专题07 构造函数法解决导数不等式问题(二)(原卷版)
- 格式:docx
- 大小:72.18 KB
- 文档页数:4
专题06 构造函数法解决导数不等式问题(一)以抽象函数为背景、题设条件或所求结论中具有“f (x )±g (x ),f (x )g (x ),f (x )g (x )”等特征式、旨在考查导数运算法则的逆向、变形应用能力的客观题,是近几年高考试卷中的一位“常客”,常以压轴题小题的形式出现,解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.导数是函数单调性的延伸,如果把题目中直接给出的增减性换成一个f ′(x ),则单调性就变的相当隐晦了,另外在导数中的抽象函数不等式问题中,我们要研究的往往不是f (x )本身的单调性,而是包含f (x )的一个新函数的单调性,因此构造函数变的相当重要,另外题目中若给出的是f ′(x )的形式,则我们要构造的则是一个包含f (x )的新函数,因为只有这个新函数求导之后才会出现f ′(x ),因此解决导数抽象函数不等式的重中之重是构造函数.构造函数是数学的一种重要思想方法,它体现了数学的发现、类比、化归、猜想、实验和归纳等思想.分析近些年的高考,发现构造函数的思想越来越重要,而且很多都用在压轴题(无论是主观题还是客观题)的解答上.构造函数的主要步骤:(1)分析:分析已知条件,联想函数模型;(2)构造:构造辅助函数,转化问题本质;(3)回归:解析所构函数,回归所求问题.考点一 构造F (x )=x n f (x )(n ∈Z ,且n ≠0)类型的辅助函数【方法总结】(1)若F (x )=x n f (x ),则F ′(x )=nx n -1f (x )+x n f ′(x )=x n -1[nf (x )+xf ′(x )];(2)若F (x )=f (x )x n ,则F ′(x )=f ′(x )x n -nx n -1f (x )x 2n =xf ′(x )-nf (x )x n +1. 由此得到结论:(1)出现nf (x )+xf ′(x )形式,构造函数F (x )=x n f (x );(2)出现xf ′(x )-nf (x )形式,构造函数F (x )=f (x )xn . 【例题选讲】[例1](1)已知f (x )的定义域为(0,+∞),f ′(x )为f (x )的导函数,且满足f (x )<-xf ′(x ),则不等式f (x +1)>(x -1)f (x 2-1)的解集是( )A .(0,1)B .(1,+∞)C .(1,2)D .(2,+∞)(2)已知函数f (x )是定义在区间(0,+∞)上的可导函数,其导函数为f ′(x ),且满足xf ′(x )+2f (x )>0,则不等式(x +2 021)f (x +2 021)5<5f (5)x +2 021的解集为( ) A .{x |x >-2 016} B .{x |x <-2 016} C .{x |-2 016<x <0} D .{x |-2 021<x <-2 016}(3)(2015·全国Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)(4)设f (x )是定义在R 上的偶函数,当x <0时,f (x )+xf ′(x )<0,且f (-4)=0,则不等式xf (x )>0的解集为________.(5)已知f (x )是定义在区间(0,+∞)内的函数,其导函数为f ′(x ),且不等式xf ′(x )<2f (x )恒成立,则( )A .4f (1)<f (2)B .4f (1)>f (2)C .f (1)<4f (2)D .f (1)>4f ′(2)(6)已知定义域为R 的奇函数y =f (x )的导函数为y =f ′(x ),当x >0时,xf ′(x )-f (x )<0,若a =f (e )e ,b =f (ln 2)ln 2,c =f (-3)-3,则a ,b ,c 的大小关系正确的是( ) A .a <b <c B .b <c <a C .a <c <b D .c <a <b【对点训练】1.设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则不等式(x +2 021)2f (x+2 021)-4f (-2)>0的解集为( )A .(-∞,-2 021)B .(-∞,-2 023)C .(-2 023,0)D .(-2 021,0)2.设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-2)=0,当x >0时,xf ′(x )-f (x )>0,则使得f (x )>0成立的x的取值范围是________.3.已知偶函数f (x )(x ≠0)的导函数为f ′(x ),且满足f (-1)=0,当x >0时,2f (x )>xf ′(x ),则使得f (x )>0成立的x 的取值范围是________.4.设f (x )是定义在R 上的偶函数,且f (1)=0,当x <0时,有xf ′(x )-f (x )>0恒成立,则不等式f (x )>0的解集为________.5.设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集 是________________.6.设f (x )是定义在R 上的奇函数,且f (2)=0,当x >0时,xf ′(x )-f (x )x 2<0恒成立,则不等式f (x )x>0的解集 为( )A .(-2,0)∪(2,+∞)B .(-2,0)∪(0,2)C .(-∞,-2)∪(0,2)D .(-∞,-2)∪(2,+∞)7.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )-f (x )<0,对任意正数a ,b ,若a <b ,则必有( )A .af (b )<bf (a )B .bf (a )<af (b )C .af (a )<bf (b )D .bf (b )<af (a )8.设函数f (x )的导函数为f ′(x ),对任意x ∈R ,都有xf ′(x )<f (x )成立,则( )A .3f (2)>2f (3)B .3f (2)=2f (3)C .3f (2)<2f (3)D .3f (2)与2f (3)大小不确定9.定义在区间(0,+∞)上的函数y =f (x )使不等式2f (x )<xf ′(x )<3f (x )恒成立,其中y =f ′(x )为y =f (x )的导函数,则( )A .8<f (2)f (1)<16B .4<f (2)f (1)<8C .3<f (2)f (1)<4D .2<f (2)f (1)<3 考点二 构造F (x )=e nx f (x )(n ∈Z ,且n ≠0)类型的辅助函数【方法总结】(1)若F (x )=e nx f (x ),则F ′(x )=n ·e nx f (x )+e nx f ′(x )=e nx [f ′(x )+nf (x )];(2)若F (x )=f (x )e nx ,则F ′(x )=f ′(x )e nx -n e nx f (x )e 2nx =f ′(x )-nf (x )e nx. 由此得到结论:(1)出现f ′(x )+nf (x )形式,构造函数F (x )=e nx f (x );(2)出现f ′(x )-nf (x )形式,构造函数F (x )=f (x )enx . 【例题选讲】[例1](1)若定义在R 上的函数f (x )满足f ′(x )+2f (x )>0,且f (0)=1,则不等式f (x )>1e 2x的解集为 . (2)定义域为R 的可导函数y =f (x )的导函数为f ′(x ),满足f (x )>f ′(x ),且f (0)=1,则不等式f (x )ex <1的解集为________.(3)若定义在R 上的函数f (x )满足f ′(x )-2f (x )>0,f (0)=1,则不等式f (x )>e 2x 的解集为________.(4)设定义域为R 的函数f (x )满足f ′(x )>f (x ),则不等式e x -1f (x )<f (2x -1)的解集为________.(5)定义在R 上的函数f (x )满足:f (x )>1-f ′(x ),f (0)=0,f ′(x )是f (x )的导函数,则不等式e x f (x )>e x -1(其中e 为自然对数的底数)的解集为( )A .(0,+∞)B .(-∞,-1)∪(0,+∞)C .(-∞,0)∪(1,+∞)D .(-1,+∞)(6)定义在R 上的函数f (x )的导函数为f ′(x ),若对任意x ,有f (x )>f ′(x ),且f (x )+2 021为奇函数,则不等式f (x )+2 021e x <0的解集是( )A .(-∞,0)B .(0,+∞)C .⎝⎛⎭⎫-∞,1eD .⎝⎛⎭⎫1e ,+∞ (7)已知定义在R 上的偶函数f (x )(函数f (x )的导函数为f ′(x ))满足f ⎝⎛⎭⎫x -12+f (x +1)=0,e 3f (2 021)=1,若f (x )>f ′(-x ),则关于x 的不等式f (x +2)>1ex 的解集为( ) A .(-∞,3) B .(3,+∞) C .(-∞,0) D .(0,+∞)(8)已知函数f (x )是定义在R 上的可导函数,f ′(x )为其导函数,若对于任意实数x ,有f (x )-f ′(x )>0,则( )A .e f (2 021)>f (2 022)B .e f (2 021)<f (2 022)C .e f (2 021)=f (2 022)D .e f (2 021)与f (2 022)大小不能确定(9)已知f (x )是定义在(-∞,+∞)上的函数,导函数f ′(x )满足f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (2)>e 2f (0),f (2 021)>e 2 021f (0)B .f (2)<e 2f (0),f (2 021)>e 2 021f (0)C .f (2)>e 2f (0),f (2 021)<e 2 021f (0)D .f (2)<e 2f (0),f (2 021)<e 2 021f (0)(10)已知函数f (x )在R 上可导,其导函数为f ′(x ),若f (x )满足:(x -1)[f ′(x )-f (x )]>0,f (2-x )=f (x )·e 2-2x ,则下列判断一定正确的是( )A .f (1)<f (0)B .f (2)>e 2f (0)C .f (3)>e 3f (0)D .f (4)<e 4f (0)【对点训练】1.已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (0)=12,则不等式f (x )-12e x <0的 解集为( )A .⎝⎛⎭⎫-∞,12B .(0,+∞)C .⎝⎛⎭⎫12,+∞ D .(-∞,0) 2.已知函数f ′(x )是函数f (x )的导函数,f (1)=1e,对任意实数x ,都有f (x )-f ′(x )>0,则不等式f (x )<e x -2的 解集为( )A .(-∞,e)B .(1,+∞)C .(1,e)D .(e ,+∞)3.已知f ′(x )是定义在R 上的连续函数f (x )的导函数,若f ′(x )-2f (x )<0,且f (-1)=0,则f (x )>0的解集为( )A .(-∞,-1)B .(-1,1)C .(-∞,0)D .(-1,+∞)4.已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )>f (x ),且f (x +3)为偶函数,f (6)=1,则不等式f (x )>e x 的解集为( )A .(-2,+∞)B .(0,+∞)C .(1,+∞)D .(4,+∞)5.已知函数f (x )的定义域是R ,f (0)=2,对任意的x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集是( )A .{x |x >0}B .{x |x <0}C .|x |x <-1,或x >1|D .{x |x <-1,或0<x <1}6.已知函数f (x )的定义域为R ,且f (x )+1<f ′(x ),f (0)=2,则不等式f (x )+1>3e x 的解集为( )A .(1,+∞)B .(-∞,1)C .(0,+∞)D .(-∞,0)7.定义在R 上的可导函数f (x )满足f (x )+f ′(x )<0,则下列各式一定成立的是( )A .e 2f (2021)<f (2019)B .e 2f (2021)>f (2019)C .f (2021)<f (2019)D .f (2021)>f (2019)8.定义在R 上的函数f (x )满足f ′(x )>f (x )恒成立,若x 1<x 2,则1e x f (x 2)与2e xf (x 1)的大小关系为( )A .1e x f (x 2)>2e x f (x 1)B .1e x f (x 2)<2e x f (x 1)C .1e x f (x 2)=2e x f (x 1)D .1e x f (x 2)与2e x f (x 1)的大小关系不确定9.设函数f (x )的导函数为f ′(x ),对任意x ∈R 都有f (x )>f ′(x )成立,则( )A .3f (ln2)<2f (ln3)B .3f (ln2)=2f (ln3)C .3f (ln2)>2f (ln3)D .3f (ln2)与2f (ln3)的大小不确定10.已知函数f (x )是定义在R 上的可导函数,且对于∀x ∈R ,均有f (x )>f ′(x ),则有( )A .e 2022f (-2022)<f (0),f (2022)>e 2022f (0)B .e 2022f (-2022)<f (0),f (2022)<e 2022f (0)C .e 2022f (-2022)>f (0),f (2022)>e 2022f (0)D .e 2022f (-2022)>f (0),f (2022)<e 2022f (0)考点三 构造F (x )=f (x )sin x ,F (x )=f (x )sin x ,F (x )=f (x ) cos x ,F (x )=f (x )cos x类型的辅助函数 【方法总结】(1)若F (x )=f (x )sin x ,则F ′(x )=f ′(x )sin x +f (x )cos x ;(2)若F (x )=f (x )sin x ,则F ′(x )=f ′(x )sin x -f (x )cos x sin 2x; (3)若F (x )=f (x )cos x ,则F ′(x )=f ′(x )cos x -f (x )sin x ;(4)若F (x )=f (x )cos x ,则F ′(x )=f ′(x )cos x +f (x )sin x cos 2x. 由此得到结论:(1)出现f ′(x )sin x +f (x )cos x 形式,构造函数F (x )=f (x )sin x ;(2)出现f ′(x )sin x -f (x )cos x sin 2x 形式,构造函数F (x )=f (x )sin x; (3)出现f ′(x )cos x -f (x )sin x 形式,构造函数F (x )=f (x )cos x ;(4)出现f ′(x )cos x +f (x )sin x cos 2x 形式,构造函数F (x )=f (x )cos x. 【例题选讲】[例1](1)已知函数f (x )是定义在⎝⎛⎭⎫-π2,π2上的奇函数.当x ∈[0,π2)时,f (x )+f ′(x )tan x >0,则不等式cos xf (x +π2)+sin xf (-x )>0的解集为( ) A .⎝⎛⎭⎫π4,π2 B .⎝⎛⎭⎫-π4,π2 C .⎝⎛⎭⎫-π4,0 D .⎝⎛⎭⎫-π2,-π4 (2)对任意的x ∈⎝⎛⎭⎫0,π2,不等式f (x )tan x <f ′(x )恒成立,则下列不等式错误的是( ) A .f ⎝⎛⎭⎫π3>2f ⎝⎛⎭⎫π4 B .f ⎝⎛⎭⎫π3>2f (1)cos 1 C .2f (1)cos1>2f ⎝⎛⎭⎫π4 D .2f ⎝⎛⎭⎫π4<3f ⎝⎛⎭⎫π6 (3)定义在⎝⎛⎭⎫0,π2上的函数f (x ),函数f ′(x )是它的导函数,且恒有f (x )<f ′(x )tan x 成立,则( ) A .3f ⎝⎛⎭⎫π4>2f ⎝⎛⎭⎫π3 B .f (1)<2f ⎝⎛⎭⎫π2sin 1 C .2f ⎝⎛⎭⎫π6>f ⎝⎛⎭⎫π4 D .3f ⎝⎛⎭⎫π6<f ⎝⎛⎭⎫π3 (4)已知函数y =f (x )对于任意的x ∈⎝⎛⎭⎫-π2,π2满足f ′(x )cos x +f (x )sin x >0(其中f ′(x )是函数f (x )的导函数),则下列不等式不成立的是( )A .2 f ⎝⎛⎭⎫π3<f ⎝⎛⎭⎫π4B .2 f ⎝⎛⎭⎫-π3<f ⎝⎛⎭⎫-π4C .f (0)<2 f ⎝⎛⎭⎫π4D .f (0)<2f ⎝⎛⎭⎫π3 (5)已知定义在⎝⎛⎭⎫0,π2上的函数f (x ),f ′(x )是f (x )的导函数,且恒有cos xf ′(x )+sin xf (x )<0成立,则( ) A .f ⎝⎛⎭⎫π6>2f ⎝⎛⎭⎫π4 B .3f ⎝⎛⎭⎫π6>f ⎝⎛⎭⎫π3 C .f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π3 D .2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4(6)已知函数y =f (x )对于任意的x ∈⎝⎛⎭⎫0,π2满足f ′(x )·cos x +f (x )sin x =1+ln x ,其中f ′(x )是函数f (x )的导函数,则下列不等式成立的是( )A .2f ⎝⎛⎭⎫π3<f ⎝⎛⎭⎫π4B .2f ⎝⎛⎭⎫π3>f ⎝⎛⎭⎫π4C .2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4D .2f ⎝⎛⎭⎫π3>f ⎝⎛⎭⎫π6。
导数选择题之构造函数法解不等式的一类题一、单选题1.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式的解集为A.B.C.D.2.设函数是奇函数的导函数,,当时,,则使得成立的的取值范围是()A.B.C.D.3.定义在上的偶函数的导函数,若对任意的正实数,都有恒成立,则使成立的实数的取值范围为()A.B.C.D.4.已知函数定义在数集上的偶函数,当时恒有,且,则不等式的解集为( )A.B.C.D.5.定义在上的函数满足,,则不等式的解集为()A.B.C.D.6.设定义在上的函数满足任意都有,且时,有,则的大小关系是()A.B.C.D.7.已知偶函数满足,且,则的解集为A.B.C.D.8.定义在R上的函数满足:是的导函数,则不等式(其中e为自然对数的底数)的解集为( )A.B.C.D.9.已知定义在上的函数的导函数为,满足,且,则不等式的解集为()A.B.C.D.10.定义在上的函数f(x)满足,则不等式的解集为A.B.C.D.11.已知定义在上的函数满足,其中是函数的导函数.若,则实数的取值范围为()A.B.C.D.12.已知函数f(x)是定义在R上的可导函数,且对于∀x∈R,均有f(x)>f′(x),则有()A.e2017f(-2017)<f(0),f(2017)>e2017f(0) B.e2017f(-2017)<f(0),f(2017)<e2017f(0)C.e2017f(-2017)>f(0),f(2017)>e2017f(0) D.e2017f(-2017)>f(0),f(2017)<e2017f(0)13.已知可导函数的定义域为,其导函数满足,则不等式的解集为A.B.C.D.14.函数是定义在区间上的可导函数,其导函数为,且满足,则不等式的解集为()A.B.C.D.15.已知函数的导数是,若,都有成立,则( )A.B.C.D.16.已知函数满足条件:当时,,则下列不等式正确的是()A.B.C.D.17.定义在上的函数,是它的导函数,且恒有成立.则有()A.B.C.D.18.已知函数是偶函数,,且当时其导函数满足,若,则()A.B.C.D.19.设函数是奇函数的导函数,当时,,则使得成立的的取值范围是()A.B.C.D.参考答案1.B【解析】【分析】构造函数,则得的单调性,再根据为奇函数得,转化不等式为,最后根据单调性性质解不等式.【详解】构造函数,则,所以在上单独递减,因为为奇函数,所以.因此不等式等价于,即,选B.【点睛】利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如构造,构造,构造,构造等2.A【解析】分析:构造函数,首先判断函数的奇偶性,利用可判断时函数的单调性,结合函数图象列不等式组可得结果.详解:设,则的导数为,因为时,,即成立,所以当时,恒大于零,当时,函数为增函数,又,函数为定义域上的偶函数,当时,函数为减函数,又函数的图象性质类似如图,数形结合可得,不等式,或,可得或,使得成立的的取值范围是,故选A.点睛:本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题. 联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.3.A【解析】【详解】分析:构造新函数,利用导数确定它的单调性,从而可得题中不等式的解.详解:设,则,由已知当时,,∴在上是减函数,又∵是偶函数,∴也是偶函数,,不等式即为,即,∴,∴,即.故选A.点睛:本题考查用导数研究函数的单调性,然后解函数不等式.解题关键是构造新函数.新函数的结构可结合已知导数的不等式和待解的不等式的形式构造.如,,,等等.4.B【解析】分析:设,结合求导法则,以及题中的条件,可以断定函数在相应区间上的单调性,根据函数的单调性和函数的奇偶性求出不等式的解集即可.详解:设,所以,因为当时,有恒成立,所以当时,所以在上递增,因为,所以,所以是奇函数,所以在上递增,因为,所以,当时,等价于,所以,所以,当时,等价于,所以,所以,所以原不等式的解集为,故选B.点睛:该题考查的是有关函数的问题,结合题中所给的条件,结合商函数求导法则构造新函数,结合函数的单调性与导数的符号的关系,得到相应的结果,在求时的情况的时候,可以直接根据函数是偶函数求得结果.5.B【解析】分析:根据题意,设,对其求导分析可得在区间上递减,利用的值可得的值,进而将原不等式转化为,结合函数的单调性、定义域,分析可得答案.详解:根据题意,设,则,又由函数定义在上,且有,则,则在区间上递减,若,则,,则,即不等式的解集为.故选:B.点睛:本题考查函数的导数与函数的单调性之间的关系,关键是构造函数,并分析其单调性.6.C【解析】根据题意,函数满足任意都有,则有,则是周期为的函数,则有,设,则导数为,又由时,,则有,则有,则函数在上为减函数,则有,即,又由,则有,变形可得,故选C.【方法点睛】利用导数研究函数的单调性、构造函数比较大小,属于难题.联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数. 7.C【解析】【分析】构造函数,由可得在递增,结合奇偶性转化原不等式为从而可得结果.【详解】由得,令,,时,递增,又时,不等式等价于是偶函数,也是偶函数,可得或,所以的解集为或,故选C.【点睛】本题主要考查抽象函数的单调性以及函数的求导法则,属于难题.求解这类问题一定要耐心读题、读懂题,通过对问题的条件和结论进行类比、联想、抽象、概括,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.8.B【解析】【分析】构造函数,,研究的单调性,结合原函数的性质和函数值,即可求解【详解】设,,则则,在定义域内单调递增,,,则不等式的解集为故选【点睛】本题主要考查了函数单调性,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键。
