专题06 导数中的构造函数解不等式-2019年高考数学总复习之典型例题突破(压轴题系列)(解析版)
- 格式:doc
- 大小:1.14 MB
- 文档页数:5
高考导数问题常见的分类讨论典型例题1.需对函数c bx ax x f ++=2)(是否为二次函数进行讨论或需对一元二次方程的判别式进行讨论的问题。
由于许多问题通过求导后转化为二次函数或二次不等式,它们对应的二次方程是否有解,就要对判别式讨论。
例1、已知函数32()3(0),()()2f x x ax bx c b g x f x =+++≠=-且是奇函数.(Ⅰ)求a ,c 的值; (Ⅱ)求函数f (x )的单调区间.例2、设函数3()3(0)f x x ax b a =-+≠.(Ⅰ)若曲线()y f x =在点(2,())f x 处与直线8y =相切,求,a b 的值;(Ⅱ)求函数()f x 的单调区间与极值点.例3、已知函数2()(2ln ),(0)f x x a x a x=-+->,讨论()f x 的单调性. 例4、已知函数)0.()1ln()(2≤++=a ax x x f ,讨论)(x f 的单调性;例5、设函数2()(0)f x ax bx k k =++>在0x =处取得极值,且曲线()y f x =在点(1,(1))f 处的切线垂直于直线210x y ++=.(Ⅰ)求,a b 的值;(Ⅱ)若函数()()xe g xf x =,讨论()g x 的单调性. 例6、函数31()3f x x kx =-,其中实数k 为常数. (I) 当4k =时,求函数的单调区间;(II) 若曲线()y f x =与直线y k =只有一个交点,求实数k 的取值范围.练习:设函数()()2ln 1f x x b x =++,其中0b ≠,求函数()f x 的极值点。
2、需对一元二次方程两根大小为标准分类讨论的问题。
由于求单调区间通常要解一元二次不等式,要写出它的解,就必须知道它两根的大小,否则就要对两根大小分类讨论。
求导后,导函数为零有实根(或导函数的分子能分解因式),但不知导函数为零的实根是否落在定义域内,从而引起讨论。
专题:导数中的构造函数问题一:填空题1.设f (x ), g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0, 则不等式f (x )g (x )<0的解集是变式.设f (x ), g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )-f (x )g ′(x )>0,且f (-3)=0, 则不等式f (x )g (x )<0的解集是2.已知定义域为R 的函数()f x 满足(1)3f =,且的导数()21f x x '<+,则不等式2(2)421f x x x <++的解集为▲ . 变式1.已知()f x 为定义在(0,+∞)上的可导函数,且()'()f x xf x >恒成立,集为 ▲.),1(+∞变式2.函数()f x ()x ∈R 满足(1)1f =,______. 【答案】(,1)(1,)x ∈-∞-+∞3,若对任意两个不等的正实数12,x x 都有恒成立,则a,对任意两个不等的正实数12,x x 都有,则max ()a g x ≥,为开口方向向下,对称轴为1x =的抛物线,.即a 的取值范围是[1,)+∞. 若在区间(0,1)内任取两个实数p ,q ,且p≠q ,不等式a 的取值范围是 .【答案】[15,)+∞ 【解析】表示点(1,(1))p f p ++ 与点(1,(1))q f q ++连线的斜率,因实数p ,q在区间(0,1)内,故1p + 和1q +在区间(1,2)内.∵不等式区间(1,2)内任意两点连线的斜率大于1,由函数的定义域知,1x >-,∴f′(x )=﹣2x >1 在(1,2)内恒成立.成立.由于二次函数2231y x x =++在[1,2]上是单调增函数,故2x =时,2231y x x =++ 在[1,2]上取最大值为15,∴15a ≥,故答案为[15,)+∞.考点:不等式;函数恒成立问题.4.设)(x f 、)(x g 分别是定义在R 上的奇函数和偶函数,当x <0时,0)()()()(>'+'x g x f x g x f , 且0)3(=g ,则不等式0)()(<⋅x g x f 的解集是 . 