第6章 无线局域网的物理层技术
- 格式:ppt
- 大小:7.62 MB
- 文档页数:102
第6章简答1:某公司准备建立一个无线局域网,网络拓扑如附图所示。
(1)请从工作频段、数据传输速率、优缺点以及兼容性等方面对802.11a 、802.11b 和802.11g 进行比较。
(2)请写出附图中①处的设备名称(包括中文名和英文名)。
(3)该无线局域网内的计算机的IP 地址有哪几种分配方式?在安装①时,如何配置这几种方式?(4)配置完成后,用什么命令测试该无线网是否连通?2:一个802.11b 无线局域网在无线信道上连续地传输多个64字节帧,已知信道的位错率为10-7。
平均每秒有多少个帧被破坏?3:为增加跨距,IEEE 802.3z 规范将千兆以太网的时间片扩展到了4096位时间,即最小帧长度为512字节。
为了保证与传统以太网和快速以太网的64字节最小帧长度兼容,IEEE 802.3z 规范采用了载波扩展技术。
请简述载波扩展的基本思想。
4:考虑在一条1000米长的电缆(无中继器)上建立一个1Gb/s 速率的CSMA/CD 网络,假定信号在电缆中的速度为2×108米/秒。
请问最小帧长为多少?5:一个以太网卡经历4次连续冲突后,在下一次重发前最多要等待多少时间片?在10M 以太网中,其最大等待时间为多少?6:一个CSMA/CD 基带总线网长度为1500米,信号传播速度为2×108米/秒,假如位于总线两端的两台计算机在发送数据时发生了冲突,试问:(1)两台计算机间的信号传播延迟是多少?往返传播时间是多少?(2)每台计算机最多需要多长时间可以检测到冲突?7:为什么IEEE 802标准中要把数据链路层分为逻辑链路控制子层和介质访问控制子层?8:局域网基本技术中有哪几种拓朴结构、传输媒体和介质访问控制方法?填空9:在10BASE-T和100BASE-T以太网中,RJ-45连接器的引脚和用于发送,引脚和用于接收。
10:CSMA/CD介质访问控制方法采用了二进制指数退避算法来计算重传前的退避时间,算法如下:(1)确定基本退避时间片T= 。
1.与广域网相比,局域网有哪些特点?参考答案:1)较小的地域范围。
2)传输速率高,误码率低。
3)通常为一个单位所建,并自行管理和使用。
4)可使用的传输介质较丰富。
5)较简单的网络拓扑结构。
6)有限的站点数量。
2. 局域网的3个关键技术是什么?试分析10BASE-T以太网所采用的技术。
参考答案:局域网的三个关键技术是拓扑结构、数据传输形式及介质访问控制方法。
10BASE-T以太网的物理拓扑结构为星型(逻辑拓扑结构为总线型),采用基带传输,使用CSMA/CD的介质访问控制方法。
3.以太网与总线网这两个概念有什么关系?参考答案:总线网是指拓扑结构为总线的网络,而以太网是指采用CSMA/CD介质访问控制方法的局域网,早期以太网的物理拓扑结构采用了总线型拓扑,也属于总线型网络,但现在的以太网大多为星型拓扑。
4.以太网与IEEE802.3网络的相同点有哪些?不同点有哪些?参考答案:二者都采用了总线型拓扑结构和基带传输方法,并且都使用CSMA/CD的介质访问控制方法。
不同之处主要有:1)帧结构有些细微的差别:帧首部的第13-14位的定义不同,IEEE802.3定义为数据字段的长度,而DIX Ethernet II定义为网络层协议类型;2)介质稍有不同,IEEE802.3标准定义了同轴电缆、双绞线和光纤三种介质,而DIX Ethernet II只使用同轴电缆。
5.IEEE 802标准规定了哪些层次?参考答案:IEEE 802标准规定了物理层和数据链路层两个层次。
其中又把数据链路层分为逻辑链路控制(LLC)和介质访问控制(MAC)两个功能子层。
6.试分析CSMA/CD介质访问控制技术的工作原理。
参考答案:CSMA/CD介质访问控制技术被广泛应用于以太网中。
