高速切削简介
- 格式:ppt
- 大小:18.90 MB
- 文档页数:61
机械制造中的机械加工高速切削技术高速切削是机械加工领域中的一项重要技术,它在工件加工过程中使用高速切削工具,以较大的进给速度和转速进行切削,提高了加工效率和加工质量。
本文将介绍机械加工高速切削技术的原理、特点以及在机械制造中的应用。
一、高速切削技术的原理高速切削技术是基于高速运动的切削工具和工件之间的相对运动原理。
在高速切削过程中,切削工具以较高的转速和进给速度与工件接触,形成切屑并进行切削。
相比传统的慢速切削,高速切削具有以下特点:1. 切削速度较快:高速切削在保持刀具刃口整齐的情况下,增大刀具转速和进给速度,从而大幅提高了切削效率。
2. 切削温度较低:高速切削由于切削时间短,切削工具与工件接触时间减少,从而减少了热量在切削区域的积累,使得切削温度低于常规切削。
3. 切削力较小:高速切削采用较高的转速和进给速度,在单位时间内切削的材料量相对较大,切削力得到了有效分散,从而降低了切削力的大小。
二、高速切削技术的应用1. 提高生产效率:高速切削技术在机械制造中广泛应用,能够显著提高生产效率。
通过提高切削速度和进给速度,生产厂商可以在较短时间内完成更多的加工任务,提高了机械加工的效率。
2. 提高加工精度:高速切削技术具有切削温度低、切削力小等特点,能够减小热变形和机械振动对工件加工精度的影响,提高了加工精度和表面质量。
3. 增加工件材料种类:高速切削技术在闪光电火花加工、超硬材料和薄壁工件高速切削等领域应用广泛。
高速切削通过较高的转速和进给速度,能够更好地适应不同材料的加工需求。
4. 降低加工成本:高速切削技术通过提高加工效率和降低切削力,可以减少切削时间和刀具磨损,从而降低了加工成本。
三、机械加工高速切削技术的挑战与发展高速切削技术在机械制造中的应用受到了一些挑战,如切削热问题、切削润滑和冷却问题等。
同时,随着高速切削技术的发展,一些新的切削方式如超声波切削、激光切削等也受到了广泛关注。
为了进一步推动高速切削技术的发展,需要加强研究,探索新的切削理论和方法。
绿色制造—高速干切削概述高速干切削是一种先进的切削加工技术,它在提高加工效率的同时,也有效地降低了环境污染和能源消耗。
本文将概述高速干切削技术的原理、应用领域以及对绿色制造的积极影响。
一、高速干切削的原理高速干切削是指在高速旋转的切削工具与工件接触时,不使用冷却液进行冷却和润滑的切削过程。
其原理是通过提高切削速度、降低加工温度和减少摩擦力来实现高效率的切削加工。
在高速干切削过程中,切削温度相对较低,切削力较小,从而减少了工具磨损和加工成本。
二、高速干切削的应用领域高速干切削技术广泛应用于机械制造、航空航天、汽车、电子、光学器件等领域。
例如,高速干切削技术在汽车制造中被用于发动机零部件的加工,可大幅提高生产效率和减少废液处理成本。
同时,在电子器件制造领域,高速干切削技术具备高精度和高表面质量等优势,被广泛应用于半导体芯片、光纤组件等的加工。
三、高速干切削对绿色制造的影响1. 节约能源:高速干切削不需要冷却液,大大减少了能源消耗。
与传统切削相比,高速干切削可节约能源30%以上,减少了对环境的负荷。
2. 降低环境污染:传统切削过程中,大量的冷却液被使用后会成为废液,对环境造成严重的污染。
而高速干切削技术无需冷却液,减少了废液的产生,降低了对水资源的消耗和水污染的风险。
3. 提高生产效率:高速干切削技术采用高速切削工具和高速传动设备,加工速度更快,提高了生产效率。
同时,由于无需处理废液等附加工序,工艺流程更加简化,进一步提高了生产效率。