【答案】(,3)(0,3)-∞- 【解析】 试题分析:根据题意可知()()()()(()())'0f x g x f x g x f x g x ''+=⋅>,令()()()F x f x g x =⋅,可知(3)0F =,函数()F x 在(,0)-∞上是增函数,又根据条件可知()F x 是奇函数,根据函数图像的对称性,可知不等式0)()(<⋅x g x f 的解集是(,3)(0,3)-∞- .考点:函数的奇偶性,函数单调性,数形结合思想.5.已知函数()f x (R x ∈)满足()11f =,且()f x 的导数【答案】11-∞-+∞ (,)(,)6.函数y=f (x )是定义在R 上的偶函数,当x<0时,f (x )+x·f′(x )<0,且f (-4)=0,则不等式xf (x )试题分析:'0,[()]0()x xf x xf x <<∴在x<0时单调递减,f (-4)=0,由f (x )是偶函数得xf (x )是奇函数,所以()0xf x >的解集是()(),40,4-∞-⋃ 考点:构造函数研究单调性,解抽象不等式.7.函数()f x 是定义在R 上的偶函数,(2)0f -=,且0x >时,()()0f x xf x '+>,则不等式()0>xf x 的解集是 . 【答案】()()2,02,-+∞【解析】试题分析:令()()g x xf x =,则()g x 为R 上的奇函数,且(2)0g -=,由题意得:0x >时,()0g x '>;所以0x >时,()0g x >解集为()2,+∞,0x <时,由奇函数性质知()0g x >解集为()2,0.-考点:函数性质综合应用8.已知()f x 为定义在()0,+∞上的可导函数,且()()f x xf x '>试题分析:()()'f x xf x > ,()()'0xf x f x ∴-<,()'0g x ∴<,()g x ∴在()0,+∞上为减函数,,0x >,,01x <<∴. 2用单调性解不等式.【思路点晴】将()()'f x xf x >变形可得()()'0xf x f x -<,求()'g x ,根据()'g x 的正负可得函数 9.已知定义域为R且()f x 的导数()21f x x '<+,则不等式2(2)421f x x x <++ 化为()21f t t t <++,设()()21g t f t t t =--- ()()()''210g t f t t g x ∴=--<∴单调递减,()()1130g f =-= ()0g t ∴<的解集为考点:1.函数导数与单调性;2.不等式与函数的转化10.已知函数()f x 的定义域是R ,()f x '是()f x 的导数,()1f e =,()()()g x f x f x '=-,()10g =,()g x 的导数恒大于零,函数()()x h x f x e =-( 2.71828e =⋅⋅⋅是自然对数的底数)的最小值是 .【答案】0 【解析】,因为()g x 的导数恒大,所以()1f e '=,在,所以在区间(,1]-∞上,()F x 单调递减,二解答题:1.已知函数f(x)=21x 2-ax+(a -1)ln x ,1a >。
第20讲导数中的构造函数近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,一下问题为例,对在处理导数问题时构造函数的方法进行归类和总结.【方法综述】以抽象函数为背景、题设条件或所求结论中具有“()()f x g x ±、()()f x g x 、()()f xg x ”等特征式、解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.方法总结:和与积联系:()()f x xf x '+,构造()xf x ;22()()xf x x f x '+,构造2()x f x ;3()()f x xf x '+,构造3()x f x ;…………………()()nf x xf x '+,构造()n x f x ;()()f x f x '+,构造e ()x f x .等等.减法与商联系:如()()0xf x f x ->',构造()()f x F x x=;()2()0xf x f x ->',构造2()()f x F x x =;…………………()()0xf x nf x ->',构造()()nf x F x x =.()()f x f x '-,构造()()e x f x F x =,()2()f x f x '-,构造2()()e x f x F x =,………………()()f x nf x '-,构造()()e nxf x F x =,奇偶性结论:奇乘除奇为偶;奇乘偶为奇。