专题07 导数之二阶导数的应用一、重点题型目录【题型】一、利用二阶导数求函数的极值(极大值或极小值) 【题型】二、利用二阶导数求函数的单调性 【题型】三、利用二阶导数求参数的范围 【题型】四、利用二阶导数证明不等式 【题型】五、利用二阶导数与函数的对称性求值 【题型】六、利用二阶导数与函数的凹凸性求值 二、题型讲解总结【题型】一、利用二阶导数求函数的极值(极大值或极小值)例1.(2022·广西北海·一模(理))已知()12,,x x m ∈+∞()0m >,若12x x <,121112x x x x -->恒成立,则正数m 的最小值是( ) A .1eB .1C .11e+D .e【答案】B 【分析】不等式121112x x x x -->化简可得()()11221ln 1ln x x x x ->-,利用导数研究函数()()1ln f x x x =-的单调性,结合已知条件和函数的单调性可求m 的最小值.【详解】由121112x x x x -->,化简可得121112ln ln x x x x -->,即()()11221ln 1ln x x x x ->-.令()()1ln f x x x =-,则原不等式可化为()()12f x f x >, 由已知()f x 在(),m +∞上为单调递减函数,又()11ln ln 1x f x x x x x -=-+=-+-',令()1ln 1u x x x =-+-,则()2110u x x x-'=-≤在()0,∞+上恒成立,所以()u x 在()0,∞+上单调递减,又()10u =,所以当()0,1x ∈时,()0u x >,当()1,x ∈+∞时,()0u x <.故当()0,1x ∈时,0fx,当()1,x ∈+∞时,()0f x '<.即()f x 在()0,1上单调递增,在()1,+∞上单调递减.所以m 1≥.所以正数m 的最小值是1, 故选:B .例2.(2022·湖南·高二期中)已知二次函数()2f x ax bx c =++的图象过点()0,1-,且当0x >时,()ln f x x ≥,则ba的最小值为( )A .2-B .12-C .e -D .1e-【答案】D【分析】将元不等式变形为ln 1()x ax b g x x++≥=,利用导数研究()g x 的单调性可得当直线y ax b =+与()g x 相切时ba取得最小值,根据导数的几何意义和直线的点斜式方程求出切线方程,进而得出(2ln 1)()b x x h x a x+-==,利用二次求导研究()h x 的单调性,求出max ()h x 即可.【详解】由()1f x =-知1c =-,∴()21f x ax bx =+-,∴()ln 1ln x f x x ax b x +≥⇔+≥,令ln 1()(0)x g x x x +=>,则1()0eg =, 2ln ()xg x x-'=,令()01g x x '>⇒<,令()01g x x '<⇒>, 所以函数()g x 在(0,1)上单调递增,在(1,)+∞上单调递减, 如图,若y ax b =+图象在()g x 图象上方,则01x <<,要使y ax b =+图象在()g x 图象上方,则ba表示x 轴截距的相反数,ba的最小值即为截距的最大值,而当截距最大时,直线y ax b =+与()g x 相切, 记切点为00(,)x y ,则0020ln ()x g x a x -'==,又00ln 1()x g x x +=, 所以00000220000ln ln 1ln 2ln 1()x x x x y x x x x x x x -+-+=-+=+, 有()0002ln 1ln x x b a x +-=,设()()2ln 1(01)ln x x h x x x+=<<,则()()2222ln 1ln 12(ln )ln 1()(ln )(ln )x x x x h x x x -++-'==,故当1(0,)ex ∈时,函数()0h x '>,当1(,1)e x ∈时,()0h x '<,故当(0,1)x ∈时,函数()h x 在1(0,)e上单调递增,在1(,1)e 上单调递减,此时max 11()()e eh x h ==,综上,b a的最小值为1e -.故选:D.例3.(2021·江苏·高二专题练习)设函数()()(1)(3,4)x x kf x e e x k -=--=,则( )A .3k =时,()f x 在0x =处取得极大值B .3k =时,()f x 在1x =处取得极小值C .4k =时,()f x 在0x =处取得极大值D .4k =时,()f x 在1x =处取得极小值 【答案】D【分析】先对()f x 求导并整理,当3k =时,令2()(2)4x g x x e x =++-,对()g x 二次求导判断其单调性,得()g x 在R 上单调递增,由函数零点存在定理确定零点所在区间,从而得()f x 的单调性即可判断;当4k =时,令2()(3)5x h x x e x =++-,同理求导,判断单调性即可判断.【详解】解:由()()(1)x x k f x e e x -=--,得 1()()(1)()(1)xxkxxk f x e e x k e e x ---'=+-+--12(1)(1)1k x x x x k e x k e--⎡⎤=-++--⎣⎦, 当3k =时,22(1)()(2)4xx x f x x e x e-'⎡⎤=++-⎣⎦, 令2()(2)4x g x x e x =++-,222()2(2)1(25)1x x x g x e x e x e '=+++=++, 222()22(25)(412)x x x g x e x e x e ''=++=+,所以当3x <-时,()0g x ''<,()g x '在(),3-∞-上单调递减; 当3x >-时,()0g x ''>,()g x '在()3,-+∞上单调递增, 所以6()(3)10g x g e -''≥-=->,所以()g x 在R 上单调递增,又2(0)240,(1)330g g e =-<=->,则()g x 在区间()0,1上存在唯一零点0x , 当0x x <时,()0g x <,即()0f x '<,()f x 在()0,x -∞单调递减;当0x x >时,()0g x >,即()0f x '>,()f x 在()0,x +∞单调递增; 所以()f x 在0x x =处取得唯一极值,故选项A 、B 错误; 当4k =时32(1)()(3)5x x x f x x e x e-'⎡⎤=++-⎣⎦, 令2()(3)5x h x x e x =++-,则222()2(3)1(27)1x x x h x e x e x e '=+++=++, 222()22(27)(416)x x x h x e x e x e ''=++=+,所以当<4x -时,()0h x ''<,()h x '在(),4-∞-上单调递减; 当4x >-时,()0h x ''>, ()h x '在()4,-+∞上单调递增; 所以8()(4)10h x h e -''≥-=->,则()h x 在R 上单调递增, 又(0)0,(1)0h h <>,则()h x 在区间()0,1上存在唯一零点t , 则令()0f x '=,得1x =或(0,1)x t =∈, 当x t <或1x >时,()0f x '>,()f x 单调递增, 当1t x <<时,()0f x '<,()f x 单调递减,所以()f x 在x t =处取得极大值,在1x =处取得极小值,选项C 错误,选项D 正确. 故选:D.【点睛】关键点点睛:解答本题的关键是,利用二次求导判断导函数的单调性,然后再利用函数零点存在定理确定零点所在区间,从而得原函数的单调性.例4.(2022·重庆市育才中学模拟预测)已知函数()()32012xa f x ae x ax a =--->,若函数()y f x =与()()y f f x =有相同的最小值,则a 的最大值为( ).A .1B .2C .3D .4【答案】B【分析】首先利用导数求解函数的单调性,再根据函数值域与定义域的关系即可得出结论.【详解】根据题意,求导可得,()()204x a f x ae x a a '=-->, ∴()1022xx a f x ae x a e x ⎛⎫''=-=-> ⎪⎝⎭( x e x >), ∴f x 在R 上单调递增,又∴当0x =时,()00f '= ∴当0x <时,0f x ,即函数()f x 在,0上单调递减,当0x >时,0fx,即函数()f x 在0,上单调递增,故有()()min 02f x f a ==-,即得()[)2,f x a ∈-+∞,所以根据题意,若使()()min 2f f x a =-,需使()f x 的值域中包含[)0,+∞, 即得202a a -≤⇒≤, 故a 的最大值为2. 故选:B.【点睛】求函数最值和值域的常用方法:(1)单调性法:先确定函数的单调性,再由单调性求最值;(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值;(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值;(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值; (5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. 例5.(2022·全国·高三专题练习)已知函数()ln 2f x x x x =+,若k Z ∃∈,使得()21f x kk x+>+在()2,x ∈+∞恒成立,则k 的最大值为( ) A .2 B .3 C .4 D .5【答案】C【分析】首先参变分离得ln 2x x x k x +<-,再设函数()ln 2x x x h x x +=-,求导数()()242ln 2x x h x x --'=-,再设()42ln g x x x =--,再求导数,通过函数()g x '恒正,判断函数()g x 的单调性,并判断()h x 的极值点所在的区间,求得函数的最小值,同时求得k 的最大值. 【详解】依题意,ln 2x x x k x +<-,令()ln 2x x xh x x +=-,则()()242ln 2x x h x x --'=-.令()42ln g x x x =--,()21g x x'=-,∴2x >时,()0g x '>,即()g x 单调递增,∴()4242ln8l n 8n l 80g e =-=-<,()52952ln9ln ln90g e =-=->,设42ln 0x x --=并记其零点为0x ,故089x <<.且004ln 2x x -=,所以当02x x <<时,()0g x <,即()0h x '<,()h x 单调递减;当0x x >时,()0g x >即()0h x '>,()h x 单调递增,所以()()0000000min 0004ln 2222x x x x x x x h x h x x x -⎛⎫+ ⎪+⎝⎭====--,因此02x k <,由于Z k ∈且089x <<,即09422x <<,所以max 4k =,【点睛】关键点点睛:本题考查利用导数研究函数的性质,考查考生逻辑推理、数学运算的核心素养,本题的关键是构造函数,并求两次导数,通过导数,逐级判断函数的单调性和最值.【题型】二、利用二阶导数求函数的单调性例5.(2022·湖北·竹溪县第二高级中学高三阶段练习)若19ln sin a ⎛⎫= ⎪⎝⎭,ln9b =-,ln(ln 0.9)c =-, 则( )A .c<a<bB .c b a <<C .a b c <<D .a c b <<【答案】A【分析】先由对数的运算法则把,,a b c 转化成同底的对数,再构造函数,利用导数判断单调性,进而,,a b c 的真数的大小关系,最后利用ln y x =的单调性判断,,a b c 的大小. 【详解】由对数的运算法则得1ln 9ln 9b =-=,10ln(ln 0.9)ln ln 9c ⎛⎫=-= ⎪⎝⎭.令函数()sin f x x x =-,则()cos 10f x x '=-≤,即函数()f x 在R 是单调递减. 11sin 99∴<令函数()()sin ln 1,0,6g x x x x π⎛⎫=-+∈ ⎪⎝⎭,则()1cos 1g x x x '=-+,令函数()1cos ,0,16h x x x x π⎛⎫=-∈ ⎪+⎝⎭,则()()21sin 1h x x x '=-++, ()h x '在0,6π⎛⎫ ⎪⎝⎭上单调递减,且()211010,06216h h ππ⎛⎫''=>=-+< ⎪⎝⎭⎛⎫+ ⎪⎝⎭, ()000,,06x h x π⎛⎫'∴∃∈= ⎪⎝⎭, 所以()h x 在()00,x 上单调递增,在0,6x π⎛⎫⎪⎝⎭单调递减.又()1600,06616h h πππ⎛⎫===-> ⎪+⎝⎭+ ()0h x ∴>在0,6π⎛⎫ ⎪⎝⎭恒成立 ()0g x '∴>,即()g x 在0,6π⎛⎫⎪⎝⎭上单调递增 ()()0=0g x g ∴>,则()sin ln 1x x >+ 当19x =时,1110sin ln 1ln 999⎛⎫>+= ⎪⎝⎭. 又ln y x =在()0,∞+上单调递增10ln19∴> 1011ln ln ln sin ln 999⎛⎫⎛⎫∴<< ⎪ ⎪⎝⎭⎝⎭ c a b ∴<<【点睛】利用导数判断函数值大小应注意的问题: 在构造函数时需要视具体情况而定在判断导函数的正负时,尽量不要求二阶导数,而是把原导函数令为一个新函数,再求导判断正负来得到原导函数的单调性.例6.(2022·河南·模拟预测(理))己知22e 2e e e a a b b a b -=-,则( ) A .0a b +≥ B .0a b +≤ C .0ab ≥ D .0ab ≤【答案】C【分析】变形()()22e e 2e e 2e b a a b b b a b =---,构造函数()2e 2e x xf x x =-,通过二次求导可知函数单调性,然后利用单调性可得a 、b 符号.【详解】()()22e e 2e e 2e b a a b b b a b =---,设()2e 2e x xf x x =-,则()()()22e 21e 2e e 1x x x xf x x x =-+=--',设()e 1xg x x =--,则()e 1x g x '=-,当0x <时,()0g x '<,()g x 单调递减,当0x >时,()0g x '>,()g x 单调递增,所以()()00g x g ≥=,所以()()2e 0xf xg x '=≥,()f x 单调递增.当a b ≥时,()()e 0bb f a f b =-≥,故此时0a b ≥≥;当a b ≤时,()()e 0bb f a f b =-≤,故此时0a b ≤≤,所以0ab ≥.故选:C .例7.(2022·黑龙江·嫩江市第一中学校高三期末(理))若22sin 4sin cos 41-=-+a a b b b b a ,则( ) A .2a b > B .2a b < C .|||2|>a b D .|||2|<a b【答案】C【分析】构造函数2()sin f x x x x =+,利用导数判断单调性,结合奇偶性单调性来比较大小. 【详解】令2()sin f x x x x =+,∴22()sin()()sin ()-=--+-=+=f x x x x x x x f x ,∴()f x 是偶函数, ∴()sin cos 2(cos 1)(sin )=++=+++'f x x x x x x x x x ,令()sin g x x x =+,则()cos 10='+≥g x x ,∴()g x 在(0,)+∞上单调递增,当0x ≥时,()(0)0g x g ≥=,此时()0f x '>,∴()f x 在(0,)+∞上单调递增.由22sin 4sin cos 41-=-+a a b b b b a 可得22sin 2sin 2(2)1+=++a a a b b b ,即()(2)1=+f a f b ,∴()(2)>f a f b ,∴()f x 是偶函数,则(||)(|2|)>f a f b ,∴|||2|>a b . 故选:C.【点睛】本题求解的关键是把等量关系转化为不等关系,通过构造函数,研究函数的性质来求解,一次导数解决不了问题时,考虑二次导数.例8.(2022·浙江省春晖中学模拟预测)在关于x 的不等式()2222e e 4e e 4e 0x x x a x a -+++>(其中e=2.71828为自然对数的底数)的解集中,有且仅有两个大于2的整数,则实数a 的取值范围为( ) A .4161,5e 2e ⎛⎤ ⎥⎝⎦B .391,4e 2e ⎡⎫⎪⎢⎣⎭C .42164,5e 3e ⎛⎤ ⎥⎝⎦D .3294,4e 3e ⎡⎫⎪⎢⎣⎭【答案】D【分析】将不等式转化为()()22e 21e x x a x ->-,分别研究两个函数的性质,确定a 的取值范围,构造函数,利用放缩法进一步缩小a 的取值范围,列出不等式组,求出结果.【详解】由()2222e e 4e e 4e 0x x x a x a -+++>,化简得:()()22e 21e x x a x ->-,设()()22e 2f x x =-,()()1e xg x a x =-,则原不等式即为()()f x g x >.若0a ≤,则当2x >时,()0f x >,()0g x <, ∴原不等式的解集中有无数个大于2的整数,∴0a >.∴()20f =,()22e 0g a =>,∴()()22f g <.当()()33f g ≤,即12ea ≥时,设()()()()4h x f x g x x =-≥, 则()()()22e 2e 2e 2e 22exxx h x x ax x '=--≤--. 设()()()2e 2e 242e x x x x x ϕ=--≥,则()()21e 2e 2ex x x ϕ+'=-在[)3,+∞单调递减,所以()()()21e 2e302ex x x ϕϕ+''=-≤=,所以()()2e 2e 22ex x x x ϕ=--在[)4,+∞单调递减,∴()()()242e 2e 0x ϕϕ≤=-<,∴当4x ≥时,()0h x '<,∴()h x 在[]4,+∞上为减函数, 即()()2423e 44e 3e e 402h x h a ⎛⎫≤=-≤-< ⎪⎝⎭,∴当4x ≥时,不等式()()f x g x <恒成立, ∴原不等式的解集中没有大于2的整数.∴要使原不等式的解集中有且仅有两个大于2的整数,则()()()()()()334455f g f g f g ⎧>⎪>⎨⎪≤⎩,即232425e 2e 4e 3e 9e 4e a a a ⎧>⎪>⎨⎪≤⎩, 解得32944e 3e a ≤<. 则实数a 的取值范围为3294,4e 3e ⎡⎫⎪⎢⎣⎭.故选:D【点睛】已知整数零点个数,求参数的取值范围,要从特殊点,特殊值缩小参数的取值范围,再利用导函数及放缩法进行求解,最终得到关于参数的不等关系,进行求解. 【题型】三、利用二阶导数求参数的范围例9.(2022·辽宁·东北育才双语学校模拟预测)设函数()2ln f x x x=+,()0,6x ∈,()f x 的图像上的两点()11,A x y ,()22,B x y 处的切线分别为1l ,2l ,且12x x <,1l ,2l 在y 轴上的截距分别为1b ,2b ,若12l l ∥,则12b b -的取值范围是( ) A .2ln 2,23⎛⎫- ⎪⎝⎭B .2ln 2,1ln 23⎛⎫-+ ⎪⎝⎭C .2ln 2,03⎛⎫- ⎪⎝⎭D .