0.1080.34331.5T X = ?Ω=Ω, 1 1.091T L m H =; 2 210 (0.007)0.02231.5T X = ?-Ω=-Ω, 20.0707T L m H =-; 2 310 0.0720.228631.5 T X = ?Ω=Ω; 30.728T L m H =; 6kV : 1360.1080.123431.5T X =?Ω=Ω , 10.3929T L m H =; 236(0.007)0.00831.5T X =?-Ω=-Ω , 20.0255T L m H =-; 336 0.0720.082331.5 T X = ?Ω=Ω ; 30.262T L m H =; (5) 10kV 母线短路容量计算

变压器短路电流计算法

1、变压器短路电流计算法: 例:变压器容量Se=1250KVA ,变比:U1/U2=10/0.4KV ,短路阻抗电压:Uk=6%,计算低压侧三相短路时高低压侧三相短路电流值。 172.2 I A === 21804 I A === 172.2(3)112030.06I I A U k = == 2 1804 (3)23006730.070.06I I A K A U k ==== 2、无功补偿装置容量计算: 例:变压器容量Se=1000KVA ,变比:U1/U2=10/0.4KV ,短路阻抗电压:Uk=6%,额定功率因数cos ¢=0.8,现电力部门要求用户受电侧的功率因数cos ¢1达到0.95,则无功补偿装置应选择多大容量的电容器? 变压器的额定有功为:*co s 1000*0.8800P e S e K W ?=== 额定无功为:600Q e K V a r === 即当变压器达到额定出力时,将从电网吸收600KVar 的无功功率。 当电力部门要求用户受电侧的功率因数cos ¢1达到0.95, 则有功:*co s 1000*0.95950P e S e K W ?1=== 用户只能从电网吸收无功功率为:312Q e K V a r === 故用户需增加无功补偿电容器的容量为:600-312=288KVar ,故选择的电容器容量为300KVar 2)、空压机If =Kx ?cos U 3P e ∑=0.95* 132*1000/1.732*380*0.75=253A 考虑环境温度可能高于30度,根据表3可知选择3*120mm2+2*70mm2铜芯电缆线。 3)、2X135KW 通风机If =Kx ?cos U 3P e ∑=0.95* 270*1000/1.732*380*0.8=518A

变压器短路的原因是什么

因变压器出口短路导致变压器内部故障和事故的原因很多,也比较复杂,它与结构设计、原材料的质量、工艺水平、运行工况等因数有关,但电磁线的选用是关键。从近几年解剖变压基于变压器静态理论设计而选用的电磁线,与实际运行时作用在电磁线上的应力差异较大。 (1)目前各厂家的计算程序中是建立在漏磁场的均匀分布、线匝直径相同、等相位的力等理想化的模型基础上而编制的,而事实上变压器的漏磁场并非均匀分布,在铁轭部分相对集中,该区域的电磁线所受到机械力也较大;换位导线在换位处由于爬坡会改变力的传递方向,而产生扭矩;由于垫块弹性模量的因数,轴向垫块不等距分布,会使交变漏磁场所产生的交变力延时共振,这也是为什么处在铁心轭部、换位处、有调压分接的对应部位的线饼首先变形的根本原因。 (2)抗短路能力计算时没有考虑温度对电磁线的抗弯和抗拉强度的影响。按常温下设计的抗短路能力不能反映实际运行情况,根据试验结果,电磁线的温度对其屈服极限?0.2影响很大,随着电磁线的温度提高,其抗弯、抗拉强度及延伸率均下降,在250℃下抗弯抗拉强度要比在50℃时下降上,延伸率则下降40%以上。而实际运行的变压器,在额定负荷下,绕组平均温度可达105℃,最热点温度可达118℃。一般变压器运行时均有重合闸过程,因此如果短路点一时无法消失的话,将在非常短的时间内(0.8s)紧接着承受第二次短路冲击,但由于受第一次短路电流冲击后,绕组温度急剧增高,根据GBl094的规定,最高允许250℃,这时绕组的抗短路能力己大幅度下降,这就是为什么变压器重合闸后发生短路事故居多。 (3)采用普通换位导线,抗机械强度较差,在承受短路机械力时易出现变形、散股、露铜现象。采用普通换位导线时,由于电流大,换位爬坡陡,该部位会产生较大的扭矩,同时处在绕组二端的线饼,由于幅向和轴向漏磁场的共同作用,也会产生较大的扭矩,致使扭曲变形。如杨高500kV变压器的A相公共绕组共有71个换位,由于采用了较厚的普通换位导线,其中有66个换位有不同程度的变形。另外吴泾1l号主变,也是由于采用普通换位导线,在铁心轭部部位的高压绕组二端线饼均有不同翻转露线的现象。 (4)采用软导线,也是造成变压器抗短路能力差的主要原因之一。由于早期对此认识不足,或绕线装备及工艺上的困难,制造厂均不愿使用半硬导线或设计时根本无这方面的要求,从发生故障的变压器来看均是软导线。 (5)绕组绕制较松,换位处理不当,过于单薄,造成电磁线悬空。从事故损坏位置来看,变形多见换位处,尤其是换位导线的换位处。 (6)绕组线匝或导线之间未固化处理,抗短路能力差。早期经浸漆处理的绕组无一损坏。 (7)绕组的预紧力控制不当造成普通换位导线的导线相互错位。 (8)套装间隙过大,导致作用在电磁线上的支撑不够,这给变压器抗短路能力方面增加隐患。 (9)作用在各绕组或各档预紧力不均匀,短路冲击时造成线饼的跳动,致使作用在电