(可通过定义得到)构造函数有时候不唯一,合理构造函数是关键。
给出导函数,构造原函数,本质上离不开积分知识。
【解答策略】类型一、巧设“()()y f x g x =±”型可导函数【例1】已知不相等的两个正实数x ,y 满足()2244log log x y y x -=-,则下列不等式中不可能成立的是()A .1x y <<B .1y x <<C .1x y<<D .1y x<<【来源】广东省佛山市2021届高三下学期二模数学试题【答案】B【解析】由已知()2244log log x y y x -=-,因为2log 4x =log 2x ,所以原式可变形222log 4g 2lo x x y y =++令()222log f x x x =+,()24log g x x x =+,函数()f x 与()g x 均为()0,∞+上的增函数,且()()f x g y =,且()()11f g =,当1x >时,由()1f x >,则()1g y >,可得1y >,当1x <时,由()1f x <,则()1g y <,可得1y <,要比较x 与y 的大小,只需比较()g x 与()g y 的大小,()()()()222224log 2log 2log g x g y g x f x x x x x x x x-=-=+--=-+设()()222log 0h x x x x x =-+>,则()212ln 2h x x x '=-+()2220ln 2h x x ''=--<,故()h x '在()0+∞,上单调递减,又()2110ln 2h '=-+>,()1230ln 2h '=-+<,则存在()01,2x ∈使得()0h x '=,所以当()00,x x ∈时,()0h x '>,当()0,x x ∈+∞时,()0h x '<,又因为()()()()010,10,412480h h x h h =>==-+=-<,所以当1x <时,()0h x <,当1x >时,()h x 正负不确定,故当1,1x y <<时,()0h x <,所以()()()1g x g y g <<,故1x y <<,当1,1x y >>时,()h x 正负不定,所以()g x 与()g y 的正负不定,所以,,111x y x y y x ><<>>>均有可能,即选项A ,C ,D 均有可能,选项B 不可能.故选:B .【点睛】本题考查了不等关系的判断,主要考查了对数的运算性质以及对数函数性质的运用,解答本题的关键是要比较x 与y 的大小,只需比较()g x 与()g y 的大小,()()()()222log g x g y g x f x x x x -=-=-+,设()()222log 0h x x x x x =-+>,求导得出其单调性,从而得出,x y 的大小可能性.【举一反三】1.若实数a ,b 满足()221ln 2ln 1a b a b-+-≥,则a b +=()A .22B C .322D .【来源】浙江省宁波市镇海中学2021届高三下学期5月模拟数学试题【答案】C【解析】 ()ln 1g x x x =--,1()1g x x'=-,()0g x '>(1,)x ⇒∈+∞,()0g x '<⇒(0,1)x ∈,∴()g x 在(0,1)x ∈单调递减,在(1,)x ∈+∞单调递增,∴()(1)1ln110g x g =--=,∴1ln 0x x x -≥>,恒成立,1x =时取等号,2211a b +-121a b =-,221ln ln(2)ln a a a b b b-=-, ()221ln 2ln 1a b a b-+-≥,∴2211ln(2)ln a a b b +-=-,又21ab =(不等式取等条件),解得:2,2a b ==,322a b ∴+=,故选:C.2.