()1ln 2,2+【答案】C【分析】利用导数求切线方程,结合两条切线平行,得到12x x , 的取值区间;再利用一阶导数求出相应点的切线方程,再求y 轴上的截距,然后确定12b b - 的单调性,然后就可以确定它的取值范围. 【详解】因为()2ln f x x x =+而()121206x x x x ∈<,,,,所以()22212x f x x x x-'=-+=, 在点1112ln A x x x ⎛⎫+ ⎪⎝⎭, 处的切线方程为:()112111221ln y x x x x x x ⎛⎫⎛⎫-+=-+- ⎪ ⎪⎝⎭⎝⎭;在点2222ln B x x x ⎛⎫+ ⎪⎝⎭, 处的切线方程为:()222222221ln y x x x x x x ⎛⎫⎛⎫-+=-+- ⎪ ⎪⎝⎭⎝⎭; 所以()1111211112124ln ln 1b x x x x x x x ⎛⎫⎛⎫=-+-++=+- ⎪ ⎪⎝⎭⎝⎭;2224ln 1b x x =+-; 令()4ln 1b x x x =+- ,则()22414x b x x x x-'=-+= 11212121224444ln 1ln 1ln xb b x x x x x x x ⎛⎫⎛⎫⎛⎫-=+--+-=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又因为12l l ∥ ,所以2211222121x x x x -+=-+,且124x x << 所以211112x x +=, 112102x x x =-> ,12x > ,12246x x <<<<所以112122224482ln 2ln 2x b b x x x x x ⎛⎫-=-+=-+ ⎪-⎝⎭,令()12822ln2g x b b x x =-=-+- ,()46x ∈, 则()()()222481022x g x x x x x -'=-=-<-- 所以()12822ln 2g x b b x x =-=-+-在()46,单调递减. 所以()122ln 203b b ⎛⎫-∈- ⎪⎝⎭,. 故选:C例10.(2022·河南·南阳中学高三阶段练习(文))若关于x 的不等式32ln 42x x x x ax +≤++恒成立,则实数a 的取值范围为( ) A .[)1,-+∞ B .[)1,+∞C .1,e ⎡⎫+∞⎪⎢⎣⎭D .[),e +∞【答案】B 【分析】等价于2ln 42x a x x x x≥-+-,设函数()2ln 42x f x x x x x =-+-,利用导数求出函数()f x 的最大值即得解. 【详解】解:依题意,2ln 42x a x x x x≥-+-, 设函数()2ln 42x f x x x x x =-+-,则()224ln 3x x x f x x---+=', 令()24ln 3h x x x x =---+,故()21420h x x x x'=---<, 所以函数()h x 在()0,∞+上单调递减,而()10h =, 故当()0,1x ∈时,()0f x '>,当()1,x ∈+∞时,()0f x '<, 故函数()f x 在()0,1上单调递增,在()1,+∞上单调递减, 故()max ()11==f x f ,则1a ≥. 故选:B .例11.(2022·全国·高二课时练习)已知函数()22e 1ln x f x x kx x ⎛⎫=-+ ⎪⎝⎭,若函数()f x 有唯一极值点,则实数k 的取值范围为( )A .()(]{}2,00,4e 2e ∞-⋃⋃B .(),4e ∞-C .()4e,∞+D .[)4e,∞+【答案】A【分析】求出原函数的导函数并化简得到()2212e 1x x f x x kx ⎛⎫-'=-⎪⎝⎭,1x =为导函数的零点,进而设()()22e 10xg x x kx=->,然后再通过导数方法判断出函数()g x 的零点,进一步得到函数()f x 的单调区间,最终确定出极值点个数求出答案.【详解】由题意,()22e 10,ln x x f x x kx x ⎛⎫>=-+ ⎪⎝⎭,则()()223222e 1112e 1x x x x x f x kx x x kx -⎛⎫--'=-=- ⎪⎝⎭, 设()()22e 10xg x x kx=->,()22221e x x g x k x -'=⋅⋅. 当0k >时,10,2x ⎛⎫∈ ⎪⎝⎭时,()()0,g x g x '<单调递减,1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()()0,g x g x '>单调递增,()min 14e12g x g k⎛⎫==- ⎪⎝⎭ (1)若04e k <≤,则()()min 0g x g x ≥≥,则()0,1x ∈时,()()0,f x f x '<单调递减,()1,x ∈+∞时,()()0,f x f x '>单调递增,所以()f x 有唯一极值点1x =. (2)若24e<2e k <,则()min102g x g ⎛⎫=< ⎪⎝⎭,()22e 110g k=->,22211212e e e 22212e2e 112e 10112e 2e 2e g k k ⋅⎛⎫=-=->-> ⎪⎝⎭⋅⋅,结合函数()g x 的单调性可知,函数()g x 分别在110,,,122⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭上存在唯一一个零点12,x x ,于是()10,x x ∈时,()0f x '<,()f x 单调递减,()12,x x x ∈时,0f x ,()f x 单调递增,()2,1x x ∈时,()0f x '<,()f x 单调递减, ()1,x ∈+∞时,0fx,()f x 单调递增,所以()f x 有12,,1x x 三个极值点;(3)若22e k =,则()min102g x g ⎛⎫=< ⎪⎝⎭,()22e 110g k=-=,221212e e 2212e 12e 1012e 2e g k ⋅⎛⎫=-=-> ⎪⎝⎭⋅,结合函数()g x 的单调性可知,函数()g x 在10,2⎛⎫ ⎪⎝⎭上存在唯一一个零点3x ,于是()30,x x ∈时,()0f x '<,()f x 单调递减,()3,1x x ∈时,0f x ,()f x 单调递增,()1,x ∈+∞时,0fx ,()f x 单调递增,所以()f x 有3x x =唯一一个极值点;(4)若22e k >,则()22e 110g k=-<,又102x <<时,()22e 211x g x kx kx =->-,所以102x <<且2x k<时,()0g x >. 设()()e 1xh x x x =->,()e 1e 10x h x '=->->,所以函数()h x 在()1,+∞上单调递增,故()()221e 10e e x x h x h x x >=->⇒>⇒>,于是1x >时,()22211x xg x kx k>-=-,所以1x >且2kx >时,()0g x >. 结合函数()g x 的单调性可知,函数()g x 分别在()10,,1,+2⎛⎫∞ ⎪⎝⎭上存在唯一一个零点45,x x ,于是()40,x x ∈时,()0f x '<,()f x 单调递减,()4,1x x ∈时,0fx,()f x 单调递增,()51,x x ∈时,()0f x '<,()f x 单调递减, ()5,x x ∈+∞时,0f x,()f x 单调递增,所以()f x 有45,1,x x 三个极值点.当0k <时,10,2x ⎛⎫∈ ⎪⎝⎭时,()()0,g x g x '>单调递增,1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()()0,g x g x '<单调递减,()max 14e102g x g k⎛⎫==-< ⎪⎝⎭,即()0g x <恒成立,于是()0,1x ∈时,()()0,f x f x '>单调递增,()1,x ∈+∞时,()()0,f x f x '<单调递减,所以()f x 有唯一极值点1x =. 综上所述:k 的取值范围为(){}2,0(0,4e]2e -∞⋃⋃.故选:A.【点睛】本题非常复杂,注意以下两个方面:∴对函数求完导之后一定要因式分解,()2212e 1x x f x x kx ⎛⎫-'=- ⎪⎝⎭,现在只需要考虑()()22e 10xg x x kx =->的零点即可;∴因为导函数()f x '有一个零点1,所以在讨论函数()()22e10xg x x kx=->的零点时一定要注意它的零点是否为1,方法是将x =1代入得到()222e 1102e g k k=-=⇒=,以此作为讨论的一个分界点. 例12.(2021·江苏·高二单元测试)若关于x 的不等式2112ln 022x m x --≥在[]2,4上有解,则实数m 的取值范围是( )A .15,4ln 2⎡⎫+∞⎪⎢⎣⎭ B .15,8ln 2⎡⎫+∞⎪⎢⎣⎭ C .15,4ln 2⎛⎤-∞ ⎥⎝⎦D .15,8ln 2⎛⎤-∞ ⎥⎝⎦【答案】D【分析】把给定不等式转化为214ln x m x -≤在[]2,4上有解,构造函数()214ln x g x x-=,[]2,4x ∈,探讨该函数最大值即可得解.【详解】由[]2,4x ∈,得ln 0x >,又关于x 的不等式2112ln 022x m x --≥在[]2,4上有解,所以214ln x m x -≤在[]2,4上有解,即2max 14ln x m x ⎛⎫-≤ ⎪⎝⎭,令()214ln x g x x-=,[]2,4x ∈,则()()()()2224124ln 12ln 4ln 4ln x x x x x x x x g x x x ⋅--⋅-+'==,设()12ln h x x x x x=-+,[]2,4x ∈,则()22112ln 212ln 10h x x x x x '=+--=+->,即()h x 在[]2,4上单调递增,则()()13324ln 224ln 220222h x h ≥=-+=->->, 于是有()0g x '>,从而得()g x 在[]2,4上单调递增, 因此,()()max 161151544ln 44ln 48ln 2g x g -====,则158ln 2m ≤, 所以m 的取值范围是15,8ln 2⎛⎤-∞ ⎥⎝⎦. 故选:D【点睛】思路点睛:涉及不等式在给定区间上有解求参数范围问题,常常采用分离参数,构造函数,再求函数最值的思路来解决问题. 【题型】四、利用二阶导数证明不等式例13.(2022·辽宁朝阳·高二期末)已知函数()f x 为偶函数,且当0x ≥时,2()e cos x f x x x =+-,则不等式(3)(21)0f x f x ---<的解集为( ) A .42,3⎛⎫- ⎪⎝⎭B .(,2)-∞-C .(2,)-+∞D .4(,2),3⎛⎫-∞-⋃+∞ ⎪⎝⎭【答案】D【分析】结合导数以及函数的奇偶性判断出()f x 的单调性,由此化简不等式(3)(21)0f x f x ---<来求得不等式的解集.【详解】当0x ≥时,()()()'''2sin s 2cos 0,2,in x x x e x f x f x e x x e x x =++>=++++单调递增,()'01f =,所以()()'0,f x f x >单调递增.因为()f x 是偶函数,所以当0x <时,()f x 单调递减.(3)(21)0,(3)(21)f x f x f x f x ---<-<-,()()22321,321x x x x -<--<-,22269441,3280x x x x x x -+<-++->,()()23402x x x +->⇒<-或43x >.即不等式(3)(21)0f x f x ---<的解集为4(,2),3⎛⎫-∞-⋃+∞ ⎪⎝⎭.故选:D例14.(2022·全国·高二专题练习)已知123a =,()11e b e =+,134c =,则a ,b ,c 的大小关系为( ). A .b a c >> B .c b a >> C .c a b >> D .a b c >>【答案】D【分析】根据题中a ,b ,c 的形式构造函数()()()1ln 1,0f x x x x=⋅+>,利用二次求导的方法判断函数()f x 的单调性,根据单调性即可比较大小. 【详解】因为()1212a =+,()11e b e =+,()1313c =+,所以令()()()1ln 1,0f x x x x=⋅+>,则()()2ln 11xx x f x x -++'=, 令()()()ln 1,01x g x x x x =-+>+,则()()201x g x x -'=<+, ∴()g x 在()0,∞+上单调递减,()()00g x g <=, ∴()0f x '<恒成立,∴()f x 在()0,∞+上单调递减. ∴23e <<,∴()()()23f f e f >>,即()()()111ln 12ln 1ln 1323e e +>+>+,所以()()()11123ln 12ln 1ln 13e e +>+>+, 所以()11132314e e >+>,即a b c >>, 故选:D .例15.(2022·全国·高三专题练习)已知函数()ln 2f x x x x =+,若k Z ∃∈,使得()21f x kk x+>+在()2,x ∈+∞恒成立,则k 的最大值为( ) A .2 B .3 C .4 D .5【答案】C【分析】首先参变分离得ln 2x x x k x +<-,再设函数()ln 2x x xh x x +=-,求导数()()242ln 2x x h x x --'=-,再设()42ln g x x x =--,再求导数,通过函数()g x '恒正,判断函数()g x 的单调性,并判断()h x 的极值点所在的区间,求得函数的最小值,同时求得k 的最大值. 【详解】依题意,ln 2x x x k x +<-,令()ln 2x x x h x x +=-,则()()242ln 2x x h x x --'=-.令()42ln g x x x =--,()21g x x'=-,∴2x >时,()0g x '>,即()g x 单调递增,∴()4242ln8l n 8n l 80g e =-=-<,()52952ln9ln ln90g e =-=->,设42ln 0x x --=并记其零点为0x ,故089x <<.且004ln 2x x -=,所以当02x x <<时,()0g x <,即()0h x '<,()h x 单调递减;当0x x >时,()0g x >即()0h x '>,()h x 单调递增,所以()()0000000min 0004ln 2222x x x x x x x h x h x x x -⎛⎫+ ⎪+⎝⎭====--,因此02x k <,由于Z k ∈且089x <<,即09422x <<,所以max 4k =, 故选:C【点睛】关键点点睛:本题考查利用导数研究函数的性质,考查考生逻辑推理、数学运算的核心素养,本题的关键是构造函数,并求两次导数,通过导数,逐级判断函数的单调性和最值.例16.(2023·全国·高三专题练习)已知()f x 是R 上的偶函数,当[)0,x ∈+∞时,()2cos 12x f x x =-+,且()()21f x a f x +<+对x ∀∈R 恒成立,则实数a 的取值范围是___________. 【答案】33,44⎛⎫- ⎪⎝⎭【分析】利用二次求导法,结合偶函数的性质进行求解即可.【详解】()()()()2cos 1sin 1cos 02x f x x g x f x x x g x x ''=-+⇒==-+⇒=-≥,故()g x 为增函数,当0x ≥时,()()00g x g ≥=,可得()f x 为增函数. 又()f x 为偶函数,故()()f x a f x a +=+,()()22221111f x a f x x a x x x a x x +<+⇔+<+⇔---<<-+恒成立. 因为221331()244x x x -+=-+≥,221331()244x x x -+-=---≤-,所以有3344a -<<,故答案为:33,44⎛⎫- ⎪⎝⎭【题型】五、利用二阶导数与函数的对称性求值例17.(2022·四川·成都七中模拟预测(理))对于三次函数()32f x ax bx cx d =+++(0a ≠),给出定义:设()f x '是函数()y f x =的导数,()f x ''是()f x '的导数,若方程()0f x ''=有实数解0x ,则称点()()00,x f x 为函数()y f x =的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数()3211533212g x x x x =-+-,则122014201520152015g g g ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( )A .2014B .2013C .20155D .1007【答案】A【分析】根据对称中心的定义,由二阶求导可求出对称中心,进而根据对称中心的特征求解. 【详解】()3211533212g x x x x =-+-,所以()()23,21g x x x g x x '''=-+=-,令12102x x -=⇒=,112f ⎛⎫= ⎪⎝⎭,所以()3211533212g x x x x =-+-的对称中心为1,12⎛⎫⎪⎝⎭ ,()()1220141201412,20152015201520152015g x g x g g g g g ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴+-=∴++⋅⋅⋅+=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭22013100710081007220142015201520152015g g g g ⎛⎫⎛⎫⎛⎫⎛⎫++++=⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭故选:A例18.(2022·广东广州·高二期末)对于三次函数()()320ax bx d a f x cx =+++≠,现给出定义:设()f x '是函数()f x 的导数,()f x ''是()f x '的导数,若方程()0f x ''=有实数解0x ,则称点()()00,x f x 为函数()()320ax bx d a f x cx =+++≠的“拐点”.经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数()3232g x x x =-+,则1231910101010g g g g ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .0 B .1C .32-D .32【答案】A【分析】对函数()3232g x x x =-+求导,再求导()g x '',然后令()0g x ''=,求得对称点即可.【详解】依题意得,()236g x x x '=-,()66g x x ''=-,令()0g x ''=,解得x =1,∴()10g =,∴函数()g x 的对称中心为()1,0, 则()()20g x g x -+=, ∴11921831791121010101010101010+=+=+==+=∴12319010101010g g g g ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故选:A.例19.(2022·全国·高三专题练习)设函数()y f x ''=是()y f x '=的导数,经过探究发现,任意一个三次函数()()320ax bx d a f x cx =+++≠的图象都有对称中心()()00,x f x ,其中0x 满足()00f x ''=,已知函数()3272392f x x x x =-+-,则12320212022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .2021 B .20212C .2022D .40212【答案】B【分析】通过条件,先确定函数()f x 图象的对称中心点,进而根据对称性求出函数值的和. 【详解】由()3272392f x x x x =-+-,可得()2669f x x x '=-+,()126f x x ''=-,令()1260f x x ''=-=,得12x =,又32111171239222222f ⎛⎫⎛⎫⎛⎫=⨯-⨯+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以对称中心为11,22⎛⎫⎪⎝⎭,所以12021220201,12022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,…,11010102022202122f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,1201011222f ⎛⎫= ⎪⎝⎭. 所以12320211202110101202220222022202222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+=⨯+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故选:B.例20.(2016·湖南衡阳·高三阶段练习(文))设函数()y f x ''=是()y f x '=的导数.某同学经过探究发现,任意一个三次函数()()320ax bx d a f x cx =+++≠都有对称中心()()00,x f x ,其中0x 满足()00f x ''=.