【2021版 九年级数学培优讲义】专题23 圆与圆的位置关系
- 格式:doc
- 大小:263.50 KB
- 文档页数:9
2017-2018九年级数学上册与圆有关的位置关系讲义(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018九年级数学上册与圆有关的位置关系讲义(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018九年级数学上册与圆有关的位置关系讲义(新版)新人教版的全部内容。
O C与圆有关的位置关系(讲义)知识点睛1. 点与圆的位置关系d 表示 的距离,r 表示.①点在圆外 ;A②点在圆上 ; ③点在圆内 .三点定圆定理:.B注:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.2. 直线与圆的位置关系d 表示的距离,r 表示.①直线与圆相交 ; ②直线与圆相切 ; ③直线与圆相离 .切线的判定定理:; 切线的性质定理: .*切线长定理:. 注:与三角形各边都相切的圆叫做三角*3. 圆与圆的位置关系d 表示 的距离,R 表示 ,r 表示 .①圆与圆外离 ; ②圆与圆外切 ; ③圆与圆内切 ; ④圆与圆内含 ; ⑤圆与圆相交 . 4. 圆内接正多边形叫做圆内接正多边形,这个圆叫做该正多边形的 . 正多边形的中心:;OOOO 1 O 2O 1O2O 1O 2O 1O 2O 2O 1 与圆有关的位置关系,关键是找 d .和 .r . 只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形.5 正多边形的半径: ; 正多边形的中心角: ; 正多边形的边心距:.精讲精练1. 矩形ABC D 中,AB =8,BC3,点P 在AB 边上,且BP =3AP ,如果圆 P 是以点 P 为圆心,PD 为半径的圆,那么下列判断正确的是( )A .点B ,C 均在圆 P 外B .点 B 在圆 P 外、点C 在圆 P 内C .点 B 在圆 P 内、点 C 在圆 P 外D .点 B ,C 均在圆 P 内 2. 如图,在 5×5 的正方形网格中,一条圆弧经过 A ,B ,C 三点, 那么这条圆弧所在圆的圆心是点 .第 2 题图 第 3 题图3. 小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示, 为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( ) A .第①块 B .第②块 C .第③块 D .第④块A4. 如图,在 Rt △ABC 中,∠C =90°, ∠A =60°,BC =4 cm,以点 C 为圆心,以 3 cm 长为半径作圆,则⊙C 与 AB 的位置关系是 . CB5. 在 Rt △ABC 中,∠C =90°,AC =3,BC =4.以 C 为圆心,R 为半径所作的圆与斜边 AB 有且只有一个公共点,则 R 的取值范围是 . 6. 在△ABC 中,∠C =90°,AC =3 cm,BC =4 cm .若⊙A ,⊙B 的半径分别为 1 cm,4 cm,则⊙A ,⊙B 的位置关系是 .ABCP Q R M②① ③④O7. 若有两圆相交于两点,且圆心距为 13 cm ,则下列哪一选项中的长度可能为此两圆的半径( ) A .25 cm ,40 cm B .20 cm ,30 cm C .1 cm,10 cm D .5 cm ,7 cm8. 如图,AB 是⊙O 的直径,C ,D 是⊙O 上的两点,∠CDB =20°, 过点 C 作⊙O 的切线,交 AB 的延长线于点 E ,则∠E = .AP第 8 题图 第 9 题图9. 