变压器7种常见故障解析

变压器7种常见故障解析 变压器是输配电系统中极其重要的电器设备,根据运行维护管理规定变压器必须定期进行检查,以便及时了解和掌握变压器的运行情况,及时采取有效措施,力争把故障消除在萌芽状态之中,从而保障变压器的安全运行。 1、绕组故障 主要有匝间短路、绕组接地、相间短路、断线及接头开焊等。产生这些故障的原因有以下几点: ①在制造或检修时,局部绝缘受到损害,遗留下缺陷; ②在运行中因散热不良或长期过载,绕组内有杂物落入,使温度过高绝缘老化; ③制造工艺不良,压制不紧,机械强度不能经受短路冲击,使绕组变形绝缘损坏; ④绕组受潮,绝缘膨胀堵塞油道,引起局部过热; ⑤绝缘油内混入水分而劣化,或与空气接触面积过大,使油的酸价过高绝缘水平下降或油面太低,部分绕组露在空气中未能及时处理。 由于上述种种原因,在运行中一经发生绝缘击穿,就会造成绕组的短路或接地故障。匝间短路时的故障现象使变压器过热油温增高,电源侧电流略有增大,各相直流电阻不平衡,有时油中有吱吱声和咕嘟咕嘟的冒泡声。轻微的匝间短路可以引起瓦斯保护动作;严重时差动保护或电源侧的过流保护也会动作。发现匝间短路应及时处理,因为绕组匝间短路常常会引起更为严重的单相接地或相间短路等故障。 2、套管故障 这种故障常见的是炸毁、闪落和漏油,其原因有: ①密封不良,绝缘受潮劣比,或有漏油现象; ②呼吸器配置不当或者吸入水分未及时处理; ③变压器高压侧(110kV及以上)一般使用电容套管,由于瓷质不良故而有沙眼或裂纹; ④电容芯子制造上有缺陷,内部有游离放电; ⑤套管积垢严重。 3、铁芯故障 ①硅钢片间绝缘损坏,引起铁芯局部过热而熔化; ②夹紧铁芯的穿心螺栓绝缘损坏,使铁芯硅钢片与穿心螺栓形成短路; ③残留焊渣形成铁芯两点接地; ④变压器油箱的顶部及中部,油箱上部套管法兰、桶皮及套管之间。内部铁芯、绕组夹件等因局部漏磁而发热,引起绝缘损坏。 运行中变压器发生故障后,如判明是绕组或铁芯故障应吊芯检查。首先测量各相绕组的直流电阻并进

三相变压器的空载和短路实验

三相变压器的空载和短路实验 一、实验目的 1、通过空载实验,测定变压器的变比和参数。 2、通过短路实验,测定变压器的变比和参数。 二、实验仪器和设备 三、实验内容及操作步骤 1、测定变比 (1)实验线路如图1所示,被测变压器选用DJ12 三相三线圈心式变压器,额定容量 A 2V 152/152/15P N ?=,5V 220/63.6/5U N =,.6A 0.4/1.38/1I N =I ,Y/△/Y 接法。实验时只用 高、低压两组线圈,低压线圈接电源,高压线圈开路。将三相交流电源调到输出电压为零的位置。开启控制屏上钥匙开关,按下“启动”按钮,电源接通后,调节外施电压27.5V 0.5U U N ==测取高、低线圈的线电压ca bc ab CA BC AB U U U U U U 、、、、、,记录于表1中。 图1 三相变压器变比实验接线图