(2020·河北高考模拟(理))设奇函数()f x 在R 上存在导函数'()f x ,且在(0,)+∞上2'()f x x <,若(1)()f m f m --331[(1)]3m m ≥--,则实数m 的取值范围为()A .11[,22-B .11(,][,)22-∞-⋃+∞C .1(,]2-∞-D .1[,)2+∞【答案】D【解析】由()()1f m f m --()33113m m ⎡⎤≥--⎣⎦得:3311(1)(1)()33f m m f m m ---≥-,构造函数31()()3g x f x x =-,2()()0g x f x x '=-<'故g (x )在()0,+∞单调递减,由函数()f x 为奇函数可得g(x)为奇函数,故g(x)在R 上单调递减,故112m m m -≤⇒≥选D点睛:本题解题关键为函数的构造,由()2'f x x <要想到此条件给我们的作用,通常情况下是提示我们需要构造函数得到新函数的单调性,从而得不等式求解;3.(2020·山西高考模拟(理))定义在()0,∞+上的函数()f x 满足()()251,22x f x f ='>,则关于x 的不等式()13xxf e e <-的解集为()A .()20,eB .()2,e +∞C .()0,ln 2D .(),2ln -∞【答案】D 【解析】【分析】构造函数()()1F x f x x=+,利用已知条件求得()'0F x >,即函数()F x 为增函数,而()23F =,由此求得e 2x <,进而求得不等式的解集.【详解】构造函数()()1F x f x x =+,依题意可知()()()222110x f x F x f x x x-=-=''>',即函数在()0,∞+上单调递增.所求不等式可化为()()1e e 3e x x x F f =+<,而()()12232F f =+=,所以e 2x <,解得ln 2x <,故不等式的解集为(),ln 2-∞.【点睛】本小题主要考查利用导数解不等式,考查构造函数法,考查导数的运算以及指数不等式的解法,属于中档题.题目的关键突破口在于条件()21x f x '>的应用.通过观察分析所求不等式,转化为()1e 3e x x f +<,可发现对于()()1F x f x x=+,它的导数恰好可以应用上已知条件()21x f x '>.从而可以得到解题的思路.4.(2020·河北衡水中学高考模拟(理))定义在R 上的可导函数()f x 满足()11f =,且()2'1f x >,当3,22x ππ⎡⎤∈-⎢⎥⎣⎦时,不等式23(2cos )2sin 22x f x +>的解集为()A .4,33ππ⎛⎫⎪⎝⎭B .4,33ππ⎛⎫-⎪⎝⎭C .0,3π⎛⎫⎪⎝⎭D .,33ππ⎛⎫-⎪⎝⎭【答案】D【解析】令11()()22g x f x x =--,则1()'()0'2g x f x =->,()g x ∴在定义域R 上是增函数,且11(1)(1)022g f =--=,1(2cos )(2cos )cos 2g x f x x ∴=--23=(2cos )2sin 22x f x +-,∴23(2cos )2sin 022x f x +->可转化成()(2cos )1g x g >,得到2cos 1x >,又 3,22x ππ⎡⎤∈-⎢⎥⎣⎦,可以得到,33x ππ⎛⎫∴∈- ⎪⎝⎭,故选D5.定义在()0+,∞上的函数()f x 满足()10xf x '-<,且(1)1f =,则不等式()()21ln 211f x x ->-+的解集是__________.【答案】()112,【解析】()()ln F x f x x =-,则()11()()xf x F x f x x x-=-=''',而()10xf x '-<,且0x >,∴()0F x '<,即()F x 在()0+,∞上单调递减,不等式()()21ln 211f x x ->-+可化为()()21ln 2111ln1f x x --->=-,即()()211F x F ->,故210211x x ->-<⎧⎨⎩,解得:112x <<,故解集为:()112,.类型二巧设“()()f x g x ”型可导函数【例】已知定义在R 上的图象连续的函数()f x 的导数是()f x ¢,()()20f x f x +--=,当1x <-时,()()()()110x f x x f x '+++<⎡⎤⎣⎦,则不等式()()10xf x f ->的解集为()A .(1,1)-B .(),1-∞-C .()1,+¥D .()(),11,-∞-⋃+∞【来源】2021年浙江省高考最后一卷数学(第七模拟)【答案】A【解析】当1x <-时,()()()()110x f x x f x '+++<⎡⎤⎣⎦,即有()()()10f x x f x '++>.