如图,PA ,PB 是⊙O 的切线,A ,B 是切点,点 C 是劣弧 AB 上的一个动点,若∠P =40°,则∠ACB = .10. 如图,EB ,EC 是⊙O 的两条切线,B ,C 是切点,A ,D 是 ⊙O 上两点,如果∠E =46°,∠DCF =32°,那么∠A = .AE DF EC FBC第 10 题图 第 11 题图1. 如图,O 是正方形 ABCD 的对角线 BD 上一点,⊙O 与边 AB , BC 都相切,点 E ,F 分别在边 AD ,DC 上.现将△DEF 沿着 EF 对折,折痕EF 与⊙O 相切,此时点D 恰好落在圆心O 处.若DE =2,则正方形 ABCD 的边长是 .12. 如图,在⊙O 中,FC 为直径,长为 8.分别以 F ,C 为圆心, 以⊙O 的半径 R 为半径作弧,与⊙O 相交于点 E ,A 和 D ,B , 则 A ,B ,C ,D ,E ,F 是⊙O顺次连接 AB ,BC ,CD ,DE ,EF ,FA . 过点 O 作 OG ⊥BC ,垂足为 G ,则 OG 长为 .AB3 3 A F O M CD , , , 13. 如图,正六边形 ABCDEF 内接于⊙O ,半径为 4,则这个正︵六边形的边心距 OM 和BC 的长分别为( )A . 23 B . 2 3 ,C .2 3 D . 2 4 B E 314. 如图,⊙O 的直径为 AB ,点 C 在圆周上(异于 A ,B ),AD ⊥CD .(1)若 BC =3,AB =5,求 AC 的长;(2)若 AC 是∠DAB 的平分线,求证:直线 CD 是⊙O 的切线.DCAOB15. 如图,在△ABC 中,∠C =90°,点 O 在 AC 上,以 OA 为半径的⊙O 交 AB 于点 D ,BD 的垂直平分线交 BC 于点 E ,交 BD 于点 F ,连接 DE .(1)判断直线 DE 与⊙O 的位置关系,并说明理由; (2)若 AC =6,BC =8,OA =2,求线段 DE 的长.EO ADFB【参考答案】知识点睛1.点到圆心;圆的半径; d r ;d r ;d r .不在同一条直线上的三个点确定一个圆.2.圆心O 到直线l;圆的半径;d r ;d r ;d r .经过半径的外端且垂直于该半径的直线是圆的切线; 圆的切线垂直于过切点的半径.从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.3.圆心之间;大圆半径;小圆半径.d R r ; d R r ;d R r ;0 ≤d R r ;R r d R r .4.顶点都在同一圆上的正多边形;外接圆.一个正多边形的外接圆的圆心叫做这个正多边形的中心; 外接圆的半径叫做正多边形的半径;正多边形每一边所对的圆心角叫做正多边形的中心角; 中心到正多边形的一边的距离叫做正多边形的边心距.精讲精练1.C2.Q3.B4.相交5. 3 R ≤4 或R 1256.外切7.B8. 50°9. 110°10. 99°11. 212。
初三数学圆和圆的位置关系知识精讲圆和圆的位置关系1. 基本概念(1)两圆外离、外切、相交、内切、内含的定义;(2)两圆的公切线、外公切线、内公切线、公切线长的定义; (3)两圆的连心线、圆心距、公共弦。
两圆的位置 圆心距d 与两圆的半径R 、r 的关系 外公切线条数内公切线条数公切线条数外离 d R r >+ 2 2 4 外切 d R r =+2 13 相交 R r d R r R r -<<+≥()2 0 2 内切 d R r R r =->()1 0 1 内含d R r R r <->()说明:(1)两圆的位置关系和半径,圆心距的数量关系是互相对应的,即知道位置关系就可以确定数量关系,知道数量关系也可以确定位置关系;(2)如果遇到“相离”或“相切”问题时,都要分两种情况来解决。
3. 相交两圆的性质相交两圆的连心线垂直平分两圆的公共弦。