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .2013 B .2014 C .2015 D .2016【答案】D【分析】先求出()f x '',结合题意求得函数()f x 的对称中心,进而得到()()12f x f x +-=,进而求出1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭即可.【详解】由题意得,()()23,21f x x x f x x '''=-+=-,令()0f x ''=,解得12x =,又3211111153123222212f ⎛⎫⎛⎫⎛⎫=⨯-⨯+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以函数()f x 的对称中心为1,12M ⎛⎫⎪⎝⎭,则()()12f x f x +-=,1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫∴++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1120162201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()12201620162=⨯⨯=. 故选:D .【题型】六、利用二阶导数与函数的凹凸性求值例21.(2022·陕西渭南·高二期末(理))给出定义:若函数()f x 在D 上可导,即()f x '存在,且导函数()f x '在D 上也可导,则称()f x 在D 上存在二阶导函数.记()()()f x f x ''''=,若()0f x ''<在D 上恒成立,则称()f x 在D 上为凸函数.以下四个函数在π0,2⎛⎫⎪⎝⎭上是凸函数的有( )∴()sin cos f x x x =+,∴()e x f x x -=-,∴()ln 2f x x x =-,∴3()21f x x x =-+-. A .4个 B .3个 C .2个 D .1个【答案】B【分析】根据题意,分别验证各个选项中的函数的二阶导数在π0,2⎛⎫⎪⎝⎭上是否是负数即可.【详解】∴()sin cos f x x x =+,则()sin cos f x x x ''=--,当π0,2x ⎛⎫∈ ⎪⎝⎭时,sin 0,cos 0x x >>,则()sin cos 0f x x x ''=--<,选项∴满足;∴()e x f x x -=-,则()(2)x f x x e -''=-,当π0,2x ⎛⎫∈ ⎪⎝⎭时,20x ->,即()0f x ''>,∴不符题意; ∴()ln 2f x x x =-,则21()0f x x ''=-<,选项∴满足; ∴3()21f x x x =-+-,当π0,2x ⎛⎫∈ ⎪⎝⎭时,()60f x x ''=-<,选项∴满足.综上有3个函数符合题意. 故选:B例22.(2023·全国·高三专题练习)设函数f (x )在区间I 上有定义,若对12,x x I ∀∈和()0,1λ∀∈,都有()()()()()121211f x x f x f x λλλλ+-≤+-,那么称f (x )为I 上的凹函数,若不等号严格成立,即“<”号成立,则称f (x )在I 上为严格的凹函数.对于上述不等式的证明,19世纪丹麦数学家琴生给出了如下的判断方法:设定义在(a ,b )上的函数f (x ),其一阶导数为()f x ',其二阶导数为()f x ''(即对函数()f x '再求导,记为()f x ''),若()0f x ''>,那么函数f (x )是严格的凹函数(()f x ',()f x ''均可导).试根据以上信息解决如下问题:函数()21ln f x m x x x=++在定义域内为严格的凹函数,则实数m 的取值范围为___________.【答案】(-∞【分析】对函数()f x 求导,并对其导函数再次求导,将问题转化为函数最值问题,利用导数求最值即可.【详解】由()21ln f x m x x x=++,得()212m f x x x x '=-+,令()212m h x xx x =-+,则()2322m h x x x'=-++, 令23220m x x-++>恒成立,即222m x x <+恒成立, 令()()2220g x x x x =+>,则()()32214224x g x x x x-'=-+=,当x ⎛∈ ⎝时,()0g x '<,g (x )单调递减;当x ⎫∈+∞⎪⎭时,()0g x '>,g (x )单调递增,所以()2221g x g ≥=+=所以m <故答案为:(-∞.例23.(2021·江苏扬州·高三阶段练习)函数()y g x =在区间[a ,]b 上连续,对[a ,]b 上任意二点1x 与2x ,有1212()()()22x x g x g x g ++<时,我们称函数()g x 在[a ,]b 上严格上凹,若用导数的知识可以简单地解释为原函数的导函数的导函数(二阶导函数)在给定区间内恒为正,即()0g x ''>.下列所列函数在所给定义域中“严格上凹”的有( ) A .2()log (0)f x x x => B .()2x f x e x -=+C .3()2(0)f x x x x =-+<D .2()sin (0)f x x x x π=-<<【答案】BC【分析】根据题目中定义,逐个判断各函数是否满足条件二阶导函数大于零,即可解出. 【详解】由题意可知,若函数在所给定义域中“严格上凹”,则满足()0f x ''>在定义域内恒成立.对于A ,2()log (0)f x x x =>,则2111()()0ln 2ln 2f x x x '''==-⋅<在0x >时恒成立, 不符合题意,故选项A 错误;对于B ,()2x f x e x -=+,则()(21)20x x f x e e --'''=-+=>恒成立, 符合题意,故选项B 正确;对于C ,3()2(0)f x x x x =-+<,则2()(32)60f x x x '''=-+=->在0x <时恒成立, 符合题意,故选项C 正确;对于D ,2()sin (0)f x x x x π=-<<,则()(cos 2)sin 20f x x x x ''=-'=--<在0πx <<时恒成立,不符合题意,故选项D 错误. 故选:BC.。
专题07 导数有关的构造函数方法一.知识点基本初等函数的导数公式 (1)常用函数的导数①(C )′=________(C 为常数); ②(x )′=________; ③(x 2)′=________; ④⎝⎛⎭⎫1x ′=________; ⑤(x )′=________. (2)初等函数的导数公式①(x n )′=________; ②(sin x )′=__________; ③(cos x )′=________; ④(e x )′=________; ⑤(a x )′=___________; ⑥(ln x )′=________;⑦(log a x )′=__________. 5.导数的运算法则(1)[f (x )±g (x )]′=________________________; (2)[f (x )·g (x )]′=_________________________;(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=____________________________. 6.复合函数的导数(1)对于两个函数y =f (u )和u =g (x ),如果通过变量u ,y 可以表示成x 的函数,那么称这两个函数(函数y =f (u )和u =g (x ))的复合函数为y =f (g (x )).(2)复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为___________________,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 二.题型分析 1.构造多项式函数 2.构造三角函数型3.构造xe 形式的函数 4.构造成积的形式5.与ln x 有关的构造6.构造成商的形式7.对称问题(一)构造多项式函数例1.已知函数()()f x x R ∈满足()1f l =,且()f x 的导函数()1'2f x <,则()122x f x <+的解集为( ) A. B.{}|x 1x <- C. D.{}|1x x >【答案】D考点:函数的单调性与导数的关系.【方法点晴】本题主要考查了函数的单调性与函数的导数之间的关系,其中解答中涉及到利用导数研究函数的单调性,利用导数研究函数的极值与最值等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据题设条件,构造新函数()F x ,利用新函数的性质是解答问题的关键,属于中档试题.练习 1.设函数()f x 在R 上存在导函数'()f x ,对于任意的实数x ,都有,当(,0)x ∈-∞时,.若,则实数m 的取值范围是( )A .1[,)2-+∞ B .3[,)2-+∞ C .[1,)-+∞ D .[2,)-+∞ 【答案】A 【解析】∵,设,则,∴()g x 为奇函数,又,∴()g x 在(,0)-∞上是减函数,从而在R 上是减函数,又等价于,即,∴1m m +≥-,解得12m ≥-. 考点:导数在函数单调性中的应用.【思路点睛】因为,设,则,可得()g x 为奇函数,又,得()g x 在(,0)-∞上是减函数,从而在R 上是减函数,在根据函数的奇偶性和单调性可得,由此即可求出结果. 练习2.设奇函数在上存在导数,且在上,若,则实数的取值范围为( ) A . B .C .D .【答案】B【方法点晴】本题主要考查了函数的奇偶性及其应用,其中解答中涉及到利用导数求函数的单调性、利用导数研究函数的极值、以及函数的奇偶性的判定等知识点的综合考查,着重考查了转化与化归的思想方法,以及学生的推理与运算能力,属于中档试题,解答中得出函数的奇函数和函数的单调性是解答的关键. 练习3.设函数()f x 在R 上存在导函数()f x ',对任意x R ∈,都有,且(0,)x ∈+∞时,()f x x '>,若,则实数a 的取值范围是( )A .[)1,+∞B .(],1-∞C .(],2-∞D .[)2,+∞【答案】B【解析】令,则,则,得()g x 为R 上的奇函数.∵0x >时,,故()g x 在(0,)+∞单调递增,再结合(0)0g =及()g x 为奇函数,知()g x 在(,)-∞+∞为增函数,又则,即(],1a ∈-∞.故选B .考点:函数的单调性及导数的应用.【方法点晴】本题考查了利用导数研究函数的单调性,然后构造函数,通过新函数的性质把已知条件转化为关于a 的不等式来求解.本题解答的关键是由已知条件()f x x '>进行联想,构造出新函数,然后结合来研究函数()g x 的奇偶性和单调性,再通过要解的不等式构造,最终得到关于a 的不等式,解得答案.(二)构造三角函数型例2.已知函数()f x 的定义域为R ,()'fx 为函数()f x 的导函数,当[)0,x ∈+∞时,且x R ∀∈,.则下列说法一定正确的是( )A. B.C. D.【答案】B 【解析】令,则.因为当[)0,x ∈+∞时,,即,所以,所以在[)0,x ∈+∞上单调递增.又x R ∀∈,,所以,所以,故为奇函数,所以在R 上单调递增,所以.即,故选B.练习1.已知函数)(x f y =对任意的满足(其中)('x f 是函数)(x f 的导函数),则下列不等式成立的是( ) A . B .C .D .【答案】A【解析】构造函数,则,即函数g (x )在单调递增,则,,即,故A 正确.,即练习2.定义在)2,0(π上的函数)(x f ,()'f x 是它的导函数,且恒有成立,则( )A.B.C . D.【答案】D【解析】在区间0,2π⎛⎫⎪⎝⎭上,有,即令,则,故()F x 在区间0,2π⎛⎫⎪⎝⎭上单调递增. 令,则有,D 选项正确.【思路点晴】本题有两个要点,第一个要点是“切化弦”,在不少题目中,如果遇到tan x ,往往转化为sin cos x x来思考;第二个要点是构造函数法,题目中,可以化简为,这样我们就可以构造一个除法的函数,而选项正好是判断单调性的问题,顺势而为.(三)构造xe 形式的函数例3.已知函数()f x 的导数为()f x ′,且对x R ∈恒成立,则下列函数在实数集内一定是增函数的为( )A.()f xB.()xf xC.()xe f x D.()xxe f x【答案】D 【解析】设,则.对R x ∈恒成立,且0x e >.在R 上递增,故选D.练习1. 设函数)(x f '是函数的导函数,1)0(=f ,且,则的解集为( ) A.),34ln (+∞ B.),32ln (+∞ C.),23(+∞ D.),3(+∞e 【答案】B【解析】依题意,构造函数,由,得,ln 23x >【思路点晴】本题考查导函数的概念,基本初等函数和复合函数的求导,对数的运算及对数函数的单调性.构造函数法是在导数题目中一个常用的解法.方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理. 恒成立问题以及可转化为恒成立问题的问题,往往可利用参变分离的方法,转化为求函数最值处理.学科网练习2.已知()f x 定义在R 上的函数,()f x '是()f x 的导函数,若,且()02f =,则不等式(其中e 为自然对数的底数)的解集是( ) A . B .()1,-+∞ C .()0,+∞ D .【答案】C 【解析】设,则,∵,∴,∴()x g ',∴()x g y =在定义域上单调递增,∵,∴()1>x g ,又∵,∴()()0g x g >,∴0>x ,∴不等式的解集为()0,+∞故选:C.考点:利用导数研究函数的单调性.【方法点晴】本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键,属于中档题.结合已知条件中的以及所求结论可知应构造函数,利用导数研究()x g y =的单调性,结合原函数的性质和函数值,即可求解.练习3.定义在R 上的函数()f x 的导函数为()f x ',若对任意实数x ,有,且()1f x +为奇函数,则不等式的解集是( )A .(),0-∞B .()0,+∞C .1,e ⎛⎫-∞ ⎪⎝⎭D .1,e ⎛⎫+∞ ⎪⎝⎭【答案】B【解析】设.由,得,故函数()g x 在R 上单调递减.由()1f x +为奇函数()01f =-,所以.不等式等价于()1xf x e<-,即,结合函数()g x 的单调性可得0x >,从而不等式的解集为()0,+∞,故答案为B.【方法点晴】本题考查了导数的综合应用及函数的性质的应用,构造函数的思想,阅读分析问题的能力,属于中档题.常见的构造思想是使含有导数的不等式一边变为0,即得,当是形如时构造;当是时构造,在本题中令,(R x ∈),从而求导()0<'x g ,从而可判断()x g y =单调递减,从而可得到不等式的解集.练习4.已知定义在R 上的可导函数()f x 的导函数()'f x ,满足,且()2+f x 为偶函数,()41=f ,则不等式()<x f x e 的解集为( )A .()2,-+∞B .()4,+∞C .()1,+∞D .()0,+∞ 【答案】D【解析】设,则∴函数g x ()是R 上的减函数, ∵函数()2+f x 是偶函数, ∴函数∴函数关于2x =对称, ∴原不等式等价为1g x ()<, ∴不等式()<x f x e 等价1g x ()<,即∵g x ()是R 上的减函数, ∴0x >.∴不等式()<x f x e 式的解集为()0,+∞.选D 练习5.设函数()f x '是函数的导函数,1)0(=f ,且,则的解集是( )A.ln 4,3⎛⎫+∞ ⎪⎝⎭B.ln 2,3⎛⎫+∞ ⎪⎝⎭C.3,2⎛⎫+∞ ⎪ ⎪⎝⎭D.,3e ⎛⎫+∞ ⎪ ⎪⎝⎭【答案】B【解析】设,则,所以(c 为常数),则,由,2c =,所以,又由,所以即()3f x >,即3213x e ->,解得ln 23x >.故选B . (四)构造成积的形式例4.已知定义在R 上的函数()y f x =满足:函数()1y f x =+的图象关于直线1x =-对称,且当(),0x ∈-∞时,(()f x '是函数()f x 的导函数)成立.若,,,则a ,b ,c 的大小关系是( )A .a b c >>B .b a c >>C .c a b >>D .a c b >> 【答案】A【解析】易知()x f 关于y 轴对称,设,当()0,∞-∈x 时,,()x F ∴在()0,∞-上为递减函数,且()x F 为奇函数,()x F ∴在R 上是递减函数.,即c b a >>,故选A.【方法点睛】本题考查学生的是函数的性质,属于中档题目.从选项可以看出,要想比较c b a ,,的大小关系,需要构造新函数,通过已知函数()x f 的奇偶性,对称性和单调性,判断()x F 的各种性质,可得()x F 在R 上是递减函数.因此只需比较自变量的大小关系,通过分别对各个自变量与临界值1,0作比较,判断出三者的关系,即可得到函数值得大小关系.练习 1.设函数()f x 是定义在(,0)-∞上的可导函数,其导函数为'()f x ,且有,则不等式的解集为( ) A .B .C .(2018,0)-D .(2016,0)- 【答案】B考点:函数导数与不等式,构造函数.【思路点晴】本题考查函数导数与不等式,构造函数法.是一个常见的题型,题目给定一个含有导数的条件,这样我们就可以构造函数,它的导数恰好包含这个已知条件,由此可以求出()F x 的单调性,即函数()F x 为减函数.注意到原不等式可以看成,利用函数的单调性就可以解出来.练习2.设函数()f x 是定义在()0,+∞上的可导函数,其导函数为()f x ',且有,则不等式的解集为( )A .()2012,+∞B .()0,2012C .()0,2016D .()2016,+∞ 【答案】D【解析】试题分析:∵函数()f x 是定义在()0,+∞上的可导函数,,∴函数2y x f x =()在()0,+∞上是增函数,∴不等式的解集为()2016,+∞.【名师点睛】本题考查函数的单调性,解不等式,以及导数的应用,属中档题.解题时正确确定函数2y x f x =()在()0,+∞上是增函数是解题的关键练习3.函数()f x 是定义在区间()0,+∞上可导函数,其导函数为()'fx ,且满足,则不等式的解集为( )A .B .C .D .【答案】C(五)与ln x 有关的构造例5.已知定义在实数集R 的函数()f x 满足f (1)=4,且()f x 导函数()3f x '<,则不等式的解集为( )A.(1,)+∞B.(,)e +∞C.(0,1)D.(0,)e 【答案】D【解析】设t=lnx,则不等式化为13)(+>t t f ,设g(x)=f(x)-3x-1,则。
构造函数法解决导数不等式问题在函数中解决抽象函数问题首要的前提是对函数四种基本性质的熟练掌握,导数是函数单调性的延伸,如果把题目中直接给出的增减性换成一个'()f x ,则单调性就变的相当隐晦了,另外在导数中的抽象函数不等式问题中,我们要研究的往往不是()f x 本身的单调性,而是包含()f x 的一个新函数的单调性,因此构造函数变的相当重要,另外题目中若给出的是'()f x 的形式,则我们要构造的则是一个包含()f x 的新函数,因为只有这个新函数求导之后才会出现'()f x ,因此解决导数抽象函数不等式的重中之重是构造函数。
例如:'()0f x >,则我们知道原函数()f x 是单调递增的,若'()10f x +>,我们知道()()g x f x x =+这个函数是单调递增的,因此构造函数的过程有点类似于积分求原函数的过程,只不过构造出的新函数要通过题目中给出的条件能判断出单调性才可。
既然是找原函数,那么就可能遇上找不到式子的原函数的时候,但是我们判断单调性只需要判断导函数的正负即可,例如()g x 的原函数是不能准确的找到的,但是如果我们知道一个式子的导函数里面包含()g x ,则也能大致将那个函数看成是原函数,例如'()()g x m x x=,或者()m x 的导函数中包含一个能判断符号的式子和()g x 相乘或相除的形式,我们也可以将()m x 大致看成()g x 的原函数。
构造函数模型总结:关系式为“加”型:(1)'()()0f x f x +≥ 构造''[()][()()]x x e f x e f x f x =+(2)'()()0xf x f x +≥ 构造''[()]()()xf x xf x f x =+(3)'()()0xf x nf x +≥构造''11'[()]()()[()()]n n n n x f x x f x nx f x x xf x nf x --=+=+(注意对x 的符号进行讨论)关系式为“减”型(1)'()()0f x f x -≥ 构造'''2()()()()()[]()x x x x x f x f x e f x e f x f x e e e --== (2)'()()0xf x f x -≥ 构造''2()()()[]f x xf x f x x x -=(3)'()()0xf x nf x -≥构造'1''21()()()()()[]()n n n n n f x x f x nx f x xf x nf x x x x -+--== (注意对x 的符号进行讨论)例1.设(),g()f x x 是R 上的可导函数,''()g ()f x x ,分别是(),g()f x x 的导函数,且满足''()()()g ()0f x g x f x x +<,则当a x b <<时,有( ).()()()()A f a g b f b g a > .()()()()B f a g a f a g b >.()()()()C f a g a f b g b > .()()()()D f a g a f b g a >解析:因为''()()()g ()0f x g x f x x +<不等式左边的原函数为()()f x g x ,因此需要构造新函数,令()()()h x f x g x =,可知'()0h x <,则函数()h x 是单调递减函数,因此当a x b <<,有()()h a h b >即答案选C 。