令()()()1F x x f x =+,则当1x <-时,()()()()10F x f x x f x ''=++>,故()F x 在(),1-∞-上单调递增.∵()()()()()()22121F x x f x x f x F x --=--+--=---=⎡⎤⎣⎦,∴()F x 关于直线1x =-对称,故()F x 在()1,-+∞上单调递减,由()()10xf x f ->等价于()()()102F x F F ->=-,则210x -<-<,得11x -<<.∴()()10xf x f ->的解集为(1,1)-.故选:A.【举一反三】1.(2020锦州模拟)已知函数()f x 是定义在R 上的偶函数,当0x <时,()()0f x xf x '+<,若(2)0f =,则不等式()0xf x >的解集为()A .{20 x x -<<或}02x <<B .{ 2 x x <-或}2x >C .{20 x x -<<或}2x >D .{ 2 x x <-或}02x <<【答案】D .【解析】令()()F x xf x =,则()F x 为奇函数,且当0x <时,()()()0F x f x xf x '+'=<恒成立,即函数()F x 在()0-,∞,()0+,∞上单调递减,又(2)0f =,则(2)(2)0F F -==,则()0xf x >可化为()(2)F x F >-或()(2)F x F >,则2x <-或02x <<.故选D .2.(2020·陕西高考模拟)已知定义在R 上的函数()f x 的导函数为'()f x ,对任意x ∈R 满足'()()0f x f x +<,则下列结论正确的是()A .23(2)(3)e f e f >B .23(2)(3)e f e f <C .23(2)(3)e f e f ≥D .23(2)(3)e f e f ≤【答案】A【解析】令()()x g x e f x =,则()(()())0x g x e f x f x '+'=<,所以(2)(3),g g >即()()2323e f e f >,选A.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造.构造辅助函数常根据导数法则进行:如()()f x f x <'构造()()xf xg x e=,()()0f x f x '+<构造()()xg x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等3.(2020·海南高考模拟)已知函数()f x 的导函数'()f x 满足()(1)'()0f x x f x ++>对x ∈R 恒成立,则下列判断一定正确的是()A .(0)02(1)f f <<B .0(0)2(1)f f <<C .02(1)(0)f f <<D .2(1)0(0)f f <<【答案】B【解析】由题意设()()()1g x x f x =+,则()()()()'1'0g x f x x f x =++>,所以函数()g x 在R 上单调递增,所以()()()101g g g -<<,即()()0021f f <<.故选B .4.(2020·青海高考模拟(理))已知定义在上的函数满足函数的图象关于直线对称,且当成立(是函数的导数),若,则的大小关系是()A .B .C .D .【答案】A【解析】令,则当,因为函数的图象关于直线对称,所以函数的图象关于直线对称,即为偶函数,为奇函数,因此当,即为上单调递减函数,因为,而,所以,选A.5.(2020南充质检)()f x 是定义在R 上的奇函数,当0x >时,()21()2()0x f x xf x '++<,且(2)0f =,则不等式()0f x <的解集是()A .()()22--+ ,,∞∞B .()()2002- ,,C .()()202-+ ,,∞D .()()202-- ,,∞【答案】C .【解析】构造函数()2()1()g x x f x =+,则()2()1()g x x f x ''=+.又()f x 是定义在R 上的奇函数,所以()2()1()g x x f x =+为奇函数,且当0x >时,()2()1()2()0g x x f x xf x ''=++<,()g x 在()0+,∞上函数单减,()0()0f x g x <⇒<.