4. 相切两圆的性质如果两圆相切,那么切点一定在连心线上。
5. 两圆中常引用的辅助线(1)相切:过切点引公切线,引连心线。
(2)相交:引连心线、公共弦(将两圆半径、圆心距、公共弦的一半集中在一个三角形中) (3)遇两条内公切线或外公切线:引过切点的半径,构造直角三角形(将半径、圆心距、例:(1997某某)如图,已知:两圆内切于点A,P是两圆公切线上的一点过P作小圆的割线PBC,连结AB、AC,并延长分别交大圆于D、E,求证:PCPBAEAD=22。
证明:连结DEPA是两圆的公切线,∴∠=∠=∠PAD PCA E∴∴=BC DEAEADACAB//PA是⊙O1的切线,PBC是⊙O1的割线∴=⋅PA PB PC2又 ∠=∠∠=∠PCA PAB CPA APB,∴∴=∆∆PAB PCAACABPCPA~∴=∴==⋅=AEADPCPAAEADPCPAPCPB PCPCPB22222即PCPBAEAD=22说明:相切两圆中公切线是联系两圆中角的最有利条件,利用两圆的公切线,构造两圆的弦切角来进行角的转化。
九年级数学圆与圆的位置关系在我们学习数学的过程中,有些知识总是能让人拍案叫绝,比如说圆与圆之间的位置关系。
你想啊,两个圆就像两个好朋友,有时候紧紧相拥,有时候则是形同陌路。
今天咱们就来聊聊这些圆的“社交”动态,保准让你听了哈哈大笑,边学边乐。
首先呢,咱们得知道圆和圆之间的基本关系。
两个圆如果能够相交,形成两个交点,那就叫做“相交”。
这就好比是两位朋友在某个聚会上聊得火热,结果发现两个人的兴趣爱好还真是有那么一点点相似,嘿嘿,意外的发现吧。
如果这两个圆的距离刚刚好,让它们只轻轻碰了一下,那就叫做“相切”。
就像两个朋友在街上偶遇,点头致意一下,心照不宣,继续各自的旅程,既亲密又有些距离。
哦,对了,记得咱们的圆心距离和半径的关系。
圆心距小于半径之和,那就能相交;等于半径之和,那就相切;大于半径之和,嘿,那就各自飞了。
咱们得聊聊“相离”这种情况。
两圆如果完全不相交,远得像两个恋人各自生活在两个城市,联系得少之又少,那就是“相离”。
你想啊,两个圆心的距离大于半径之和,真是远得像是天涯海角,不同的生活方式,不同的爱好,没啥交集,生活就这么各自精彩。
想象一下,两个圆在画纸上悄悄地待着,互不干扰,彼此就是那种“风马牛不相及”的感觉。
再来看看特殊的情况。
比如,当两个圆的圆心重合,但半径不同,那就有点意思了。
想象一下,有个圆在外面转来转去,另一个圆在它的“肚子”里悄悄待着。
这个时候,内圆完全被外圆包裹住了,像极了朋友间的包容。
总有那么一个人,给你无条件的支持,虽然不总是被看到,但心里永远有那么一个位置。
可惜,这种情况可不是每个人都能理解的。
说到这里,咱们再来琢磨一下这些圆之间的关系的意义。
生活中,朋友之间的关系也好,爱人之间的互动也罢,都是那么复杂又简单。
有人总是希望彼此相交,有人则想要独立。
相交的朋友就像是在一起打游戏,总是能碰撞出各种火花,而相切的朋友则是在适当的时候给予彼此空间,既能相互支持,又能保留个人的独特性。
圆和圆的位置关系(圆和圆的相离,圆与圆的相交,圆与圆的相切)◎圆和圆的位置关系(圆和圆的相离,圆与圆的相交,圆与圆的相切)的定义圆和圆的位置关系:如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
如果两个圆有两个公共点,那么就说这两个圆相交。
圆心距:两圆圆心的距离叫做两圆的圆心距。
◎圆和圆的位置关系(圆和圆的相离,圆与圆的相交,圆与圆的相切)的知识扩展1、圆和圆的位置关系:如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
如果两个圆有两个公共点,那么就说这两个圆相交。
2、圆心距:两圆圆心的距离叫做两圆的圆心距。