4. 减少工具磨损:高速干切削的切削速度相对较高,与工件接触时间短,减少了工具磨损。
这可以延长工具的使用寿命,减少了资源消耗和废弃物的产生。
综上所述,高速干切削技术具有降低能源消耗、减少环境污染、提高生产效率和减少工具磨损的优势,为绿色制造的实践提供了重要的技术支持。
随着高速干切削技术的进一步发展和应用,相信将在制造业领域取得更加显著的绿色效益和可持续发展。
第三讲1.高速切削技术高速切削的产生背景和发展史高速切削(HSM或HSC)通常指高主轴转速和高进给速度下的立铣,它是20世纪90年代迅速走向实际应用的先进加工技术,在航空航天制造业、模具加工业、汽车零件加工、以及精密零件加工等得到广泛的应用。
高速铣削技术既可用于铝合金、铜等易切削金属,也可用于淬火钢、钛合金、高温合金等难加工材料,以及碳纤维塑料等非金属材料。
例如,在铝合金等飞机零件加工中,曲面多且结构复杂,材料去除量达高达90%~95%,采用高速铣削可大大提高生产效率和加工精度;在模具加工中,高速铣削可加工淬火硬度大于HRC50的钢件,因此许多情况下可省去电火花加工和手工修磨,在热处理后采用高速铣削达到零件尺寸、形状和表面粗糙度要求。
高速切削概念始于1931年德国所罗门博士的研究成果:“当以适当高的切削速度(约为常规速度的5~10倍)加工时,切削刃上的温度会降低,因此有可能通过高速切削提高加工生产率”。
60多年来,人们一直在探索有效、适用、可靠的高速切削技术,但直到20世纪90年代该技术才逐渐在工业实际中推广应用。
高速切削最早在飞机制造业和模具制造l受到很大的重视。
为使飞机的零部件满足很高的可靠性要求,大部分重要零件都是在整块铝合金坯件卜铣削而成,既可减少焊缝,又可提高零件的强度和抗振性。
但常规铣削效率很低,从而导致了高的生产成本和长的交货时间。
高速切削是克服这方面问题的最好解决方案。
汽车工业中,模具制造是产品更新换代的关键。
新车型定型后,模具制造周期的长短直接影响到产品的上市时间,也关系到市场竞争的成败。
所以在80年代美国、欧洲和日本的政府都出巨资推动高速切削在模具制造中的应用研究,90年代初高速切削已进入工业化应用。
图16 高速切削在生产应用中的发展历程图17 采用高速切削后产品质量提高的历程a一硬质合金切钢 b一硬质合金切铸铁c—CBN切铸铁图16是德国宝马公司(BMW)采用高速切削的历程。
不同的切削方法的高速切削速度范围高速切削是指在金属加工和机械加工中,通过增加切削速度,提高生产效率和加工质量的一种加工方法。
不同的切削方法有着不同的高速切削速度范围。
下面分别介绍几种常见的切削方法及其高速切削速度范围。
1.钻削钻削是将圆柱形或圆锥形工具插入工件并旋转,从而形成孔的一种切削方法。
钻削速度一般较低,取决于工具材料和工件材料。
高速钻削一般指的是钻削速度超过常规钻削速度的1.5到2倍。
一般情况下,碳钢的高速钻削速度可以达到80到180米/分钟,而高硬度材料如铸铁、合金钢和高速钢的高速钻削速度可以达到150到400米/分钟。
2.铣削铣削是利用旋转的刀具在工作台上移动,对工件进行切削加工的一种方法。
铣削过程中,刀具在工件上作切削运动,而工件在工作台上作进给运动。
高速铣削一般是指铣削速度超过常规铣削速度的1.5到2倍以上。
常见的高速铣削切削速度范围为60到450米/分钟,具体取决于材料和切削工况。
一般来说,对于不锈钢、有色金属和铝合金等材料,高速铣削速度可以达到200到450米/分钟。
3.切削磨削切削磨削是将磨削石或砂轮转动到工件上,通过磨粒的切削作用,将工件表面的材料切削掉的一种方法。