又(2)0g =,所以有()0f x <的解集()()202-+ ,,∞.故选C .点睛:本题主要考察抽象函数的单调性以及函数的求导法则及构造函数解不等式,属于难题.求解这类问题一定要耐心读题、读懂题,通过对问题的条件和结论进行类比、联想、抽象、概括,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”以构造恰当的函数;②若是选择题,可根据选项的共性归纳构造合适的函数.6.(2020荆州模拟)设函数()f x '是奇函数()f x (x ∈R )的导函数,当0x >时,1ln ()()x f x f x x '<- ,则使得()21()0x f x ->成立的x 的取值范围是()A .()()1001- ,,B .()()11--+ ,,∞∞C .()()101-+ ,,∞D .()()101-- ,,∞【答案】D.【解析】设()ln ()g x x f x = ,当0x >时,1()()ln ()0g x f x xf x x '=+<',()g x 在()0+,∞上为减函数,且(1)0g =,当()01x ∈,时,()0g x >,ln 0x <∵,()0f x <∴,2(1)()0x f x ->;当()1x ∈+,∞时,()0g x <,ln 0x >∵,()0f x <∴,()21()0x f x -<,∵()f x 为奇函数,∴当()10x ∈-,时,()0f x >,()21()0x f x -<;当()1x ∈--,∞时,()0f x >,()21()0x f x ->.综上所述:使得()21()0x f x -<成立的x 的取值范围是()()101-- ,,∞【点睛】构造函数,借助导数研究函数单调性,利用函数图像解不等式问题,是近年高考热点,怎样构造函数,主要看题目所提供的导数关系,常见的有x 与()f x 的积或商,2x 与()f x 的积或商,e x 与()f x 的积或商,ln x 与()f x 的积或商等,主要看题目给的已知条件,借助导数关系说明导数的正负,进而判断函数的单调性,再借助函数的奇偶性和特殊点,模拟函数图象,解不等式.7.(2020·河北高考模拟)已知()f x 是定义在R 上的可导函数,且满足(1)()'()0x f x xf x ++>,则()A .()0f x >B .()0f x <C .()f x 为减函数D .()f x 为增函数【答案】A【解析】令()e [()]x g x xf x =,则由题意,得()e [(1)()()]0x g x x f x xf x '+'=+>,所以函数()g x 在(,)-∞+∞上单调递增,又因为(0)0g =,所以当0x >时,()0>g x ,则()0f x >,当0x <时,()0<g x ,则()0f x >,而()()()1'0x f x xf x ++>恒成立,则(0)0f >;所以()0f x >;故选A.点睛:本题的难点在于如何利用()()()1'0x f x xf x ++>构造函数()e [()]x g x xf x =。
数学高考知识点构造函数近年来,数学在高考中的重要性日益凸显。
高考数学试题涉及了多个知识点,其中构造函数作为重要的概念之一,经常在考试中出现。
掌握构造函数的基本概念及其应用是学生提高数学成绩的关键之一。
本文将从构造函数的定义、常见题型以及解题方法等方面进行讨论,帮助读者理解和掌握这个知识点。
什么是构造函数?简单来说,构造函数是一个能够根据给定条件构造出特定对象的函数。
在数学中,我们经常需要根据某种规律或特定的条件来构造出符合要求的函数。
例如,要求构造一个一次函数,过点(2,3),斜率为2。
我们可以通过构造函数y=2x-1来实现这个要求。
这个函数就是一个构造函数。
常见的构造函数题型包括:线性函数的构造、反比例函数的构造、复合函数的构造等。
线性函数的构造要求根据给定的条件确定斜率和截距,例如给定一个点和斜率,要求构造出线性函数。
反比例函数的构造则要求根据给定的条件,构造出满足反比例关系的函数。
复合函数的构造则需要将两个或多个简单的函数进行组合,构造出满足特定条件的复合函数。
在解决构造函数的问题时,我们可以通过观察给定条件,找到规律,进而构造出满足要求的函数。
以线性函数的构造为例,假设已知函数过点(2,3),斜率为2。