3、圆和圆位置关系的性质与判定:设两圆的半径分别为R和r,圆心距为d,那么两圆外离d>R+r两圆外切d=R+r两圆相交R-r<d<R+r(R≥r)两圆内切d=R-r(R>r)两圆内含d<R-r(R>r)4、两圆相切的性质:(1)连心线:两圆圆心的连线。
(2)两圆相切的性质:相切两圆的连心线必过切点,即两圆圆心、切点三点在一条直线上。
◎圆和圆的位置关系(圆和圆的相离,圆与圆的相交,圆与圆的相切)的特性圆和圆位置关系的性质与判定:设两圆的半径分别为R和r,圆心距为d,那么两圆外离d>R+r(没有交点)两圆外切d=R+r (有一个交点,叫切点)两圆相交R-r<d<R+r(R≥r)(有两个交点)两圆内切d=R-r(R>r) (有一个交点,叫切点)两圆内含d<R-r(R>r)(没有交点)两圆相切的性质:(1)连心线:两圆圆心的连线。
(2)两圆相切的性质:相切两圆的连心线必过切点,即两圆圆心、切点三点在一条直线上。
◎圆和圆的位置关系(圆和圆的相离,圆与圆的相交,圆与圆的相切)的教学目标1、掌握圆和圆的五种位置关系的定义、性质及判定方法并能解决简单的问题。
专题23 圆与圆的位置关系【阅读与思考】两圆的半径与圆心距的大小量化确定圆与圆的外离、外切、相交、内切、内含五种位置关系.圆与圆相交、相切等关系是研究圆与圆位置关系的重点,解题中经常用到相关性质.解圆与圆的位置关系问题,往往需要添加辅助线,常用的辅助线有: 1.相交两圆作公共弦或连心线;2.相切两圆作过切点的公切线或连心线;3.有关相切、相离两圆的公切线问题常设法构造相应的直角三角形. 熟悉以下基本图形和以上基本结论.【例题与求解】【例1】 如图,大圆⊙O 的直径a AB cm ,分别以OA ,OB 为直径作⊙O 1和⊙O 2,并在⊙O 与⊙O 1和⊙O 2的空隙间作两个等圆⊙O 3和⊙O 4,这些圆互相内切或外切,则四边形3241O O O O 的面积为________cm 2. (全国初中数学竞赛试题)解题思路:易证四边形3241O O O O 为菱形,求其面积只需求出两条对角线的长.BA【例2】 如图,圆心为A ,B ,C 的三个圆彼此相切,且均与直线l 相切.若⊙A ,⊙B , ⊙C 的半径分别为a ,b ,c (b a c <<<0),则a ,b ,c 一定满足的关系式为( ) A .c a b +=2 B .c a b +=2C .b ac 111+= D .ba c 111+= (天津市竞赛试题) 解题思路:从两圆相切位置关系入手,分别探讨两圆半径与分切线的关系,解题的关键是作圆的基本辅助线.【例3】 如图,已知两圆内切于点P ,大圆的弦AB 切小圆于点C ,PC 的延长线交大圆于点D .求证: (1)∠APD =∠BPD ;(2)CB AC PC PB PA •+=•2. (天津市中考试题) 解题思路:对于(1),作出相应辅助线;对于(2),应化简待证式的右边,不妨从AC ·BC =PC ·CD 入手.PBCDA【例4】 如图⊙O 1和⊙O 2相交于点A 及B 处,⊙O 1的圆心落在⊙O 2的圆周上,⊙O 1的弦AC 与⊙O 2交于点D .求证:O 1D ⊥BC .(全俄中学生九年级竞赛试题)解题思路:连接AB ,O 1B ,O 1C ,显然△O 1BC 为等腰三角形,若证O 1D ⊥BC ,只需证明O 1D 平分∠B O 1C .充分运用与圆相关的角.【例5】 如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =1,AB =2,DC =22,点P 在边BC 上运动(与B ,C 不重合).设PC =x ,四边形ABPD 的面积为y .(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)若以D 为圆心,21为半径作⊙D ,以P 为圆心,以PC 的长为半径作⊙P ,当x 为何值时,⊙D 与⊙P 相切?