表1 变比的测定 2、空载实验 (1) 将控制屏左侧三相交流电源的调压旋钮逆时针旋转到底使输出电压为零,按下“停止”按钮,在断电的条件下,按图2接线。变压器低压线圈接电源,高压线圈开路。 图2 三相变压器空载实验接线图 (2) 按下“启动”按钮接通三相交流电源,调节电压,使变压器的空载电压N 0L 1.2U U =。 (3) 逐次降低电源电压,在N 0.2)U ~(1.2范围内, 测取变压器三相线电压、线电流和功率。 (4) 测取数据时,其中N 0U U =的点必测,且在其附近多测几组。共取数据8-9组记录于表2中。 表2 空载实验

3、短路实验 (1) 将控制屏左侧的调压旋钮逆时针方向旋转到底使三相交流电源的输出电压为零值。按下“停止”按钮,在断电的条件下,按图3接线。变压器高压线圈接电源,低压线圈直接短路。 (2) 按下“启动”按钮,接通三相交流电源,缓慢增大电源电压,使变压器的短路电流 N KL 1.1I I =。 图3 三相变压器短路实验接线图 (3) 逐次降低电源电压,在N 0.3I ~1.1的范围内,测取变压器的三相输入电压、电流及功率。 (4) 测取数据时,其中N KL I I =点必测,共取数据5-6组。记录于表3中。实验时记下周围环境温度(℃),作为线圈的实际温度。

变压器短路损坏的常见部位(正式版)

文件编号:TP-AR-L9930 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 变压器短路损坏的常见 部位(正式版)

变压器短路损坏的常见部位(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 根据近几年的变压器因出口短路而发生损坏的情况,变压器在短路故障时,其绕组损坏部位主要有以下几种。 1.对应铁轭下的部位 该部位发生变形原因有: (1)短路电流所产生的磁场是通过油和箱壁或铁心闭合,由于铁轭的磁阻相对较小,故大多通过油路和铁轭间闭合,磁场相对集中,作用在线饼的电磁力也相对较大; (2)内绕组套装间隙过大或铁心绑扎不够紧实,导致铁心片二侧收缩变形,致使铁轭侧绕组曲翘变

形; (3)在结构上,轭部对应绕组部分的轴向压紧是最不可靠的,该部位的线饼往往难以达到应有的预紧力,因而该部位的线饼最易变形。 2.调压分接区域及对应其他绕组的部位 该区域由于: (1)安匝不平衡使漏磁分布不均衡,其幅向额外产生的漏磁场在线圈中产生额外轴向外力,这些力的方向总是使产生这些力的不对称性增大。轴向外力和正常幅向漏磁所产生的轴向内力一样,使线饼向竖直方向弯曲,并压缩线饼件的垫块,除此之外,这些力还部分地或全部地传到铁轭上,力求使其离开心柱,出现线饼向绕组中部变形或翻转现象; (2)该部位的线饼为力求安匝平衡或分接区间的应有绝缘距离,往往要增加较多的垫块,较厚的垫块

变压器短路容量的计算

变压器短路容量的计算 变压器短路容量-短路电流计算公式-短路冲击电流的计算 一.概述 供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。

在介绍简化计算法之前必须先了解一些基本概念。 1.主要参数 Sd三相短路容量 (MVA)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(W) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值 计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算). (1)基准 基准容量 Sjz =100 MVA 基准电压 UJZ规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV 有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV) 37 10.5 6.3 0.4 因为S=1.73*U*I 所以 IJZ (KA)1.565.59.16144 (2)标么值计算 容量标么值 S* =S/SJZ.例如:当10KV母线上短路容量为200 MVA时,其标么值容量 S* = 200/100=2. 电压标么值 U*= U/UJZ ; 电流标么值 I* =I/IJZ