切削磨削主要适用于硬度较高,难于切削的材料,如硬质合金、陶瓷和石材等。
高速切削磨削一般是指磨削速度超过常规切削磨削速度的1.5到2倍以上。
常用的高速切削磨削速度范围为30到80米/秒。
4.车削车削是将工装(刀具)放置在旋转的工件上,通过进给运动将切削刀具对工件进行切削的一种方法。
车削是最常见的切削加工方法之一、高速车削是指车削速度超过常规车削速度的1.5到2倍以上。
高速车削速度范围根据材料和加工条件的不同,一般在80到450米/分钟之间。
总结而言,不同的切削方法的高速切削速度范围是不同的。
高速钻削速度范围一般为80到400米/分钟,高速铣削速度范围为60到450米/分钟,高速切削磨削速度范围为30到80米/秒,高速车削速度范围为80到450米/分钟。
高速切削的名词解释高速切削是现代制造业中一项重要的加工技术,其在工件加工中起着至关重要的作用。
简单来说,高速切削就是在高转速下,通过刀具切削工件表面,快速去除工件上的多余材料,以达到制造精密零部件的目的。
这种切削方式在工艺和设备上相对传统切削方式有着显著的差异,具有许多独特的特点和优势。
本文将从原理、应用领域、特点和挑战等方面对高速切削进行详细解释。
高速切削的原理是基于材料去除的速度和切削轨迹,通过高速旋转的刀具将切削力传递至工件表面,实现切削过程。
相较于传统切削方式,高速切削使用的切削速度更高,可以达到数千转每分钟,甚至数万转每分钟。
高速切削依靠刀具的高转速和稳定性,既提高了生产效率,又确保了切削质量。
它还通过合理的刀具材料和结构设计,降低了切削过程中的热变形和振动等不利因素,进一步提高了工件的加工精度和表面质量。
高速切削的应用领域广泛。
首先,它在航空航天和汽车制造等领域的零部件加工中发挥着重要作用。
对于满足安全性和精密度要求的关键部件,高速切削能够更快速、高效地进行加工。
其次,高速切削在模具和工装制造中也有广泛应用。
模具和工装的加工要求高度精确,而高速切削技术通过提高切削质量和效率,实现了模具和工装的大规模制造。
此外,高速切削还在医疗器械、电子设备和精密仪器等领域有所应用。
高速切削具有许多独特的特点和优势。
首先,由于高速切削技术的使用,加工效率显著提高。
切削速度的增加意味着更短的加工时间,使得生产成本和周期可以大大缩短。
其次,高速切削还可以实现加工精度的提高。
高速切削技术克服了传统切削过程中的振动和热变形等因素,可获得更高的加工精度和表面质量。
此外,高速切削还可以延长切削刀具的使用寿命,减少了更换刀具的频率和成本。
最后,高速切削还能够更好地应对工艺难题。
在某些复杂形状的零部件加工中,高速切削技术能够实现较低的切削力和较高的切削精度,解决了以往的加工难题。
然而,高速切削也面临着一些挑战。
首先,高速切削需要刀具和机床等加工设备具备较高的技术水平。
模具加工方法高速切削1. 引言模具加工是制造行业中不可或缺的一部分,它在制造各种产品的过程中起着至关重要的作用。
随着科技和工艺的不断发展,高速切削已经成为模具加工中的一种重要方法。
本文将介绍模具加工中的高速切削方法,包括其原理、工具、技术要点和应用。
2. 高速切削的原理高速切削是指在高速旋转刀具的作用下,通过切削运动将材料去除的过程。
其原理主要包括以下几个方面:•切削力和切削温度增大:高速切削的切削速度较快,相应地,切削力也会增大。
同时,高速切削还会导致切削温度的增大,这是由于切削过程中的摩擦和热变形引起的。
•切削振动减小:高速切削时,切削力的增大并不会引起切削振动的增加,反而会减小。