并求出这两圆相切时四边形ABPD 的面积. (河南省中考题)解题思路:对于(2),⊙P 与⊙D 既可外切,也可能内切,故需分类讨论,解题的关键是由相切两圆的性质建立关于x 的方程.DCPBA【例6】 如图,ABCD 是边长为a 的正方形,以D 为圆心,DA 为半径的圆弧与以BC 为直径的半圆交于另一点P ,延长AP 交BC 于点N ,求NCBN的值. (全国初中数学联赛试题) 解题思路:AB 为两圆的公切线,BC 为直径,怎样产生比例线段?丰富的知识,不同的视角激活想象,可生成解题策略与方法.N PB A CD【能力与训练】A 级1.如图,⊙A ,⊙B 的圆心A ,B 在直线l 上,两圆的半径都为1cm .开始时圆心距AB =4cm ,现⊙A ,⊙B 同时沿直线l 以每秒2cm 的速度相向移动,则当两圆相切时,⊙A 运动的时间为_______秒.(宁波市中考试题)2.如图,O 2是⊙O 1上任意一点,⊙O 1和⊙O 2相交于A ,B 两点,E 为优弧AB 上的一点,EO 2及延长线交⊙O 2于C ,D ,交AB 于F ,且CF =1,EC =2,那么⊙O 2的半径为_______.(四川省中考试题)(第1题图) (第2题图) (第3题图)3.如图,半圆O 的直径AB =4,与半圆O 内切的动圆O 1与AB 切于点M .设⊙O 1的半径为y ,AM 的长为x ,则y 与x的函数关系是_________________.(要求写出自变量x 的取值范围)(昆明市中考试题)4.已知直径分别为151+和315-的两个圆,它们的圆心距为115-,这两圆的公切线的条数是__________.5.如图,⊙O 1和⊙O 2相交于点A ,B ,且⊙O 2的圆心O 2在圆⊙O 1的圆上,P 是⊙O 2上一点.已知∠A O 1B =60°,那么∠APB 的度数是( )A .60°B .65°C .70°D .75°(甘肃省中考试题)6.如图,两圆相交于A 、B 两点,过点B 的直线与两圆分别交于C ,D 两点.若⊙O 1半径为5,⊙O 2的半径为2,则AC :AD 为( )A .52:3B .3:52C .1:52D .2:5 E(第5题图) (第6题图) (第7题图)7.如图,⊙O 1和⊙O 2外切于点T ,它们的半径之比为3:2,AB 是它们的外公切线,A ,B 是切点,AB =64,那么⊙O 1和⊙O 2的圆心距是( )A .65B .10C .610D .1339208.已知两圆的半径分别为R 和r (r R >),圆心距为d .若关于x 的方程0)(222=-+-d R rx x 有两相等的实数根,那么这两圆的位置关系是( )A .外切B .内切C .外离D .外切或内切(连云港市中考试题)9.如图,⊙O 1与⊙O 2相交于A ,B 两点,点O 1在⊙O 2上,点C 为⊙O 1中优弧AB ⌒上任意一点,直线CB 交⊙O 2于D ,连接O 1D .(1)证明:DO 1⊥AC ;(2)若点C 在劣弧AB ⌒上,(1)中的结论是否仍成立?请在图中画出图形,并证明你的结论. (大连市中考试题)图1 图210.如图,已知⊙O 1与⊙O 2外切于点P ,AB 过点P 且分别交⊙O 1和⊙O 2于点A ,B ,BH 切⊙O 2于点B ,交⊙O 1于点C ,H .(1)求证:△BCP ∽△HAP ;(2)若AP :PB =3:2,且C 为HB 的中点,求HA :BC .11.如图,已知⊙B ,⊙C 的半径不等,且外切于点A ,不过点A 的一条公切线切⊙B 于点D ,切⊙C 于点E ,直线AF ⊥DE ,且与BC 的垂直平分线交于点F .求证:BC =2AF .(英国数学奥林匹克试题)12.如图,AB 为半圆的直径,C 是半圆弧上一点.