关于变压器匝间短路的分析

龙源期刊网 https://www.doczj.com/doc/895844958.html, 关于变压器匝间短路的分析 作者:徐济顺 来源:《科技创新导报》2017年第06期 摘要:变压器匝间短路作为变压器的常见故障,如何简单有效地从变压器的电流信息中 分析出变压器是否存在匝间短路。所以,从理论上分析主变匝间故障的故障模型,结合一起主变内部故障时实际故障信息,从而验证故障模型的正确性。最后根据主变匝间故障的特点提出匝间故障实用分析方法。 关键词:匝间短路故障分量序网图 中图分类号:U226 文献标识码:A 文章编号:1674-098X(2017)02(c)-0029-02 变压器故障从其结构上通常分为绕组故障、套管故障、分接开关故障、铁芯故障及其它故障等。其中绕组故障是最严重的故障,它分为匝间、层间、相间的短路、接地和断线等。据资料统计,主变匝间短路占主变故障的一半。匝间短路故障作为变压器一种比较常见的故障,比较轻微,不易被发觉,且变压器还能运行。但如果不能及时排除这种轻微的内部故障,随着时间推移,会发展越来越严重,将酿成严重的后果。对匝间短路的分析还缺乏有效的理论,而生产过程中匝间短路故障出现会带来较大的经济损失。因此,需要一种有效的变压器匝间短路分析模型。该文应用对称分量法得出变压器发生匝间短路时的序网图,提出了变压器匝间短路的分析模型。 1 问题的提出 变压器作为电力系统输变电过程中的主要电力设备,其可靠运行对电网的安全稳定运行有着重要的意义。希望在运行监视过程中发现变压器高压侧及其它侧电流出现异常而保护未动作时,能判断出变压器是否存在故障,如果出现轻微故障便能及时将变压器停运,避免故障扩大。或者变压器故障跳闸后,根据其电流信息判断是否变压器故障,避免再次试送对变压器造成冲击。或是区外故障误动,可以及时恢复变压器运行,提高供电可靠性。 在变压器出现轻微故障时如何快速、有效地进行判别,这需要对变压器进行故障分析,关于变压器故障分析大都是变压器引出线上的相间故障或接地故障,对于变压器内部匝间故障的分析较少,所以该文基于对称分量法从理论上分析主变匝间故障的故障模型,结合一起主变内部故障时实际故障信息,从而验证故障模型的正确性。 2 理论分析 Y/△接线的双绕组变压器在高压星形绕组发生匝间短路时,可把短路绕组和高压绕组分离开来,于是故障后的变压器可看作一个Y/Y/△接线的三绕组变压器,高压绕组的匝数也相应 减少,由此可见,Y/△接线的双绕组变压器匝间短路模型为Y/Y/△接线的三绕组变压器。