CSMA/CD的工作原理是:当某个站点要发送数据时,它首先监听介质:①如果介质是空闲的,则发送;②如果介质是忙的,则继续监听,一旦发现介质空闲,就立即发送;③站点在发送帧的同时需要继续监听是否发生冲突(碰撞),若在帧发送期间检测到冲突,就立即停止发送,并向介质发送一串阻塞信号以强化冲突,保证让总线上的其他站点都知道已发生了冲突;④发送了阻塞信号后,等待一段随机时间,返回步骤①重试。
什么是计算机网络物理层常见的计算机网络物理层技术有哪些计算机网络物理层是计算机网络体系结构中的基础层次,其主要功能是提供各种物理传输介质上的数据传输和接收。
物理层通过电气信号、电磁波、光信号等方式,将数据从发送方传输到接收方,并确保数据的可靠传输。
本文将介绍计算机网络物理层的基本概念以及常见的物理层技术。
一、计算机网络物理层的基本概念计算机网络物理层是计算机网络体系结构中的最底层,它直接与各种物理传输介质进行数据传输和接收。
物理层的主要任务包括编码、调制解调、传输介质选择以及物理连接等。
1. 编码编码是指将数字信号转换为模拟信号或数字信号的过程。
传输的数据在计算机中以二进制形式表示,而大多数物理传输介质是通过模拟信号传输的,因此需要进行编码转换。
常见的编码方式有非归零编码、曼彻斯特编码、差分曼彻斯特编码等。
2. 调制解调调制解调是物理层中常见的一项技术,它将数字信号转换为适合传输的模拟信号。
发送方通过调制将数字信号转换为模拟信号,接收方通过解调将模拟信号转换为数字信号。
调制解调的常见方式有频移键控调制(FSK)、相位键控调制(PSK)、振幅键控调制(ASK)等。
3. 传输介质选择传输介质是指计算机网络中用于数据传输的物理媒介,常见的传输介质包括双绞线、同轴电缆、光纤等。
选择适合的传输介质对于物理层的性能和数据传输速率至关重要。
4. 物理连接物理连接是指将计算机网络中的各个节点通过传输介质进行连接的过程。
物理连接可以通过直接连接、交换机、集线器等实现。
物理连接的稳定性对于数据传输的可靠性和网络性能有着重要的影响。
二、常见的计算机网络物理层技术计算机网络物理层涉及到多种技术,下面将介绍一些常见的物理层技术。
1. 以太网以太网是一种常见的局域网技术,它使用双绞线或光纤作为传输介质,通过载波侦听多路访问/冲突检测(CSMA/CD)协议进行数据传输。
以太网具有数据传输速率快、成本低廉等特点,广泛应用于局域网和广域网。
通信工程解析无线通信与网络安全的关键技术无线通信与网络安全是通信工程领域中的关键问题。
随着移动互联网的迅猛发展,人们对通信技术和网络安全的需求越来越高。
本文将从技术角度对无线通信与网络安全的关键技术进行解析,以帮助读者更好地了解相关领域的技术发展和应用。
一、物理层技术在无线通信中,物理层技术是实现无线信号的传输和接收的基础。
其中,调制技术和信道编码技术是物理层的两个重要方面。
1. 调制技术调制技术是将数字信号转换成适合无线传输的模拟信号的过程。
常见的调制技术包括频移键控(FSK)、正交幅度调制(QAM)和正交频分复用(OFDM)等。
不同的调制技术适用于不同的传输场景,可以提高无线信号的传输效率和可靠性。
2. 信道编码技术信道编码技术是提高无线信号抗干扰能力的重要手段。
通过引入纠错码和交织技术,可以在有限的频带资源上实现更可靠的数据传输。
常用的信道编码技术包括卷积码、块码和低密度奇偶校验码(LDPC)等。
二、网络层技术网络层是实现无线通信中数据传输和路由选择的关键环节。
在保证数据传输的同时,保障网络安全也是网络层技术的重要任务。
1. IP协议IP协议作为互联网中的核心协议,是实现无线通信中数据传输的基础。
IPv4和IPv6是常用的IP协议版本,分别支持32位和128位的寻址空间,满足了移动互联网中的IP地址需求。
2. 路由技术路由技术是实现无线网络中数据传输的关键技术之一。