专题 07 导数的应用考纲解读明方向考点内容解读要求常考题型展望热度认识函数单调性和导数的关系; 能利用导数选择题1. 导数与函数的, 会求函数的单调区间理解★★★研究函数的单调性解答题单调性)( 其中多项式函数一般不高出三次认识函数在某点获取极值的必要条件和充分条件 ; 会用导数求函数的极大值、极小值2. 导数与函数的极); 会求闭掌握解答题★★★( 其中多项式函数一般不高出三次(最)值( 其中多项式区间上函数的最大值、最小值函数一般不高出三次 )3. 生活中的优化问掌握选择题★☆☆会利用导数解决某些实责问题题解析解读1.会利用导数研究函数的单调性 , 掌握求函数单调区间的方法 .2. 掌握求函数极值与最值的方法, 解决利润最大、用料最省、效率最高等实质生产、生活中的优化问题.3. 利用导数求函数极值与最值、结合单调性与最值求参数范围、证明不等式是高考热点. 分值为12~17 分, 属于高档题 .命题研究练扩展2018 年高考全景显现1.【 2018 年理数天津卷】已知函数,,其中a>1.(I )求函数的单调区间;(II )若曲线在点处的切线与曲线在点处的切线平行,证明;(III)证明当时,存在直线l ,使 l 是曲线的切线,也是曲线的切线.【答案】 ( Ⅰ ) 单调递减区间,单调递加区间为;(Ⅱ )证明见解析;(Ⅲ )证明见解析.(III)由题意可得两条切线方程分别为l 1:. l2:. 则原问题等价于当时,存在,,使得l1和l2重合.转变成当时,关于 x1的方程存在实数解,构造函数,令,结合函数的性质可知存在唯一的x0,且 x0>0,使得,据此可证得存在实数t ,使得,则题中的结论成立.详解:( I )由已知,,有.令,解得 x=0.由 a>1,可知当 x 变化时,,的变化情况以下表:x00+极小值所以函数的单调递减区间,单调递加区间为.(III )曲线在点处的切线 l 1. :曲线在点2. 处的切线 l :要证明当时,存在直线l ,使 l 是曲线的切线,也是曲线的切线,只需证明当时,存在,,使得 l 1和 l 2重合.即只需证明当时,方程组有解,由①得,代入②,得. ③所以,只需证明当时,关于 x1的方程③存在实数解.设函数,即要证明当时,函数存在零点 .,可知时,;时,单调递减,又,,故存在唯一的x0,且 x0>0,使得,即.由此可得在上单调递加,在上单调递减.在处获取极大值. 由于,故,所以.下面证明存在实数 t ,使得.由(I)可得,当时,有,所以存在实数 t ,使得,所以,当时,存在,使得.所以,当时,存在直线l ,使 l 是曲线的切线,也是曲线的切线 .点睛:导数是研究函数的单调性、极值( 最值 ) 最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的观察都特别突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的观察主要从以下几个角度进行:(1) 观察导数的几何意义,经常与解析几何、微积分相联系. (2) 利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3) 利用导数求函数的最值 ( 极值 ) ,解决生活中的优化问题.(4) 观察数形结合思想的应用.2.【 2018 年理北京卷】设函数=[ ] .(Ⅰ)若曲线y= f ( x)在点(1,)处的切线与轴平行,求 a;(Ⅱ)若在 x=2处获取极小值,求 a 的取值范围.【答案】 (1) a 的值为 1 (2) a 的取值范围是(,+∞)【解析】解析:(1)先求导数,再依照得 a;(2)先求导数的零点:,2;再分类谈论,依照是否满足在 x=2处获取极小值,进行弃取,最后可得 a 的取值范围.详解:解:(Ⅰ)由于=[ ] ,x x x 所以 f ′( x)=[2ax–(4a+1)]e +[ ax2–(4a+1)x+4a+3] e ( x∈R)=[ ax2–(2a+1) x+2]e.f′ (1)=(1 –a)e .由题设知f′ (1)=0 ,即 (1 –a)e=0 ,解得a=1.此时 f (1)=3e≠0.所以 a 的值为1.点睛:利用导数的几何意义解题,主若是利用导数、切点坐标、切线斜率之间的关系来进行转变. 以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解 .3.【 2018 年江苏卷】记分别为函数 的导函数.若存在 ,满足 且,则称为函数与的一个“ S 点”.(1)证明:函数与 不存在“ S 点”;(2)若函数与存在“ S 点”,求实数 a 的值;(3)已知函数, .对任意 ,判断可否存在 ,使函数 与 在区间内存在“ S 点”,并说明原由.【答案】( 1)证明见解析( 2)a 的值为 ( 3)对任意 a >0,存在 b >0,使函数 f ( x )与 g (x )在区间( 0,+∞)内存在“ S 点”.【解析】解析: ( 1)依照题中“ S 点”的定义列两个方程,依照方程组无解证得结论; (2)同( 1)依照“S 点”的定义列两个方程,解方程组可得a 的值;( 3)经过构造函数以及结合“ S 点”的定义列两个方程,再判断方程组可否有解即可证得结论.详解:解:( 1)函数 f ( x ) =x , g ( x )=x 2+2x -2 ,则 f ′( x ) =1, g ′( x )=2x +2.由 f ( x ) =g ( x )且 f ′( x )= g ′( x ),得,此方程组无解,所以, f ( x )与 g (x )不存在“ S ”点.(2)函数, ,则.设 x 0 为 f ( )与 g ( )的“ ”点,由f ( 0)与g ( 0)且 f ′( x 0)与 g ′( 0),得x x S x x x,即,(* )得,即 ,则 .当 时, 满足方程组( * ),即 为 f ( x )与 g( )的“ ”点.所以, a 的值为 .xS(3)对任意 >0,设 .由于,且 ( )的图象是不中止的,所以存在∈( 0, 1),使得,令,则b>0.函数,则.由 f ( x)与 g( x)且 f ′( x)与 g′( x),得,即(** )此时,满足方程组(** ),即是函数f(x)与g(x)在区间(0,1)内的一个“ S点”.所以,对任意a>0,存在 b>0,使函数 f ( x)与 g( x)在区间(0,+∞)内存在“ S 点”.点睛:涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先经过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大体图象判断零点、方程根、交点的情况,归根终究还是研究函数的性质,如单调性、极值,尔后经过数形结合的思想找到解题的思路. 4.【 2018 年理新课标 I 卷】已知函数.(1)谈论的单调性;(2)若存在两个极值点,证明:.【答案】( 1)当时,在单调递减.,当时,在单调递减,在单调递加 . ( 2)证明见解析.(i )若,则,当且仅当,时,所以在单调递减.(ii )若,令得,或. 当时,;当时,.所以在单调递减,在单调递加 .(2)由( 1)知,存在两个极值点当且仅当.由于的两个极值点满足,所以,不如设,则. 由于,所以等价于. 设函数,由(1)知,在单调递减,又,进而当时,. 所以,即. 点睛:该题观察的是应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性、应用导数研究函数的极值以及极值所满足的条件,在解题的过程中,需要明确导数的符号对单调性的决定性作用,再者就是要先保证函数的生计权,先确定函数的定义域,要对参数进行谈论,还有就是在做题的时候,要时辰关注第一问对第二问的影响,再者就是经过构造新函数来解决问题的思路要明确.2017 年高考全景显现1.【2017 课标 II ,理 11】若x 2 是函数 f ( x) ( x2 ax 1)e x 1的极值点,则 f ( x) 的极小值为()A. 1B. 2e 3C. 5e 3D.1【答案】 A【解析】试题解析:由题可得 f ( x) (2 x a)e x 1 ( x2 ax 1)e x 1 [ x2 ( a 2) x a 1]e x 1由于 f ( 2) 0 ,所以 a 1 ,f ( x) ( x2 x 1)e x 1,故 f ( x) (x2 x 2)e x 1所以 f (x) 极小值为 f 1 (1 1 1)e1 1 1 ,应选A。
利用导数证明不等式之构造函数法题型一:移项作差构造函数1、解题思路第一步:判断所证明不等式是否符合移项作差构造函数的特点 将证明不等式()()f xg x >(()()f xg x <( 的问题转化为证明()()0f xg x ->(()()0f x g x -< ,进而构造函数()()()h x f x g x =-。
第二步:符合后构造函数,利用导数研究函数的单调性; 第三步:函数问题转化回不等式问题,得出结论。
[点拨]构造的函数前提是要可导,求导过程较容易,多是整式且最多利用二次求导研究其单调性问题。
比如:不等式11ln 2x x x -+<(证明时,直接移项作差构造的函数()11ln 2x x f x x -+=-(求导过于复杂且无法利用导数快速研究其单调性;2、经典例题例1:(2019春-苏州期末)已知函数()ln(1)f x x x =+-,求证:当1x >-时,恒有11ln(1)1x x x -≤+≤+.[思路分析]第一步:判断不等式特点,右边不等式移项作差直接可以利用已知函数证明,左边不等式移项作差构造函数1()ln(1)11g x x x =++-+(,可直接求导研究函数单调性,都符合移项作差构造函数特点;第二步:分别利用导数求解函数()y f x =和()y g x =的单调性和最值; 第三步:转化回不等式问题,得出结论. [解析]证明:()1()1111xf x x x x '=-=->-++( ∴当10x -<<时,()0f x '>,即()f x 在(1,0)x ∈-上为增函数 当0x >时,()0f x '<,即()f x 在(0,)x ∈+∞上为减函数, 故函数()f x 的单调递增区间为(1,0)-,单调递减区间(0,)+∞, 于是函数()f x 在(1,)-+∞上的最大值为max ()(0)0f x f ==,因此,当1x >-时,()(0)0f x f ≤=,即ln(1)0x x +-≤,∴ln(1)x x +≤(右边得证),现证左边,令1()ln(1)11g x x x =++-+,则2211()1(1)(1)xg x x x x '=-=+++ 当(1,0)x ∈-时,()0g x '<;当(0,)x ∈+∞时,()0g x '>,即()g x 在(1,0)x ∈-上为减函数,在(0,)x ∈+∞上为增函数, 故函数()g x 在(1,)-+∞上的最小值为min ()(0)0g x g ==, ∴当1x >-时,()(0)0g x g ≥=,即1ln(1)101x x ++-≥+( ∴1ln(1)11x x +≥-+,综上可知,当1x >-时,有11ln(1)1x x x -≤+≤+。
构造法解导数不等式问题构造法解导数不等式问题⼀.知识梳理常见的构造函数⽅法有如下法则构造函数 1.利⽤和差函数求导法则构造函数(1)对于不等式()()()00<>'+'或x g x f ,可构造函数()()()x g x f x F +=。
(2)对于不等式()()()00<>'-'或x g x f ,可构造函数()()()x g x f x F -=。
特别地,对于不等式()()()0≠<>'k k k x f 或,可构造函数()()kx x f x F -=。
2. 利⽤积商函数求导法则构造函数(3)对于不等式()()()()()00<>'+'或x g x f x g x f ,可构造函数()()()x g x f x F =。
(4)对于不等式()()()()()00<>'-'或x g x f x g x f ,可构造函数()()()x g x f x F =。
(5)对于不等式()()()00<>+'或x f x f x ,可构造函数()()x xf x F =。
(6)对于不等式()()()00<>-'或x f x f x ,可构造函数()()()0≠=x xx f x F 。
(7)对于不等式()()()00<>+'或x nf x f x ,可构造函数()()x f x x F n =。
(8)对于不等式()()()00<>-'或x nf x f x ,可构造函数()()()0≠=x xx f x F n 。
(9)对于不等式()()()00<>+'或x f x f ,可构造函数()()x f e x F x =。
(10)对于不等式()()()00<>+'或x f x f ,可构造函数()()xe xf x F =。
专题07 构造函数法解决导数不等式问题(二)考点四 构造F (x )=f (x )±g (x ),F (x )=f (x )g (x ),F (x )=f (x )g (x )类型的辅助函数 【方法总结】(1)若F (x )=f (x )+ax n +b ,则F ′(x )=f ′(x )+nax n -1;(2)若F (x )=f (x )±g (x ),则F ′(x )=f ′(x )±g ′(x );(3)若F (x )=f (x )g (x ),则F ′(x )=f ′(x )g (x )+f (x )g ′(x );(4)若F (x )=f (x )g (x ),则F ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2. 由此得到结论:(1)出现f ′(x )+nax n -1形式,构造函数F (x )=f (x )+ax n +b ;(2)出现f ′(x )±g ′(x )形式,构造函数F (x )=f (x )±g (x );(3)出现f ′(x )g (x )+f (x )g ′(x )形式,构造函数F (x )=f (x )g (x );(4)出现f ′(x )g (x )-f (x )g ′(x )形式,构造函数F (x )=f (x )g (x ). 【例题选讲】[例1](1)函数f (x )的定义域为R ,f (-1)=3,对任意x ∈R ,f ′(x )<3,则f (x )>3x +6的解集为( )A .{x |-1<x <1}B .{x |x >-1}C .{x |x <-1}D .R(2)定义在R 上的函数f (x )满足f (1)=1,且对∀x ∈R ,f ′(x )<12,则不等式f (log 2x )>log 2x +12的解集为________.(3)定义在R 上的可导函数f (x )满足f (1)=1,且2f ′(x )>1,当x ∈⎣⎡⎦⎤-π2,3π2时,不等式f (2cos x )>32-2sin 2x 2的解集为( )A .⎝⎛⎭⎫π3,4π3B .⎝⎛⎭⎫-π3,4π3C .⎝⎛⎭⎫0,π3D .⎝⎛⎭⎫-π3,π3 (4)f (x )是定义在R 上的偶函数,当x ≥0时,f ′(x )>2x .若f (a -2)-f (a )≥4-4a ,则实数a 的取值范围是( )A .(-∞,1]B .[1,+∞)C .(-∞,2]D .[2,+∞)(5)已知f ′(x )是函数f (x )的导数,且f (-x )=f (x ),当x ≥0时,f ′(x )>3x ,则不等式f (x )-f (x -1)<3x -32的解集是( )A .⎝⎛⎭⎫-12,0B .⎝⎛⎭⎫-∞,-12C .⎝⎛⎭⎫12,+∞D .⎝⎛⎭⎫-∞,12 (6)设f ′(x )是奇函数f (x )(x ∈R )的导数,当x >0时,f (x )+f ′(x )·x ln x <0,则不等式(x -1)f (x )>0的解集为________.(7)(多选)定义在(0,+∞)上的函数f (x )的导函数为f ′(x ),且(x +1)f ′(x )-f (x )<x 2+2x 对任意x ∈(0,+∞)恒成立.下列结论正确的是( )A .2f (2)-3f (1)>5B .若f (1)=2,x >1,则f (x )>x 2+12x +12C .f (3)-2f (1)<7D .若f (1)=2,0<x <1,则f (x )>x 2+12x +12(8)已知函数f (x ),对∀x ∈R ,都有f (-x )+f (x )=x 2,在(0,+∞)上,f ′(x )<x ,若f (4-m )-f (m )≥8-4m ,则实数m 的取值范围为( )A .[-2,2]B .[2,+∞)C .[0,+∞)D .(-∞,-2]∪[2,+∞)(9)已知函数y =f (x )是R 上的可导函数,当x ≠0时,有f ′(x )+f (x )x >0,则函数F (x )=xf (x )+1x的零点个数是( )A .0B .1C .2D .3(10)函数f (x )满足x 2f ′(x )+2xf (x )=e x x ,f (2)=e 28,当x >0时,f (x )的极值状态是___________. 【对点训练】1.已知函数f (x )的定义域为R ,f (-1)=2,且对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)2.已知函数f (x )(x ∈R )满足f (1)=1,f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为 . 3.已知定义域为R 的函数f (x )的导数为f ′(x ),且满足f ′(x )<2x ,f (2)=3,则不等式f (x )>x 2-1的解集是( )A .(-∞,-1)B .(-1,+∞)C .(2,+∞)D .(-∞,2)4.定义在(0,+∞)上的函数f (x )满足x 2f ′(x )+1>0,f (1)=4,则不等式f (x )>1x+3的解集为________. 5.设f (x )为R 上的奇函数,当x ≥0时,f ′(x )-cos x <0,则不等式f (x )<sin x 的解集为 .6.设f (x )和g (x )分别是定义在R 上的奇函数和偶函数,f ′(x ),g ′(x )分别为其导数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)7.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时,有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )8.设函数f (x )在R 上存在导数f ′(x ),对任意x ∈R ,都有f (-x )+f (x )=x 2,在(0,+∞)上f ′(x )<x ,若f (2-m )+f (-m )-m 2+2m -2≥0,则实数m 的取值范围为__________.9.已知f (x )是定义在R 上的减函数,其导函数f ′(x )满足f (x )f ′(x )+x <1,则下列结论正确的是( ) A .对于任意x ∈R ,f (x )<0 B .对于任意x ∈R ,f (x )>0C .当且仅当x ∈(-∞,1),f (x )<0D .当且仅当x ∈(1,+∞),f (x )>010.已知y =f (x )为R 上的可导函数,当x ≠0时,f ′(x )+f (x )x >0,若g (x )=f (x )+1x ,则函数g (x )的零点个数为( )A .1B .2C .0D .0或2考点五 构造具体函数关系式【方法总结】这类题型需要根据题意构造具体的函数关系式,通过具体的关系式去解决不等式及求值问题.【例题选讲】[例1] (1) (2020·全国Ⅰ)若2a +log 2a =4b +2log 4b ,则( )A .a >2bB .a <2bC .a >b 2D .a <b 2(2)已知α,β∈⎣⎡⎦⎤-π2,π2,且αsin α-βsin β>0,则下列结论正确的是( ) A .α>β B .α2>β2 C .α<β D .α+β>0(3)(多选)若0<x 1<x 2<1,则( )A .x 1+ln x 2>x 2+ln x 1B .x 1+ln x 2<x 2+ln x 1C .12e x x >21e x xD .12e x x <21e x x (4)已知函数f (x )=e x x -ax ,x ∈(0,+∞),当x 2>x 1时,不等式f (x 1)x 2-f (x 2)x 1<0恒成立,则实数a 的取值范围是( )A .(-∞,e ]B .(-∞,e )C .(-∞,e 2)D .(-∞,e 2] A .(a +1)a +2>(a +2)a +1 B .log a (a +1)>log a +1(a +2)C .log a (a +1)<a +1aD .log a +1(a +2)<a +2a +1(6) (2021·全国乙)设a =2ln1.01,b =ln1.02,c = 1.04-1,则( )A .a <b <cB .b <c <aC .b <a <cD .c <a <b (7)已知函数f (x )的定义域为(0,+∞),导函数为f ′(x ),若xf ′(x )-f (x )=x ln x ,且f ⎝⎛⎭⎫1e =1e ,则( )A .f ′⎝⎛⎭⎫1e =0B .f (x )在x =1e处取得极大值 C .0<f (1)<1 D .f (x )在(0,+∞)上单调递增 【对点训练】1.若a =ln 22,b =ln 33,c =ln 66,则( ) A .a <b <c B .c <b <a C .c <a <b D .b <a <c2.设a ,b >0,则“a >b ”是“a a >b b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知0<x 1<x 2<1,则( )A .ln x 1x 2>ln x 2x 1B .ln x 1x 2<ln x 2x 1C .x 2ln x 1>x 1ln x 2D .x 2ln x 1<x 1ln x 24.已知a >b >0,a b =b a ,有如下四个结论:(1)b <e ;(2)b >e ;(3)存在a ,b 满足a ·b <e 2;(4)存在a ,b 满足a ·b >e 2,则正确结论的序号是( )A .(1)(3)B .(2)(3)C .(1)(4)D .(2)(4)5.设x ,y ,z 为正数,且2x =3y =5z ,则( )A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z6.已知a <5且a e 5=5e a ,b <4且b e 4=4e b ,c <3且c e 3=3e c ,则( )A .c <b <aB .b <c <aC .a <c <bD .a <b <c7.若0<x 1<x 2<a ,都有x 2ln x 1-x 1ln x 2≤x 1-x 2成立,则a 的最大值为( )A .12B .1C .eD .2e 8.下列四个命题:①ln 5<5ln 2;②ln π>πe ;③11;④3eln 2>42.其中真命题的个数是( )A .1B .2C .3D .4 9.已知函数f (x )=e x +m ln x (x ∈R ),若对任意正数x 1,x 2,当x 1>x 2时,都有f (x 1)-f (x 2)>x 1-x 2成立,则实数m 的取值范围是________.10.若实数a ,b 满足2a +3a =3b +2b ,则下列关系式中可能成立的是( )A .0<a <b <1B .b <a <0C .1<a <bD .a =b11.已知函数f (x )=e x x -ax ,x ∈(0,+∞),当x 2>x 1时,不等式f (x 1)x 2<f (x 2)x 1恒成立,则实数a 的取值范围为( ) A .(-∞,e] B .(-∞,e) C .⎝⎛⎭⎫-∞,e 2 D .⎝⎛⎦⎤-∞,e 2 12.设f ′(x )为函数f (x )的导函数,已知x 2f ′(x )+xf (x )=ln x ,f (e)=1e,则下列结论正确的是( ) A .f (x )在(0,+∞)单调递增 B .f (x )在(0,+∞)单调递减C .f (x )在(0,+∞)上有极大值D .f (x )在(0,+∞)上有极小值13.(多选)下列不等式中恒成立的有( )A .ln(x +1)≥x x +1,x >-1 B .ln x ≤12⎝⎛⎭⎫x -1x ,x >0 C .e x ≥x +1 D .cos x ≥1-12x 2。