电力变压器短路故障原因及处理办法

电力变压器短路故障原因及处理办法 发表时间:2018-04-13T11:36:55.193Z 来源:《电力设备》2017年第31期作者:张志伟 [导读] 摘要:近年来,随着我国经济水平的不断提高,各行各业均得到了快速发展,与此同时,人们对供电的可靠性也提出了更高的要求。 (国网河北省电力有限公司衡水供电分公司河北衡水 053000) 摘要:近年来,随着我国经济水平的不断提高,各行各业均得到了快速发展,与此同时,人们对供电的可靠性也提出了更高的要求。电力变压器作为整个电网中较为重要的设备之一,其运转的正常与否直接影响整个电网的安全可靠运转。变压器的短路故障可能造成变电站事故,影响电网正常运行。因而,有必要认真分析造成短路的原因,并采取相应的方法予以处理。基于此点,现就电力变压器短路故障原因及其完善措施进行分析。 关键词:电力变压器;短路故障;处理方法 引言 电力变压器是电力系统中最关键的设备之一,它承担着电压变换、电能分配和传输,造价高、制造周期长,一旦发生故障,将对整个供电系统及电力用户造成极大的影响。通过电力变压器运行状况和事故的统计分析,发现因外部短路故障引起的设备损坏事故逐年增多,扼制此类事故的上升势头,已成为提升电力变压器安全运行水平的关键。 1、变压器短路故障的原因分析 1.1电流引起的短路故障 短路电流的热效应会致使变压器元件之间的绝缘层过热损坏,引起绝缘故障过热:故障变压器突发短路时,通过几倍于额定电流的短路电流使变压器严重发热。当超过变压器承载短路电流的限定值时,变压器的热稳定性变差。 1.2过热性故障 变压器中的载流导体、铁心、结构件有可能发生局部过热。引起部分过热的原因有很多,主要是载流导体的触摸不好、螺栓衔接的螺栓发生松动,如分接开关动静触头接触不良、引线接头虚焊、线圈股间短路、引线过长或包扎绝缘损伤引起导体间相接产生环流发热,超负荷运行发热、线圈绝缘膨胀、油道堵塞而引起的散热不良等。变压器的漏磁场在引出线或元器件结构中产生环流;变压器是漏磁屏蔽的结构设计不当,使涡流损耗局部集中等;变压器的铁芯发生短路或许铁芯结构设计不合理引起变压器元器件发生部分过热。元器件的部分过热主要是因为结构设计过程中对漏磁场的处理方法不完善;变压器自身的结构设计不合理或许变压器的构件质量不符合要求。 1.3出口故障 经过分析发现有以下几个原因,第一,在变压器运转的过程中会有重合闸过程,如果短路电流没有消失,在极短的时间内会受到第二次短路冲击,因为第一次冲击变压器绕组的温度很高,绕组的抗短路能力下降非常明显,这时候会引起变压器的重合闸故障,这也是变压器重合闸后发生短路事故的主要原因;第二电压器的衔接导线采用普通的换位导线,抗机械强度相应地下降,在遇到抗机械强度降低时很容易造成变形、散股等现象或许电流过大,换位爬坡比较陡,就会在换位导线构成巨大的扭矩,发生歪曲变形进而出现故障;第三,变压器的绕组比较松懈、换位和纠位爬坡处理方法不到位或许过于单薄,会形成电磁线悬空;第四,绕组预紧力不均匀,短路冲击会造成线饼的不规则运动,因为弯应力过大而使变压器绕组发生变形。 2、变压器故障诊断的步骤 为了更快速、精确地判断变压器故障原因,依据Q/GDW168-2008输变电设备状况检修实验规程规定的实验项目及实验次序,结合以往变压器故障诊断经历,收集国内外相关资料,总结出以下几条变压器故障诊断的步骤:(1)变压器发生故障后,在到达现场之前与变电运维人员联系,先了解故障现场状况,掌握故障前后的维护信息,开始判断故障的类型。(2)到现场取变压器油样,进行油色谱剖析试验,在注意油中气体含量的同时,留意调查各种气体的产气速率,当某种气体短期内迅速增加时要特别留意。(3)当以为设备内部存在故障时,可用三比值法进行分析,对故障的类型进行开始判断。(4)在气体继电器内出现气体时,应该先将继电器内气样进行分析,根据分析出来的数据结果判断,与油中取出气体的分析成果作比较。(5)根据现场故障的情况来判断,进行具有针对性的变压器查看性试验。根据上述结果,分析判断变压器的故障类型、故障位置,并结合该设备的结构、运转状况、检修记录等状况,按照状况检修要求,对变压器进行状况评估,依据变压器状况检修导则进行评分,依据评估的成果对设备制定不同的检修策论,包含进行A类检修、B类检修、C类检修、D类检修。经过合理安排检修、执行针对性方法,快速处理设备故障,防止设备损坏事故的发生,保证设备安全运转。 3、电力变压器短路故障防治对策 1)相间短路是变压器最严重的故障类型,它包括变压器箱体内部的相间短路和引出线的相间短路。由于相间短路给电网造成巨大冲击,会严重地烧损变压器本体设备,严重时使得变压器整体报废,因此,当变压器发生这种类型的故障时,要求瞬间切除故障。而接地短路故障只会发生在中性点接地的系统一侧,这种故障的处理方式和相间短路故障是相同的,但必须考虑接地短路发生在中性点附近时的灵敏度。2)变压器的突然短路电流包括稳态分量和瞬态分量,稳态分量的大小决定于电源电压u1和短路阻抗Zk,瞬态分量不仅决定于u1和Zk,还与短路时电压的初相角有关,当时瞬态分量有最大幅值。短路电流数值很大,它可能造成变压器绕组的过热和在绕组中产生强大电磁力。因此,必须采取过热保护和加强绕组机械强度的措施,以防止绕组的过热和机械损坏。3)变压器空载合闸时,其铁芯中的磁通包含有稳态分量和瞬态分量。稳态分量的大小,主要决定于电源电压和平均电感,瞬态分量的大小还与合闸的初相角有关,当合闸初相角为0时,瞬态分量的幅值最大。这时总磁通将接近,激磁电流可达正常激磁电流的数百倍。空载合闸时的冲击电流虽较大,但对变压器本身不会造成直接危害,却可能造成继电保护的误动作,这应在变压器运行时加以防止。4)由于变压器内部电磁场分布不均匀、制造工艺水平差、绕组绝缘水平下降、铁芯绝缘损坏、铁芯两点接地等因素,会使铁芯局部发热和烧损,继而引发更严重的相间短路。因此,应积极开展红外检测,220kV及以上电压等级的变压器每年在夏季前后应至少各进行一次精确检测。在高温大负荷运行期间,对220kV及以上电压等级变压器应增加红外检测次数。精确检测的测量数据和图像应制作报告存档保存。5)加强变压器选型、订货、验收及投运的全过程管理,选择具有良好运行业绩和成熟制造经验生产厂家的产品;验收时,严格按照国家标准、行业标准和合同中规定的技术条件对采购的设备进行验收240MVA及以下容量变压器应选用通过突发短路试验验证的产品;500kV变压器和240MVA以上容量变压器,制造厂应提供同类产品突发短路试验报告或抗短路能力计算报告,计算报告应有相关理论和模型试验的技术支持。220kV及以上电压等级的变压器都应进行抗震

相关主题
文本预览
相关文档 最新文档