这是因为高速切削时,刀具和工件之间的接触面积减小,摩擦力也随之减小,从而减小了切削振动。
•切削表面质量提高:高速切削由于切削速度快,可以减小切屑对刀具磨损的影响,从而提高切削表面的质量。
3. 高速切削的工具在高速切削中,选择合适的切削工具是非常重要的。
常见的高速切削工具有以下几种:3.1 钨钢刀具钨钢刀具是高速切削中最常用的切削工具之一。
它具有硬度高、刚性好、磨损小的特点,适用于加工硬度较高的材料。
3.2 多齿刀具多齿刀具是指具有多个切削齿的刀具,它可以提高切削效率和切削精度。
在高速切削中,多齿刀具由于其大体积和较高的切削速度,可以减小切削振动,提高加工效率。
3.3 超硬刀具超硬刀具是指采用超硬材料制成的刀具,常见的超硬材料有氮化硅和氮化硼等。
超硬刀具具有硬度极高、耐磨性好的特点,适用于加工硬度极高的材料。
4. 高速切削的技术要点在进行高速切削时,要注意以下几个技术要点:4.1 切削速度的选择选择合适的切削速度是高速切削的关键。
切削速度过低会导致切削效率低下,切削速度过高则会增加切削力和切削温度,甚至引起刀具损坏。
因此,要根据具体材料的硬度、刀具的材质和刀具结构等因素来选择合适的切削速度。
4.2 工艺参数的优化在高速切削过程中,还需要对工艺参数进行优化。
高速切削技术研究第一部分高速切削技术的定义与特点 (2)第二部分高速切削刀具材料与磨损机理 (4)第三部分高速切削机床的选型与应用 (7)第四部分高速切削参数优化方法 (10)第五部分高速切削过程的热控制技术 (13)第六部分高速切削加工精度与表面质量 (15)第七部分高速切削在典型零件加工中的应用 (17)第八部分高速切削技术的发展趋势与挑战 (20)第一部分高速切削技术的定义与特点高速切削技术是一种先进的制造工艺,它通过使用高转速的刀具和优化的切削参数来提高材料去除率、加工精度和表面质量。
该技术的核心在于实现高效率、高质量和高精度的加工过程。
在高速切削过程中,刀具以极高的速度旋转(通常超过每分钟数千转),同时进给速度也相应提高。
这种高速旋转产生的离心力有助于减小切削力和切削热,从而延长刀具寿命并减少工件的热变形。
此外,由于切削力的降低,高速切削还可以减少振动,进一步提高加工精度。
高速切削技术的优势主要体现在以下几个方面:1.高效率:与传统切削相比,高速切削可以显著提高材料去除率,缩短加工时间。
研究表明,高速切削可以提高生产效率达 30%至50%。
2.高精度:高速切削过程中的低切削力可以减少工件的振动,从而提高加工精度。
此外,由于切削热的影响较小,工件的热变形也得到了控制。
3.高质量表面:高速切削产生的切削热较低,这有助于减少工件的烧伤和裂纹,从而获得更好的表面质量。
4.刀具寿命延长:高速切削可以降低切削力,减少刀具磨损,从而延长刀具的使用寿命。
5.节能减排:高速切削技术可以实现更高的材料去除率,从而减少能源消耗和碳排放。
然而,高速切削技术也存在一些挑战,如刀具成本较高、对机床性能要求较高等。
因此,在实际应用中,需要根据具体加工需求和技术条件,合理选择切削参数和刀具,以确保高速切削技术的有效性和经济性。
总之,高速切削技术作为一种先进的制造工艺,具有高效率、高精度、高质量表面等优势,但在实际应用中需充分考虑其成本和设备要求。
一、高速切削的原始定义1931年,德国切削物理学家萨洛蒙(Carl.J.Salomon)博士提出了一个假设,即同年申请了德国专利(Machine with high cutting speeds)的所罗门原理:被加工材料都有一个临界切削速度V0,在切削速度达到临界速度之前,切削温度和刀具磨损随着切削速度增大而增大,当切削速度达到普通切削速度的5~6倍时,切削刃口的温度开始随切削速度增大而降低,刀具磨损随切削速度增大而减小。