构造函数 巧用导数证明不等式江 苏 张文海不等式的证明是高中学习的难点,常用证法有比较法、综合法、分析法等,新教材高考试卷中,灵活构造辅助函数, 借助导数来证明不等式已成为解决不等式证明的一种有效思维方法。
例1:已知e b a <<<0,试比较b a 与a b 的大小.分析:欲比较b a 与a b 的大小,取自然对数后,只需比较a b ln 与b a ln 的大小, 再除以正数ab ,只需比较a a ln 与b b ln 的大小,令x x x f ln )(=则2'ln 1)(xx x f -= 当),0(e x ∈时,1ln ln =<e x ,则,0)('>x f 所以)(x f 在),0(e 上为增函数,由e b a <<<0,得a a ln <bb ln ,于是b a <a b 点评:先把待比较大小的式子变形后再构造函数,然后利用导数证明该函数的单调性,最后利用函数单调性来比较大小。
例2: (2007年湖北理)已知定义在正实数集上的函数21()22f x x ax =+,2()3lng x a x b =+, 其中0a >,设两曲线()y f x =,()y g x =有公共点,且在该点处的切线相同。
求证:)0)(()(>≥x x g x f分析:作差构造函数=-=)()()(x g x f x F -+ax x 2212b x a -ln 32)0(>x ,然后利用导数判断其单调性。
证明:设()y f x =与()(0)y g x x =>在公共点00()x y ,处的切线相同. ()2f x x a '=+∵,23()a g x x'=,由题意得00()()f x g x ''=且00()()f x g x = 即20032a x a x +=得:0x a =,或03x a =-(舍去). 设=-=)()()(x g x f x F -+ax x 2212b x a -ln 32)0(>x 则)0()3)((32)(2'>+-=-+=x x a x a x x a a x x F 故)(x F 在),0(a 上单调递减,在),(+∞a 上单调递增。
专题2.3构造函数法解不等式问题(小题)在函数中解决抽象函数问题首要的前提是对函数四种基本性质的熟练掌握,导数是函数单调性的延伸,如果把题目中直接给出的增减性换成一个'()f x ,则单调性就变的相当隐晦了,另外在导数中的抽象函数不等式问题中,我们要研究的往往不是()f x 本身的单调性,而是包含()f x 的一个新函数的单调性,因此构造函数变的相当重要,另外题目中若给出的是'()f x 的形式,则我们要构造的则是一个包含()f x 的新函数,因为只有这个新函数求导之后才会出现'()f x ,因此解决导数抽象函数不等式的重中之重是构造函数。
例如:'()0f x >,则我们知道原函数()f x 是单调递增的,若'()10f x +>,我们知道()()g x f x x =+这个函数是单调递增的,因此构造函数的过程有点类似于积分求原函数的过程,只不过构造出的新函数要通过题目中给出的条件能判断出单调性才可。
既然是找原函数,那么就可能遇上找不到式子的原函数的时候,但是我们判断单调性只需要判断导函数的正负即可,例如()g x 的原函数是不能准确的找到的,但是如果我们知道一个式子的导函数里面包含()g x ,则也能大致将那个函数看成是原函数,例如'()()g x m x x=,或者()m x 的导函数中包含一个能判断符号的式子和()g x 相乘或相除的形式,我们也可以将()m x 大致看成()g x 的原函数。
构造函数模型总结:关系式为“加”型:(1)'()()0f x f x +≥构造''[()][()()]x x e f x e f x f x =+(2)'()()0xf x f x +≥构造''[()]()()xf x xf x f x =+(3)'()()0xf x nf x +≥构造''11'[()]()()[()()]n n n n x f x x f x nx f x x xf x nf x --=+=+(注意对x 的符号进行讨论)关系式为“减”型(1)'()()0f x f x -≥构造'''2()()()()()[]()x x x x xf x f x e f x e f x f x e e e --==(2)'()()0xf x f x -≥构造''2()()()[]f x xf x f x x x -=(3)'()()0xf x nf x -≥构造'1''21()()()()()[]()n n n n n f x x f x nx f x xf x nf x x x x -+--==(注意对x 的符号进行讨论)例1.设(),g()f x x 是R 上的可导函数,''()g ()f x x ,分别是(),g()f x x 的导函数,且满足''()()()g ()0f x g x f x x +<,则当a x b <<时,有().()()()()A f a g b f b g a >.()()()()B f a g a f a g b >.()()()()C f a g a f b g b >.()()()()D f a g a f b g a >【解析】因为''()()()g ()0f x g x f x x +<不等式左边的原函数为()()f x g x ,因此需要构造新函数,令()()()h x f x g x =,可知'()0h x <,则函数()h x 是单调递减函数,因此当a x b <<,有()()h a h b >即答案选C 。
2023年高考数学考点复习构造函数解不等式考法一、 加减法模型构造函数例1、设函数()f x '是奇函数()()0f x x ≠的导函数,()11f -=-.当0x >时,()1f x '>,则使得()f x x >成立的x 的取值范围是( ) A .()(),10,1-∞-⋃ B .()()1,01,-⋃+∞ C .()(),11,-∞-+∞ D .()()1,00,1-例2、已知定义在R 上的函数()f x 满足()220f =,且()f x 的导函数()f x '满足()262f x x >'+,则不等式()322f x x x >+的解集为( )A .{2}xx >-∣ B .{2}xx >∣ C .{2}xx <∣ D .{2∣<-xx 或2}x > 例3、定义在R 上的可导函数()f x 恒有()2f x '>,若()12f =,则不等式()2f x x <的解集为( ) A .()2,+∞ B .(),2-∞C .()1,+∞D .(),1-∞跟踪练习1、已知定义在R 上的奇函数()f x ,且其图象是连续不断的,满足'()30f x +<,则不等式(1)3ln 22f x x x ->-+的解集为( ) A .(0,)eB .(,)e +∞C .(0,1)D .(1,)+∞2、已知奇函数()f x 在R 上的导函数为()'f x ,且当(],0x ∈-∞时,()'1f x <,则不等式()()2101110102021f x f x x --+≥-的解集为( ) A .()2021,+∞B .[)2021,+∞C .(],2021-∞D .(),2021-∞3、设函数()'f x 是偶函数()f x x R ∈,的导数,()2f =0,当0x <时,'()210f x x -+<,则使得函数()0f x >成立的x 的取值范围是( )A .(﹣∞,﹣2)∪(0,2)B .(﹣2,0)∪(2,+∞)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,2)4、函数()f x 的定义域为,(1)0,()f f x '=R 为()f x 的导函数,且()0f x '>,则不等式()()20x f x ->的解集是( )A .(,1)(2,)-∞⋃+∞B .(,1)(1,)-∞⋃+∞C .(0,1)(2,)+∞D .(,0)(1,)-∞⋃+∞ 5、已知定义在R 上的函数()f x ,其导函数为()f x ',满足()2f x '>,()24f =,则不等式()2122xf x x x ->-的解集为__________.6、已知()f x 是定义在R 上的奇函数,()'f x 是函数()f x 的导函数且在[)0,+∞上()1f x '<,若(2020)()20202f m f m m --≥-,则实数m 的取值范围为( )A .[]1010,1010-B .[)1010,+∞C .(],1010-∞-D .(][),10101010,-∞-+∞7、已知定义在R 上的函数()f x 满足()13f =,对x ∀∈R 恒有()2f x '<,则()21f x x ≥+的解集为( )A .[)1,+∞B .(],1-∞C .()1,+∞D .(),1-∞8、已知定义域为R 的函数()f x 满足1122f ⎛⎫= ⎪⎝⎭,()40f x x '+>,其中()f x '为()f x 导函数,则满足不等式2()12f x x ≥-的解集为( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,2⎛⎤-∞ ⎥⎝⎦ C .1,2⎡⎫-+∞⎪⎢⎣⎭D .1,2⎛⎤-∞- ⎥⎝⎦ 9、函数()f x 是定义在R 上的函数,且()()10,f f x '=为()f x 的导函数,若()0f x '>,则不等式()()20x f x ->的解集是________. 考法二、乘除法构造函数例1、设函数()'f x 是函数()f x 的导函数,x R ∀∈,()()0f x f x '+>,且(1)2f =,则不等式12()x f x e ->的解集为( )A .(1,)+∞B .(2,)+∞C .(,1)-∞D .(,2)-∞例2、已知定义在R 上的奇函数()f x ,其导函数为()f x ',当0x >时,()()0f x xf x '+>,且()10f =,则不等式2(2)()0x x f x -<的解集为( )A .(﹣∞,﹣1)∪(1,2)B .(﹣1,1)C .(﹣∞,﹣1)∪(1,+∞)D .(﹣1,0)∪(0,1)例3、定义在(2,2)-上的函数()f x 的导函数为()'f x ,满足:4()()0x f x e f x +-=,2(1)f e =,且当0x >时,()2()f x f x '>,则不等式24(2)x e f x e -<的解集为( )A .(1,4)B .(2,1)-C .(1,)+∞D .(0,1)跟踪练习1、已知函数()f x 是定义在R 上的奇函数,且()11f =,当0x <时,有()()xf x f x '>,则不等式()f x x >的解集为( ) A .()0,1B .()1,0-C .(,1)(1,)-∞-+∞D .(,1)(0,1)-∞-2、若定义在R 上的函数()f x 满足()()1f x f x '+>,(0)4f =,则不等式()3x x e f x e ⋅>+ (其中e 为自然对数的底数)的解集为( ) A .(0)(0)-∞+∞,, B .(0)(3)-∞⋃+∞,, C .(0)+∞,D .(3)+∞,3、设函数()f x 是定义在()0-∞,上的可导函数,其导函数为()'f x ,且有22()()f x x f x x '+⋅>,则不等式2(2021)(2021)4(2)0x f x f +⋅+-⋅->的解集为( )A .(2023)-∞-,B .()2-∞-,C .(20)-,D .(20220)-,4、已知偶函数()()0f x x ≠的导函数为()f x ',且满足()20f -=,当0x >时,()()30f x xf x '->,则()0f x >的解集为( )A .()(),22,-∞-+∞B .()()2,00,2-C .()(),20,2-∞- D .()()2,02,-+∞5、若函数()f x '是奇函数()()f x x R ∈的导函数,且满足当0x >时,()()1ln 0x f x f x x'⋅+>,则()()20200x f x ->的解集为( ) A .()(),02020,-∞⋃+∞ B .()()2020,11,2020--C .()0,2020D .()1,1-6、已知函数()f x 是定义在R 上的奇函数,其导函数为()'f x ,且对任意实数x 都有()()1f x f x '+>,则不等式()1x x e f x e >-的解集为( ) A .(,0)-∞B .(0,)+∞C .(,1)-∞D .(1,)+∞7、设函数()f x '是函数()()f x x R ∈的导函数,已知()()f x f x '<,且()()4f x f x ''=-,()40f =,()21f =,则使得()20x f x e -<成立的x 的取值范围是( ) A .()2,-+∞B .()0,∞+C .()1,+∞D .()4,+∞8、已知可导函数()f x 的导函数为()f x ',若对任意的x ∈R ,都有()()2f x f x >'+,且()2021f x -为奇函数,则不等式()20192x f x e -<的解集为( ) A .(0,)+∞B .(,0)-∞C .(,)e -∞D .1,e⎛⎫+∞ ⎪⎝⎭9、已知定义在R 上的函数()f x 的导函数为'()f x ,且满足'()()0f x f x ->,2021(2021)f e =,则不等式1ln f x e ⎛⎫< ⎪⎝⎭)A .()2021,e+∞ B .()20210,eC .()2021,ee+∞ D .()20210,ee10、定义在R 上的奇函数()f x 的图象连续不断,其导函数为()f x ',对任意正实数x 恒有()()2xf x f x >-',若()()2g x x f x =,则不等式()()()23log 110g x g -+-<的解集是( )A .()0,2B .()2,2-C .()2D .()()2,11,2--⋃11、定义在R 上的函数()f x 的导函数为()f x ',若对任意实数x ,有()()f x f x '>,且2022f x为奇函数,则不等式20220xf xe 的解集是( )A .(),0-∞B .,ln 2022 C .()0,∞+ D .()2022,+∞12、已知定义在R 上的函数()f x 的导函数为()'f x ,且满足()()0f x f x '->,2021(2021)f e =,则不等式1(ln )3f x <的解集为( )A .6063(,)e +∞B .2021(0,)eC .2021(,)e +∞D .6063(0,)e13、定义在R 上的函数()f x 满足()()1f x f x >-',()06f =,则不等式()51xf x e >+(e为自然对数的底数)的解集为( ) A .()0,∞+ B .()5,+∞ C .()(),05,-∞⋃+∞D .(),0-∞14、已知定义在R 上的偶函数()f x ,其导函数为()f x ',若()2()0xf x f x '->,(3)1f -=,则不等式()19f x x x <的解集是( ) A .(,3)(0,3)-∞- B .()3,3-C .(3,0)(0,3)-⋃D .(,3)(3,)-∞-⋃+∞15、已知函数()f x 满足()ln ()0xf x x f x '+>(其中()'f x 是()f x 的导数),令()f e a e=,1f b ππ⎛⎫- ⎪⎝⎭=,1c =,则a ,b ,c 的大小关系为( )A .a b c >>B .b a c >>C .c b a >>D .a c b >>16、已知定义在R 上的函数()f x 满足:对任意x ∈R ,都有(1)(1)f x f x +=-,且当(,1)x ∈-∞时,(1)()0x f x '-⋅>(其中()'f x 为()f x 的导函数).设()2log 3a f =,()3log 2b f =,()3log 4c f =,则a ,b ,c 的大小关系是( ) A .a b c <<B .c a b <<C .c b a <<D .b c a <<考法三 、三角函数型构造函数例1、已知函数()f x '是函数()f x 的导函数,对任意0,2x π⎛⎫∈ ⎪⎝⎭,()cos ()sin 0f x x f x x '+>,则下列结论正确的是( )A 63ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B .63f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C 64ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .43f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭例2、函数()y f x =对任意的,22x ππ⎛⎫∈- ⎪⎝⎭满足12()()sin 2x x f x f x x e -'++=(其中()'f x 是函数()f x 的导函数),则下列不等式成立的是( )A .43f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B 364f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C .(2124f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D (52312f ππ⎛⎫⎛⎫<+ ⎪ ⎪⎝⎭⎝⎭例3、已知奇函数()f x 的导函数为()f x ',且()f x 在0,2π⎛⎫⎪⎝⎭上恒有()cos ()sin 0f x x f x x '-<成立,则下列不等式成立的( )A 64f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B .36f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭C 43ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭D .234f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭跟踪练习1、已知定义R 在上的函数()f x ,其导函数为()'f x ,若()()2sin f x f x x =--,且当0x ≥时,()cos 0f x x '+>,则不等式()()sin cos 2f x f x x x π+>+-的解集为( )A . (,)2π-∞B . (,)2π+∞C . (,)4π-∞-D . (,)4π-+∞2、定义在R 上的函数()f x 的导函数为()f x ',当[)0,x ∈+∞时,()2sin cos 0x x f x '⋅->且x R ∀∈,()()cos21f x f x x -++=.