通过路由选择算法和路由表管理,可以实现数据包的转发和寻址。
常见的路由技术包括静态路由和动态路由,通过灵活配置和动态更新路由表,可以提高网络的负载均衡和容错能力。
三、数据链路层技术数据链路层是无线通信中实现可靠数据传输和介质访问控制的核心层级。
在无线通信中,数据链路层技术包括无线局域网(WLAN)和蓝牙等技术。
1. 无线局域网技术无线局域网技术是实现无线接入的关键技术之一。
常见的无线局域网技术包括Wi-Fi和WiMAX等。
通过无线局域网技术,用户可以实现无线接入互联网,同时保障数据的安全性和传输效率。
计算机网络中的物理层技术简介在计算机网络中,物理层是网络体系结构的第一层,负责将数据转化为电信号在物理媒介上进行传输。
物理层的主要任务是提供透明的传输介质,确保数据能够有效地在发送和接收设备之间传输。
本文将对计算机网络中的物理层技术进行简要介绍。
1. 物理层的作用物理层负责传输bit流,实现数据的传输和接收。
它主要涉及以下方面:a. 媒介传输物理层通过物理媒介来传输数据,如电线、光纤等。
这些媒介具有不同的传输性能和成本特征,比如传输速率、传输距离、抗干扰能力等。
物理层需要根据实际需求选择合适的媒介。
b. 时钟同步数据在物理层进行传输时,需要保持发送和接收设备之间的时钟同步,以确保数据能够顺利地传输和接收。
物理层通过使用特定的时钟同步方法来实现这一功能。
c. 纠错与检测物理层需要处理传输过程中的误码问题,以保证数据传输的可靠性。
常见的纠错和检测技术包括奇偶校验、循环冗余校验(CRC)等。
2. 物理层技术在计算机网络中,物理层使用了各种技术来实现数据的传输和接收。
下面介绍几种常见的物理层技术:a. 传输介质传输介质是数据传输的媒介,包括电线、光纤等。
其中,电线分为双绞线和同轴电缆。
双绞线广泛应用于局域网(LAN)中,而同轴电缆主要用于传输视频信号。
光纤则具有更高的传输速率和抗干扰能力,被广泛应用于广域网(WAN)和高速局域网。
b. 编码技术编码技术用于在物理层将数据转化为电信号,在发送设备和接收设备之间进行传输。
常见的编码技术有非归零制(NRZ)、曼彻斯特编码、4B/5B编码等。
c. 调制技术调制技术将数字信号转化为模拟信号,以便在媒介中进行传输。
调制技术包括频移键控(FSK)、相移键控(PSK)、振幅键控(ASK)等。
调制技术可以提高信号的传输速率和抗干扰能力。
d. 多路复用技术多路复用技术允许多个信号通过单个传输介质进行传输。
常见的多路复用技术包括时分复用(TDM)、频分复用(FDM)、波分复用(WDM)等。
WLAN的工作原理及网络结构
WLAN(Wireless Local Area Networks),即无线局域网,是指利用无线技术建立局域网络的技术。
它可以让用户在无需缆线的环境下,接入到局域网络中,从而实现网络的无缆化,是当今局域网络发展的主流技术之一、传统的有线局域网(Wired Local Area Network),又称以太网,它是利用双绞线或同轴电缆作为物理传输介质,以物理层的以太网帧作为逻辑上的传输格式,通过网桥、交换机或路由器进行转发的网络。
WLAN有着特有的工作原理,一般来讲,其网络结构主要分为以下4个方面:
1、无线媒体接入技术:无线媒体接入技术是指支持WLAN所采用的信号传播方式,主要包括无线电、微波和光波等技术,它们利用特定的频率范围发射和接收信号,从而实现无线局域网的组网。
2、MAC(Media Access Control)层:MAC是无线局域网的心脏,它负责信息在网络中的传输,控制网络设备的接入,管理设备之间的通信。
它负责识别各种设备、定义网络传输协议、网络地址分配和错误控制等。
3、网络层:网络层主要负责处理网络编址、路由选择和路由协调,以及对ip数据报的转发等功能。
它承担了路由表维护,控制流量分发等工作,实现了分组在网络中的传输。