正方形DEFG 的一边DG 在直径AB 上,另一边DE 过△ABC 得内切圆圆心O ,且点E 在半圆弧上.(1)若正方形的顶点F 也在半圆弧上,求半圆的半径与正方形边长的比;(2)若正方形DEFG 的面积为100,且△ABC 的内切圆半径4 r ,求半圆的直径AB .(杭州市中考试题)B 级1.相交两圆的半径分别为5cm 和4cm ,公共弦长为6cm ,这两圆的圆心距为_______.2.如图,⊙O 过M 点,⊙M 交⊙O 于A ,延长⊙O 的直径AB 交⊙M 于C .若AB =8,BC =1,则AM =_______.(第2题图) (第3题图) (第4题图)3.已知圆环内直径为a cm ,外直径为b cm ,将50个这样的圆环一个接着一个环套环地连成一条锁链,那么这条锁链拉直后的长度为___________cm .4.如图,已知PQ =10,以PQ 为直径的圆与一个以20为半径的圆相切于点P .正方形ABCD 的顶点A ,B 在大圆上,小圆在正方形的外部且与CD 切于点Q .若AB =n m +,其中m ,n 为整数,则=+n m ___________.(美国中学生数学邀请赛试题) 5.如图,正方形ABCD 的对角线AC ,BD 交于点M ,且分正方形为4个三角形,⊙O 1,⊙O 2,⊙O 3,⊙O 4,分别为△AMB ,△BMC ,△CMD ,△DMA 的内切圆.已知AB =1.则⊙O 1,⊙O 2,⊙O 3,⊙O 4所夹的中心(阴影)部分的面积为( )A.(4)(316π-- B. (34π-CD . 416π-DA(第5题图) (第6题图) (第7题图)6.如图,⊙O 1与⊙O 2内切于点E ,⊙O 1的弦AB 过⊙O 2的圆心O 2,交⊙O 2于点C ,D .若AC :CD :BD =2:4:3,则⊙O 2与⊙O 1的半径之比为( )A .2:3B .2:5C .1:3D .1:47.如图,⊙O 1与⊙O 2外切于点A ,两圆的一条外公切线与⊙O 1相切于点B ,若AB 与两圆的另一条外公切线平行,则⊙O 1与⊙O 2的半径之比为( )A .2:5B .1:2C .1:3D .2:3QD C B A P(全国初中数学联赛试题)8.如图,已知⊙O 1与⊙O 2相交于A ,B 两点,过点A 作⊙O 1的切线,交⊙O 2于点C ,过点B 作两圆的割线分别交⊙O 1,⊙O 2于点D ,E ,DE 与AC 相交于点P .(1)求证:PA PE PC PD •=•(2)当AD 与⊙O 2相切且P A =6,PC =2,PD =12时,求AD 的长. (黄冈市中考试题)9.如图,已知⊙O 1和⊙O 2外切于A ,BC 是⊙O 1和⊙O 2的公切线,切点为B ,C .连接BA 并延长交⊙O 1于D ,过D 点作CB 的平行线交⊙O 2于E ,F .(1)求证:CD 是⊙O 1的直径;(2)试判断线段BC ,BE ,BF 的大小关系,并证明你的结论. (四川省中考试题)10.如图,两个同心圆的圆心是O ,大圆的半径为13,小圆的半径为5,AD 是大圆的直径,大圆的弦AB ,BE 分别与小圆相切于点C ,F ,AD ,BE 相交于点G ,连接BD .(1)求BD 的长;(2)求2ABE D ∠+∠的度数;(3)求BGAG的值. (淄博市中考试题)11.如图,点H 为△ABC 的垂心,以AB 为直径的⊙O 1与△BCH 的外接圆⊙O 2相交于点D ,延长AD 交CH 于点P .求证:P 为CH 的中点. (“《数学周报杯”全国初中数学竞赛试题)12.如图,已知AB为半圆O的直径,点P为直径AB上的任意一点,以点A为圆心,AP为半径作⊙A,⊙A与半圆O相交于点C,以点B为圆心,BP为半径作⊙B,⊙B与半圆O相交于点D,且线段CD 的中点为M.求证:MP分别与⊙A,⊙B相切. (“《数学周报杯”全国初中数学竞赛试题)B。