则下列说法一定正确的是( )A .15324643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭B .15344643f f ππ⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭ C .3134324f f ππ⎛⎫⎛⎫->-⎪ ⎪⎝⎭⎝⎭D .1332443f f ππ⎛⎫⎛⎫-->- ⎪ ⎪⎝⎭⎝⎭3、设函数()f x '是定义在()0,π上的函数()f x 的导函数,有()()cos sin 0f x x f x x '->,若123a f π⎛⎫=⎪⎝⎭,0b =,56c f π⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( ) A .a b c <<B .b c a <<C .c b a <<D .c a b <<4、定义域为,22ππ⎛⎫- ⎪⎝⎭的函数()f x 满足()()0f x f x +-=,其导函数为()f x ',当02x π≤<时,有()()cos sin 0f x x f x x '+<成立,则关于x 的不等式()cos 4f x x π⎛⎫<⋅ ⎪⎝⎭的解集为( )A .,,2442ππππ⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭B .,42ππ⎛⎫ ⎪⎝⎭C .,00,44ππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭D .,0,442πππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭5、已知奇函数()f x 的定义域为,00,22ππ⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭,其导函数是'()f x .当0,2x π⎛⎫∈ ⎪⎝⎭时,'()sin ()cos 0f x x f x x -<,则关于x 的不等式()2sin 6f x f x π⎛⎫< ⎪⎝⎭的解集为( )A .,0,266πππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭B .,,2662ππππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭C .,00,66ππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭D .,0,662πππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭6、已知函数()f x 满足:R x ∀∈,()()2cos f x f x x +-=,且()sin 0f x x +'<.若角α满足不等式(π)()0f f αα++≥,则α的取值范围是( )A .(,]2π-∞B .(,]2π-∞-C .[,]22ππ-D .[0,]2π7、定义在R 上的连续函数()f x 的导函数为()'f x ,且cos ()(cos sin )()xf x x x f x '<+成立,则下列各式一定成立的是( ) A .(0)0f = B .(0)0f <C .()0f π>D .02f ⎛⎫= ⎪⎝⎭π 8、设函数()f x 是定义在R 上的奇函数,函数()f x 的导函数为()'f x ,且当[0,)x ∈+∞时,()sin ()cos ()f x x f x x ef x ''<-,e 为自然对数的底数,则函数()f x 在R 上的零点个数为( ) A .0B .1C .2D .3。
第09讲 拓展二:构造函数法解决导数不等式问题 (精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:构造()()n F x x f x =或()()n f x F x x =(n Z ∈,且0n ≠)型 高频考点二:构造()()nx F x e f x =或()()nxf x F x e =(n Z ∈,且0n ≠)型 高频考点三:构造()()sin F x f x x =或()()sin f x F x x=型 高频考点四:构造()()cos F x f x x =或()()cos f x F x x =型高频考点五:根据不等式(求解目标)构造具体函数第四部分:第09讲 拓展二:构造函数法解决导数不等式问题 (精练)1、两个基本还原①])()([)()()()('='+'x g x f x g x f x g x f ②])()([)]([)()()()(2'='-'x g x f x g x g x f x g x f 2、类型一:构造可导积函数①])([)]()(['=+'x f e x nf x f e nx nx 高频考点1: ])([)]()(['=+'x f e x f x f e x x②])([)]()([1'=+'-x f x x nf x f x x n n高频考点1:])([)()('=+'x xf x f x f x 高频考点2 ])([)](2)([2'=+'x f x x f x f x x③])([)()('=-'nx nx e x f e x nf x f 高频考点1: ])([)()('=-'x x ex f e x f x f④])([)()(1'=-'+n n xx f x x nf x f x 高频考点1:])([)()(2'=-'x x f x x f x f x 高频考点2 ])([)(2)(23'=-'xx f x x f x f x ⑤()sin ()cos [()sin ]f x x f x x f x x ''+=⑥()cos ()sin [()cos ]f x x f x x f x x ''-=①])([)()('=-'nx nx e x f e x nf x f 高频考点1: ])([)()('=-'xx e x f e x f x f②])([)()(1'=-'+n n xx f x x nf x f x 高频考点1:])([)()(2'=-'x x f x x f x f x 高频考点2: ])([)(2)(23'=-'x x f x x f x f x ③2()sin ()cos ()[]sin sin f x x f x x f x x x'-'= ⑥2()cos ()sin ()[]cos cos f x x f x x f x x x'+'=1.(2022·全国·高二专题练习)已知函数()f x '是奇函数()()f x x R ∈的导函数,()10f -=,当x >0时,()()0xf x f x '+>,则使()0f x >成立的x 的取值范围是( )A .()(),10,1-∞-⋃B .()()1,01,-⋃+∞C .()(),11,0-∞--D .()()0,11,+∞2.(2022·全国·高二单元测试)()f x 是定义在R 上的可导函数,且()()f x f x '>对任意正实数a 恒成立,下列式子成立的是( )A .()()0e a f f a > B .()()0e a f f a <C .()()e 0a f a f <D .()()e 0a f a f >3.(2022·江苏·金陵中学高二期末)已知()f x 为偶函数,且当[)0,x ∈+∞时,()()0f x xf x '+<,其中()f x '为()f x 的导数,则不等式()()()11220x f x xf x --+>的解集为( )A .(),1-∞-B .()1,-+∞C .1,3⎛⎫-∞ ⎪⎝⎭D .1,3⎛⎫+∞ ⎪⎝⎭4.(2022·辽宁·抚顺一中高二阶段练习)()f x 在()0,∞+上的导函数为()f x ',()()2xf x f x '>,则下列不等式成立的是( )A .()()222021202220222021f f >B .()()222021202220222021f f <C .()()2021202220222021f f >D .()()2202220222021021f f <5.(2021·甘肃·兰州一中高三阶段练习(理))已知偶函数()f x 的定义域为,22ππ⎛⎫- ⎪⎝⎭,其导函数为()f x ',当02x π<<时,有()cos ()sin 0f x x f x x '+<成立,则关于x 的不等式()2cos 3f x f x π⎛⎫< ⎪⎝⎭的解集为( )A .,,2332ππππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭B .,33ππ⎛⎫- ⎪⎝⎭C .,23ππ⎛⎫-- ⎪⎝⎭D .,32ππ⎛⎫ ⎪⎝⎭高频考点一:构造()()n F x x f x =或()()n f x F x x =(n Z ∈,且0n ≠)型 1.(2022·四川·广安二中高二阶段练习(理))已知函数()f x 是定义在(,0)(0,)-∞+∞的奇函数,当,()0x ∈+∞时,()()xf x f x '<,则不等式5(2)(2)(5)0f x x f -+-<的解集为( )A .(,3)(3,)-∞-⋃+∞B .(3,0)(0,3)-⋃C .(3,0)(0,7)-⋃D .(,3)(2,7)-∞-⋃2.(2022·河南洛阳·高二期末(文))已知函数()f x 的定义域为()0,∞+,其导函数为()f x ',若()()2xf x f x '>,则下列式子一定成立的是( )A .()()422f f >B .()()442f f >C .()()24e 2>f fD .()()44e 2f f >3.(2022·河南濮阳·一模(理))已知函数()1f x +为定义域在R 上的偶函数,且当1≥x 时,函数()f x 满足()()2ln 2x xf x f x x '+=,14e f =,则()4e 1f x <的解集是( ) A .(),2-∞⋃+∞ B .(2C .()(),2e e,-∞-⋃+∞D .()2e,e - 4.(2022·重庆市第七中学校高二阶段练习)已知定义域为{}0x x ≠的偶函数()f x ,其导函数为()'f x ,对任意正实数x 满足()2()xf x f x '>且(1)0f =,则不等式()0f x <的解集是( )A .(-∞,1)B .(-1,1)C .(-∞,0)∪(0,1)D .(-1,0)∪(0,1)5.(2022·宁夏·平罗中学高二阶段练习(理))已知函数()f x 的定义域为()0,+∞,且满足()()0f x xf x '+>(f x 是()f x 的导函数),则不等式()()()2111x f x f x --<+的解集为( )A .(),2-∞B .()1,+∞C .1,2D .1,26.(2022·江苏苏州·模拟预测)已知函数()f x 是定义在R 上的奇函数,()20f =,当0x >时,有()()0xf x f x '->成立,则不等式()0xf x >的解集是( )A .()()22-∞-⋃+∞,,B .()()202-⋃+∞,, C .()()202-∞-⋃,, D .()2+∞, 高频考点二:构造()()nx F x e f x =或()()nxf x F x e =(n Z ∈,且0n ≠)型 1.(2022·四川·树德中学高二阶段练习(理))()f x 是定义在R 上的函数,()f x '是()f x 的导函数,已知()()f x f x '<,且()1e f =,()32e f =,则不等式()221e 21e 0x f x +-->的解集为( )A .3,2⎛⎫+∞ ⎪⎝⎭B .()1,+∞C .3,2⎛⎫-∞- ⎪⎝⎭ D .(),1-∞- 2.(2022·重庆市长寿中学校高二阶段练习)若()f x 在R 上可导且()00f =,其导函数()f x '满足()()0f x f x '+<,则()0f x <的解集是( )A .(),0∞-B .(),1-∞C .()0,∞+D .R3.(2022·山东·枣庄市第三中学高二阶段练习)已知f (x )为定义在R 上的可导函数,()f x '为其导函数,且()()f x f x '<恒成立,其中e 是自然对数的底数,则( )A .()()20222023f ef <B .()()20222023ef f <C .()()20222023ef f =D .()()20222023ef f >4.(2022·福建福州·高二期末)若定义在R 上的函数()f x 满足()()()30,01f x f x f '-<=,则不等式()3ex f x >的解集为( )A .[)0,+∞B .(),0-∞C .()1,+∞D .(],0-∞5.(2022·江苏泰州·高二期末)已知函数()f x 满足()()f x f x '>对于x ∈R 恒成立,设()24ln41ln2,,, 2.718282a b c e e e -===≈则下列不等关系正确的是( ) A .()()a c e f c e f a < B .()()c b e f b e f c <C .()()1c e f ef c <D .()()b a e f a e f b > 高频考点三:构造()()sin F x f x x =或()()sin f x F x x=型 1.(2022·山西·临汾第一中学校高二期末)若函数()f x 的导函数为()f x ',对任意()0,x π∈,()()sin cos f x x f x x '<恒成立,则( )A 3546f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B .3546f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C 3546f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .3546f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭ 2.(2022·江苏·徐州市第七中学高三阶段练习)已知函数()1y f x =-图象关于点()1,0对称,且当0x >时,()()sin cos 0f x x f x x '+>则下列说法正确的是( )A .5π7ππ666f f f ⎛⎫⎛⎫⎛⎫<-<-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .7π5ππ666f f f ⎛⎫⎛⎫⎛⎫-<<-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .π7π5π666f f f ⎛⎫⎛⎫⎛⎫--<-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .π5π7π666f f f ⎛⎫⎛⎫⎛⎫--<<- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3.(2022·辽宁·沈阳市第一二〇中学高三阶段练习)已知函数()f x '为函数()f x 的导函数,满足()tan ()x f x f x '⋅>,6a π⎛⎫= ⎪⎝⎭,4b π⎛⎫= ⎪⎝⎭,3c π⎛⎫= ⎪⎝⎭,则下面大小关系正确的是( ) A .a b c <<B .a c b <<C .b a c <<D .c b a <<4.(2022·全国·高三专题练习(理))定义在(0,)2π上的函数()f x ,()'f x 是它的导函数,且恒有()()tan f x f x x '<⋅成立,则( ).A ()()43ππ B .(1)2()sin16f f π<⋅C ()()64f ππ>D ()()63f ππ< 高频考点四:构造()()cos F x f x x =或()()cos f x F x x =型1.(2022·广东·广州市第四中学高二阶段练习)设函数()f x '是定义在()0π,上的函数()f x 的导函数,有()cos ()sin 0f x x f x x '->,若1023a b f π⎛⎫== ⎪⎝⎭,,324c f π⎛⎫=- ⎪⎝⎭,则a ,b ,c 的大小关系是( ) A .a b c >>B .b c a >>C .c a b >>D .c b a >>2.(2022·全国·高三专题练习)已知函数()y f x =对于任意的,22x ππ⎛⎫∈- ⎪⎝⎭满足()()cos sin 0f x x f x x '+>(其中()f x '是函数()f x 的导函数),则下列不等式成立的是( )A .()04f π⎛⎫> ⎪⎝⎭B 34f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭C 34f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D .()023f f π⎛⎫> ⎪⎝⎭3.(2022·全国·高三专题练习)已知函数()y f x =对任意的(0,)x π∈满足()cos ()sin f x x f x x '>(其中()f x '为函数()f x 的导函数),则下列不等式成立的是( )A .63f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B .63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭C 63f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D 63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭4.(2022·全国·高二)定义在,02π⎛⎫- ⎪⎝⎭上的函数()f x ,其导函数为()f x ',若恒有()()cos sin x f x f x x'>-,则下列不等式成立的是( )A 63f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭B .63f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭C 63f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭D .63f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭5.(2022·全国·高三专题练习)设奇函数()f x 的定义域为ππ,22⎛⎫- ⎪⎝⎭,且()f x 的图象是连续不间断,任意π,02x ⎛⎫∈- ⎪⎝⎭,有()()cos sin 0f x x f x x '+>,若1π()cos()23f m f m ⎛⎫<- ⎪⎝⎭,则m 的取值范围是( ) A .ππ,23⎛⎫-- ⎪⎝⎭ B .π0,3⎛⎫ ⎪⎝⎭ C .ππ,23⎛⎫- ⎪⎝⎭ D .ππ,32⎛⎫ ⎪⎝⎭6.(2022·全国·高三专题练习)已知函数()f x '是函数()f x 的导函数,对任意0,2x π⎛⎫∈ ⎪⎝⎭,()cos ()sin 0f x x f x x '+>,则下列结论正确的是( )A 63ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B .63f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C 64ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭D .43f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭ 高频考点五:根据不等式(求解目标)构造具体函数1.(2022·全国·高二单元测试)已知函数()f x 是定义在R 上的可导函数,其导函数为()f x '.若()05f =,且()()2f x f x '->,则使不等式()3e 2x f x ≤+成立的x 的值可能为( )A .-2B .-1C .12-D .22.(2022·广东梅州·二模)已知()f x 是定义在R 上的奇函数,()f x '是()f x 的导函数,当0x >时,()()()ln 20f x f x x x +>',且102f ⎛⎫≠ ⎪⎝⎭,则不等式()()20x f x -<的解集是( ) A .()(),00,2-∞⋃ B .()0,2C .()2,+∞D .()(),02,-∞⋃+∞3.(2022·陕西榆林·三模(理))已知()f x 是定义在R 上的函数,()'f x 是()f x 的导函数,且()()1f x f x '+>,(1)2f =,则下列结论一定成立的是( )A .12(2)f +<e eB .1(2)f +<e eC .12(2)f +>e eD .1(2)f +>e e4.(2022·河南·模拟预测(理))已知函数()f x 的定义域为()0,∞+,其导函数是()f x ',且()()2f x xf x x +'>.若()21f =,则不等式()2430f x x x -->的解集是( ) A .()0,2B .()2,+∞C .20,3⎛⎫ ⎪⎝⎭D .2,3⎛⎫+∞ ⎪⎝⎭5.(2022·江西·临川一中高二阶段练习(理))已知()f x 是定义在R 上的奇函数,()f x '是()f x 的导函数,102f ⎛⎫≠ ⎪⎝⎭,当0x >时,()()()ln 20f x f x x x+<',则不等式()22()0x x f x -->的解集是( ) A .()()1,10,2,2⎛⎫-∞-⋃⋃+∞ ⎪⎝⎭ B .()11,0,22⎛⎫-⋃ ⎪⎝⎭C .()()1,02,-⋃+∞D .