切削塑性材料时,传统的加工方式为“重切削”,每一刀切削的排屑量都很大,即吃刀大,但进给速度低,切削力大。
实践证明随着切削速度的提高,切屑形态从带状、片状到碎屑状演化,所需单位切削力在初期呈上升趋势,而后急剧下降,这说明高速切削比常规切削轻快,两者的机理也不同。
二、现代高速切削技术的概念所罗门原理出发点是用传统刀具进行高速度切削,从而提高生产率。
到目前为止,其原理仍未被现代科学研究所证实。
但这一原理的成功应该不只局限于此。
高速切削技术是切削技术的重要发展方向之一,从现代科学技术的角度去确切定义高速切削,目前还没有取得一致,因为它是一个相对概念,不同的加工方式,不同的切削材料有着不同的高速切削速度和加工参数。
这里包含了高速软切削、高速硬切削、高速湿切削和高速干切削等等。
事实上,高速切削技术是一个非常庞大而复杂的系统工程,它涵盖了机床材料的研究及选用技术,机床结构设计和制造技术,高性能CNC控制系统、通讯系统,高速、高效冷却、高精度和大功率主轴系统,高精度快速进给系统,高性能刀具夹持系统,高性能刀具材料、刀具结构设计和制造技术,高效高精度测试测量技术,高速切削机理,高速切削工艺,适合高速加工的编程软件与编程策略等等诸多相关的硬件和软件技术。
只有在这些技术充分发展的基础上,建立起来的高速切削技术才具有真正的意义。
所以要发挥出高速切削的优越性能,必须是CAD/CAM系统、CNC控制系统、数据通讯、机床、刀具和工艺等技术的完美组合。
第7章 高速切削简介高速切削是20世纪90年代迅速走向实际应用的先进加工技术,通常指高主轴转速和高进给速度下的立铣,国际上在航空航天制造业、模具加工业、汽车零件加工以及精密零件加工等得到广泛的应用。
高速切削可用于铝合金、铜等易切削金属和淬火钢、钛合金、高温合金等难加工材料以及碳纤维塑料等非金属材料的加工。
7.1 概述7.1.1高速切削的基本特征高速切削的研究历史,可以追溯到20世纪30年代由德国Carl Salomon博士首次提出的有关高速切削的概念。
Salomon博士的研究突破了传统切削理论对切削热的认识,认为切削热只是在传统切削速度范围内是与切削速度成单调增函数关系。
而当切削速度突破一定限度以后,切削温度不再随切削速度的增加而增加,反而会随切削速度的增加而降低,即与切削速度在较高速度的范围内成单调减函数,Salomon博士的研究因第二次世界大战而中断。
20世纪50年代后期开始,高速切削的试验又开始进入各种试验研究,高速切削的机理开始被科学家们所认识。
1979年开始由德国政府研究技术部资助、德国Darmstadt大学PTW研究所牵头、由大学研究机构、机床制造商、刀具制造商、用户等多方面共同组成的研究团队对高速铣削展开了系统的研究。
除了高速切削机理外,研究团队同步研究解决高速铣削中机床、刀具、工艺参数等多方面的应用解决方案,使高速铣削在加工机理尚未得到完全共识的情况下首先在铝合金加工和硬材料加工等领域得到应用,解决模具、汽车、航空等领域的加工需求,从而取得了巨大的经济效益。
这里,高速切削涉及机床的下列部件特性:(1)高速主轴单元。
高速主轴大多采用内置式马达驱动,主轴电机一体化,直接传动,转速达每分钟几万转。
要求应用各种不同的主轴轴承和主轴润滑和冷却来达到更高的载荷值。
(2)快速进给和高加(减)速的驱动系统。
采用取消中间运动环节的直线电机,可达到高速进给(至少10m/min以上)和高加(减)速(1g以上)。