()(),10,2-∞-⋃6.(2022·河南·南阳市第二完全学校高级中学高二阶段练习(文))已知函数()f x 为R 上的可导函数,其导函数为()f x ',且满足()()1f x f x '+<恒成立,()02022f =,则不等式()2021e 1x f x -<+的解集为( )A .()e,+∞B .(),e -∞C .(),0∞-D .()0,∞+7.(2022·内蒙古·赤峰二中高二期末(文))已知()f x 是定义在R 上的函数,其导函数为()f x ',且()()1f x f x '>+,且()03f =,则不等式()14e x f x +<的解集为( )A .(),1-∞B .(),0∞-C .()1,+∞D .()0,∞+8.(2022·陕西·武功县普集高级中学高三阶段练习(理))定义在R 上的函数()f x 满足()()e 0x f x f x '-+<(e 为自然对数的底数),其中()'f x 为()f x 的导函数,若3(3)3e f =,则()e x f x x >的解集为( ) A .(,2)-∞B .(2,)+∞C .(3),-∞D .(3,)+∞9.(2022·全国·江西科技学院附属中学模拟预测(文))已知函数()f x 的定义域为R ,图象关于原点对称,其导函数为()f x ',若当0x >时()()ln 0x x f x f x +⋅'<,则不等式()()||44x f x f x ⋅>的解集为( )A .()(),10,-∞-⋃+∞B .()()1,00,-⋃+∞C .()(),10,1-∞-⋃D .()()1,01,-⋃+∞10.(2022·安徽省蚌埠第三中学高二开学考试)已知可导函数()f x 的导函数为()f x ',若对任意的x ∈R ,都有()()1f x f x '-<,且()02021f =,则不等式()12022e x f x +>的解集为( )A .(),0∞-B .()0,∞+C .1,e ⎛⎫-∞ ⎪⎝⎭D .(),1-∞11.(2022·全国·高三专题练习)已知定义在R 上的函数()f x 满足()()22f x f x +=-,且当2x >时,有()()()()2,11xf x f x f x f ''+>=若,则不等式()12f x x <-的解集是( ) A .(2,3)B .(),1-∞C .()()1,22,3⋃D .()(),13,-∞⋃+∞12.(2022·吉林·长春外国语学校高二阶段练习)已知()f x 是定义在R 上的偶函数,()f x '是()f x 的导函数,当0x ≥时,()20f x x '->,且()13f =,则()22f x x >+的解集是( )A .()()1,01,-⋃+∞B .()(),11,-∞-⋃+∞C .()()1,00,1-D .()(),10,1-∞-⋃ 13.(2022·天津市滨海新区塘沽第一中学高二阶段练习)定义在R 上的函数()f x 满足()()1f x f x '>-,且()06f =,()f x '是()f x 的导函数,则不等式()5x x e f x e ⋅>+(其中e 为自然对数的底数)的解集为( )A .()(),01,-∞⋃+∞B .()(),03,-∞+∞C .()0,∞+D .()3,+∞一、单选题1.(2022·河南·濮阳外国语学校高三阶段练习(理))定义在R 上的函数()f x 的导函数为()'f x ,若()()f x f x '>,(2)1008f =,则不等式21e ( 1) 1008e 0x f x ++->的解集为( )A .(1,)-+∞B .(2,)+∞C .(,1)-∞D .(1,)+∞2.(2022·浙江·高三专题练习)设()f x 是定义在R 上的函数,其导函数为()f x ',若()()1f x f x '+>,()02020f =,则不等式()20191x f x e ->+(其中e 为自然对数的底数)的解集为( )A .()(),00,-∞⋃+∞B .()(),02019,-∞+∞C .()0,∞+D .()2019,+∞3.(2022·全国·高二课时练习)设函数()f x '是定义在()0,π上的函数()f x 的导函数,有()()cos sin 0f x x f x x '->,若123a f π⎛⎫=⎪⎝⎭,0b =,56c f π⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( ) A .a b c << B .b c a << C .c b a << D .c a b <<4.(2022·全国·高三专题练习)定义在R 上的可导函数()f x 恒有()2f x '>,若()12f =,则不等式()2f x x <的解集为( )A .()2,+∞B .(),2-∞C .()1,+∞D .(),1-∞5.(2022·全国·高三专题练习)已知函数()f x 是定义在R 上的奇函数,且()11f =,当0x <时,有()()xf x f x '>,则不等式()f x x >的解集为( )A .()0,1B .()1,0-C .(,1)(1,)-∞-+∞D .(,1)(0,1)-∞-6.(2022·全国·高三专题练习)设函数f '(x )是偶函数f (x )(x ∈R )的导数,f (2)=0,当x <0时,f '(x )﹣2x +1<0,则使得函数f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣2)∪(0,2)B .(﹣2,0)∪(2,+∞)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,2)7.(2022·全国·高三专题练习(文))()f x 在()0,∞+上的导函数为()f x ',()()2xf x f x '>,则下列不等式成立的是( ).A .()()222021202220222021f f >B .()()222021202220222021f f <C .()()2021202220222021f f >D .()()2202220222021021f f <8.(2022·北京·101中学模拟预测)定义在()0,∞+上的函数()f x 的导函数()f x '满足()()6xf x f x '<,则必有( )A .()()6412f f <B .()()811163f f >C .()()424f f >D .()()7292643f f >9.(2022·贵州·毕节市第一中学高二阶段练习(文))()f x 是定义在0,上的可导函数,且满足()()0xf x f x '+<,对任意正数,a b ,若a b <,则必有( )A .()()af b bf a <B .()()bf b af a <C .()()bf a af b <D .()()af a bf b <10.(2022·重庆市朝阳中学高二阶段练习)已知()f x 是定义在R 上的偶函数,当0x >时,'2()()0xf x f x x ->,且()20f -=,则不等式()0f x x >的解集是( ) A .()()2,00,2- B .()(),22,-∞-+∞ C .()()2,02,-+∞ D .()(),20,2-∞-11.(2022·全国·高三专题练习)设()(),f x g x 是定义在R 上的恒大于0的可导函数,且()()()()0f x g x f x g x ''-<,则当a x b <<时有( )A .()()()()f x g x f b g b >B .()()()()f x g a f b g x >C .()()()()f x g b f b g x >D .()()()()f x g x f a g a >二、填空题12.(2022·福建省龙岩第一中学高二阶段练习)已知函数()f x 的导函数为()f x ',()()3f x f x '+<,()03f =,则()3f x >的解集为___________.13.(2022·河南三门峡·高二期末(理))已知函数()f x 的导函数为()f x ',且对任意x ∈R ,()()0f x f x '-<,若()22e f =,()e t f t <,则t 的取值范围是___________. 14.(2022·河南·驻马店市基础教学研究室高二期末(文))已知函数()f x 是R 上的奇函数,()20f =,对()0,x ∀∈+∞,()()0f x xf x '+>成立,则()()10x f x -≥的解集为_________.15.(2022·浙江省浦江中学高二阶段练习)已知定义在R 上的函数()f x 的导函数为f x ,若对任意实数x ,都有()()f x f x '>,且()02022f =,则不等式()2022e 0x f x -<的解集为______. 16.(2022·广东·深圳市罗湖外语学校高二阶段练习)已知定义在()0,∞+上的函数()f x 满足()()0xf x f x '-<,且()22f =,则()e e 0x x f -≥的解集是______.17.(2022·上海·华师大二附中高二阶段练习)已知函数()f x 的导函数为()f x ',若()()2f x f x '+>,()05f =,则不等式()3e 2x f x -->的解集为__________.。
利用构造函数法求解导数不等式问题
魏立向
【期刊名称】《高中数理化》
【年(卷),期】2022()15
【摘要】不等式求解问题是高考的重点内容,利用函数单调性证明不等式问题是近几年高考的热点和难点.若在一个不等式中同时含有f(x)与f’(x),常通过构造辅助函数来求解,即构造一个含有f(x)与另一函数g(x)的积或商的新函数F(x)来解题.根据函数的求导法则,构造辅助函数经常要用到以下几种常见的数学模型.
【总页数】2页(P54-55)
【作者】魏立向
【作者单位】甘肃省定西市安定区交通路中学
【正文语种】中文
【中图分类】G63
【相关文献】
1.利用构造函数法求解不等式问题
2.构造函数、利用导数解答不等式恒成立问题
3.构造函数法求解导数题中的不等问题
4.构造函数法在与导数有关的不等式问题中的应用
5.也谈构造函数、利用导数解答不等式恒成立问题
因版权原因,仅展示原文概要,查看原文内容请购买。
专题07 构造函数法解决导数不等式问题(二)考点四 构造F (x )=f (x )±g (x ),F (x )=f (x )g (x ),F (x )=f (x )g (x )类型的辅助函数 【方法总结】(1)若F (x )=f (x )+ax n +b ,则F ′(x )=f ′(x )+nax n -1;(2)若F (x )=f (x )±g (x ),则F ′(x )=f ′(x )±g ′(x );(3)若F (x )=f (x )g (x ),则F ′(x )=f ′(x )g (x )+f (x )g ′(x );(4)若F (x )=f (x )g (x ),则F ′(x )=f ′(x )g (x )-f (x )g ′(x )[g (x )]2. 由此得到结论:(1)出现f ′(x )+nax n -1形式,构造函数F (x )=f (x )+ax n +b ;(2)出现f ′(x )±g ′(x )形式,构造函数F (x )=f (x )±g (x );(3)出现f ′(x )g (x )+f (x )g ′(x )形式,构造函数F (x )=f (x )g (x );(4)出现f ′(x )g (x )-f (x )g ′(x )形式,构造函数F (x )=f (x )g (x ). 【例题选讲】[例1](1)函数f (x )的定义域为R ,f (-1)=3,对任意x ∈R ,f ′(x )<3,则f (x )>3x +6的解集为( )A .{x |-1<x <1}B .{x |x >-1}C .{x |x <-1}D .R(2)定义在R 上的函数f (x )满足f (1)=1,且对∀x ∈R ,f ′(x )<12,则不等式f (log 2x )>log 2x +12的解集为________.(3)定义在R 上的可导函数f (x )满足f (1)=1,且2f ′(x )>1,当x ∈⎣⎡⎦⎤-π2,3π2时,不等式f (2cos x )>32-2sin 2x 2的解集为( )A .⎝⎛⎭⎫π3,4π3B .⎝⎛⎭⎫-π3,4π3C .⎝⎛⎭⎫0,π3D .⎝⎛⎭⎫-π3,π3 (4)f (x )是定义在R 上的偶函数,当x ≥0时,f ′(x )>2x .若f (a -2)-f (a )≥4-4a ,则实数a 的取值范围是( )A .(-∞,1]B .[1,+∞)C .(-∞,2]D .[2,+∞)(5)已知f ′(x )是函数f (x )的导数,且f (-x )=f (x ),当x ≥0时,f ′(x )>3x ,则不等式f (x )-f (x -1)<3x -32的解集是( )A .⎝⎛⎭⎫-12,0B .⎝⎛⎭⎫-∞,-12C .⎝⎛⎭⎫12,+∞D .⎝⎛⎭⎫-∞,12 (6)设f ′(x )是奇函数f (x )(x ∈R )的导数,当x >0时,f (x )+f ′(x )·x ln x <0,则不等式(x -1)f (x )>0的解集为________.(7)(多选)定义在(0,+∞)上的函数f (x )的导函数为f ′(x ),且(x +1)f ′(x )-f (x )<x 2+2x 对任意x ∈(0,+∞)恒成立.下列结论正确的是( )A .2f (2)-3f (1)>5B .若f (1)=2,x >1,则f (x )>x 2+12x +12C .f (3)-2f (1)<7D .若f (1)=2,0<x <1,则f (x )>x 2+12x +12(8)已知函数f (x ),对∀x ∈R ,都有f (-x )+f (x )=x 2,在(0,+∞)上,f ′(x )<x ,若f (4-m )-f (m )≥8-4m ,则实数m 的取值范围为( )A .[-2,2]B .[2,+∞)C .[0,+∞)D .(-∞,-2]∪[2,+∞)(9)已知函数y =f (x )是R 上的可导函数,当x ≠0时,有f ′(x )+f (x )x >0,则函数F (x )=xf (x )+1x的零点个数是( )A .0B .1C .2D .3(10)函数f (x )满足x 2f ′(x )+2xf (x )=e x x ,f (2)=e 28,当x >0时,f (x )的极值状态是___________. 【对点训练】1.已知函数f (x )的定义域为R ,f (-1)=2,且对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞)2.已知函数f (x )(x ∈R )满足f (1)=1,f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为 . 3.已知定义域为R 的函数f (x )的导数为f ′(x ),且满足f ′(x )<2x ,f (2)=3,则不等式f (x )>x 2-1的解集是( )A .(-∞,-1)B .(-1,+∞)C .(2,+∞)D .(-∞,2)4.定义在(0,+∞)上的函数f (x )满足x 2f ′(x )+1>0,f (1)=4,则不等式f (x )>1x+3的解集为________. 5.设f (x )为R 上的奇函数,当x ≥0时,f ′(x )-cos x <0,则不等式f (x )<sin x 的解集为 .6.设f (x )和g (x )分别是定义在R 上的奇函数和偶函数,f ′(x ),g ′(x )分别为其导数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)7.设f (x ),g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时,有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (a )8.设函数f (x )在R 上存在导数f ′(x ),对任意x ∈R ,都有f (-x )+f (x )=x 2,在(0,+∞)上f ′(x )<x ,若f (2-m )+f (-m )-m 2+2m -2≥0,则实数m 的取值范围为__________.9.已知f (x )是定义在R 上的减函数,其导函数f ′(x )满足f (x )f ′(x )+x <1,则下列结论正确的是( ) A .对于任意x ∈R ,f (x )<0 B .对于任意x ∈R ,f (x )>0C .当且仅当x ∈(-∞,1),f (x )<0D .当且仅当x ∈(1,+∞),f (x )>010.已知y =f (x )为R 上的可导函数,当x ≠0时,f ′(x )+f (x )x >0,若g (x )=f (x )+1x ,则函数g (x )的零点个数为( )A .1B .2C .0D .0或2考点五 构造具体函数关系式【方法总结】这类题型需要根据题意构造具体的函数关系式,通过具体的关系式去解决不等式及求值问题.【例题选讲】[例1] (1) (2020·全国Ⅰ)若2a +log 2a =4b +2log 4b ,则( )A .a >2bB .a <2bC .a >b 2D .a <b 2(2)已知α,β∈⎣⎡⎦⎤-π2,π2,且αsin α-βsin β>0,则下列结论正确的是( ) A .α>β B .α2>β2 C .α<β D .α+β>0(3)(多选)若0<x 1<x 2<1,则( )A .x 1+ln x 2>x 2+ln x 1B .x 1+ln x 2<x 2+ln x 1C .12e x x >21e x xD .12e x x <21e x x (4)已知函数f (x )=e x x -ax ,x ∈(0,+∞),当x 2>x 1时,不等式f (x 1)x 2-f (x 2)x 1<0恒成立,则实数a 的取值范围是( )A .(-∞,e ]B .(-∞,e )C .(-∞,e 2)D .(-∞,e 2] A .(a +1)a +2>(a +2)a +1 B .log a (a +1)>log a +1(a +2)C .log a (a +1)<a +1aD .log a +1(a +2)<a +2a +1(6) (2021·全国乙)设a =2ln1.01,b =ln1.02,c = 1.04-1,则( )A .a <b <cB .b <c <aC .b <a <cD .c <a <b (7)已知函数f (x )的定义域为(0,+∞),导函数为f ′(x ),若xf ′(x )-f (x )=x ln x ,且f ⎝⎛⎭⎫1e =1e ,则( )A .f ′⎝⎛⎭⎫1e =0B .f (x )在x =1e处取得极大值 C .0<f (1)<1 D .f (x )在(0,+∞)上单调递增 【对点训练】1.若a =ln 22,b =ln 33,c =ln 66,则( ) A .a <b <c B .c <b <a C .c <a <b D .b <a <c2.设a ,b >0,则“a >b ”是“a a >b b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知0<x 1<x 2<1,则( )A .ln x 1x 2>ln x 2x 1B .ln x 1x 2<ln x 2x 1C .x 2ln x 1>x 1ln x 2D .x 2ln x 1<x 1ln x 24.已知a >b >0,a b =b a ,有如下四个结论:(1)b <e ;(2)b >e ;(3)存在a ,b 满足a ·b <e 2;(4)存在a ,b 满足a ·b >e 2,则正确结论的序号是( )A .(1)(3)B .(2)(3)C .(1)(4)D .(2)(4)5.设x ,y ,z 为正数,且2x =3y =5z ,则( )A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z6.已知a <5且a e 5=5e a ,b <4且b e 4=4e b ,c <3且c e 3=3e c ,则( )A .c <b <aB .b <c <aC .a <c <bD .a <b <c7.若0<x 1<x 2<a ,都有x 2ln x 1-x 1ln x 2≤x 1-x 2成立,则a 的最大值为( ) A .12B .1C .eD .2e 8.下列四个命题:①ln 5<5ln 2;②ln π>πe ;③11;④3eln 2>42.其中真命题的个数是( )A .1B .2C .3D .4 9.已知函数f (x )=e x +m ln x (x ∈R ),若对任意正数x 1,x 2,当x 1>x 2时,都有f (x 1)-f (x 2)>x 1-x 2成立,则实数m 的取值范围是________.10.若实数a ,b 满足2a +3a =3b +2b ,则下列关系式中可能成立的是( )A .0<a <b <1B .b <a <0C .1<a <bD .a =b11.已知函数f (x )=e x x -ax ,x ∈(0,+∞),当x 2>x 1时,不等式f (x 1)x 2<f (x 2)x 1恒成立,则实数a 的取值范围为( ) A .(-∞,e] B .(-∞,e) C .⎝⎛⎭⎫-∞,e 2 D .⎝⎛⎦⎤-∞,e 2 12.设f ′(x )为函数f (x )的导函数,已知x 2f ′(x )+xf (x )=ln x ,f (e)=1e,则下列结论正确的是( ) A .f (x )在(0,+∞)单调递增 B .f (x )在(0,+∞)单调递减C .f (x )在(0,+∞)上有极大值D .f (x )在(0,+∞)上有极小值13.(多选)下列不等式中恒成立的有( )A .ln(x +1)≥x x +1,x >-1 B .ln x ≤12⎝⎛⎭⎫x -1x ,x >0 C .e x ≥x +1 D .cos x ≥1-12x 2。