我们可以根据一次函数的一般式y=kx+b,将已知条件代入得到3=2×2+b,解方程得b=-1。
进而可以构造出满足要求的函数y=2x-1。
除了观察和找规律外,我们还可以使用数学工具和方法来解答构造函数的问题。
例如,反比例函数的构造常常用到消元法。
假设我们已知反比例函数的特点是x和y的乘积为2,并且给定了一个点(1,2)。
我们可以设反比例函数的一般式为y=k/x,将已知条件代入得2=k/1,解方程得到k=2。
进而可以构造出满足要求的函数y=2/x。
除了以上的基本构造函数题目之外,还存在一些更加复杂和有趣的构造函数问题。
例如,有时我们需要构造出满足特定性质的函数,如多个抛物线的交点等。
导数与构造函数证明不等式的技巧导数是微积分中的一个重要概念。
它可以描述函数在各个点上的变化率,也可以用来求函数的最大值、最小值以及拐点等重要信息。
而构造函数则是数学中一种非常常见的证明不等式的方法。
本文将介绍一些常用的导数和构造函数证明不等式的技巧。
一、使用导数证明不等式1. 求导数确定函数的单调性对于一个函数$f(x)$,如果它在某个区间上的导数$f'(x)$大于0,说明它在该区间上单调递增;如果导数$f'(x)$小于0,则说明它在该区间上单调递减。
因此,如果要证明一个不等式在某个区间上成立,可以先求出函数在该区间上的导数,确定其单调性,然后再比较函数在两个端点处的取值即可。
例如,对于函数$f(x)=x^2-4x+3$,我们可以求出它的导数为$f'(x)=2x-4$。
由于$f'(x)>0$时$f(x)$单调递增,因此当$x<2$时,$f(x)<f(2)$,当$x>2$时,$f(x)>f(2)$,即$f(x)$在$x<2$和$x>2$的区间上都小于$f(2)$,因此我们可以得到不等式$f(x)<f(2)$,即$x^2-4x+3<1$。
2. 求导数判断函数的最值对于一个函数$f(x)$,如果它在某个点$x_0$处的导数$f'(x_0)=0$,且$f^{''}(x_0)>0$(即$f(x)$的二阶导数大于0)则$f(x)$在$x_0$处取得一个局部最小值;如果$f^{''}(x_0)<0$,则$f(x)$在$x_0$处取得一个局部最大值。
因此,如果要证明一个不等式最值的存在性,可以先求出函数的导数,再找出导数为0的点即可。
3. 构造特殊的函数如果一个不等式的两边都是多项式,可以考虑构造一个较为特殊的函数,来证明不等式的成立性。
例如,对于不等式$\dfrac{1}{a+b}+\dfrac{1}{b+c}+\dfrac{1}{c+a}\leq\dfrac{3}{2\sqrt[3]{abc}}$,我们可以考虑构造一个函数$f(x)=\dfrac{1}{a+b+x}+\dfrac{1}{b+c+x}+\dfrac{1}{c+a+x}-\dfrac{3}{2\sqrt[3]{(a+x)(b+x)(c+x)}}$,并证明$f(x)\leq 0$。
第一章函数与导数专题06 函数、导数与数列、不等式的综合应用【压轴综述】纵观近几年的高考命题,应用导数研究函数的单调性、极(最)值问题,证明不等式、研究函数的零点等,是高考考查的“高频点”问题,常常出现在“压轴题”的位置.其中,函数、导数与数列、不等式的综合应用问题的主要命题角度有:函数与不等式的交汇、函数与数列的交汇、导数与数列不等式的交汇等.本专题就函数、导数与数列、不等式的综合应用问题,进行专题探讨,通过例题说明此类问题解答规律与方法.1.数列不等式问题,通过构造函数、应用函数的单调性或对不等式进行放缩,进而限制参数取值范围.如2.涉及等差数列的求和公式问题,应用二次函数图象和性质求解.3.涉及数列的求和问题,往往要利用“错位相减法”、“裂项相消法”等,先求和、再构造函数.【压轴典例】例1.(2018·浙江高考真题)已知成等比数列,且.若,则A. B. C. D.【答案】B【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断.详解:令则,令得,所以当时,,当时,,因此,若公比,则,不合题意;若公比,则但,即,不合题意;因此,,选B.例2.(2019·全国高考真题(文))记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 【答案】(1)210n a n =-+; (2)110()n n N *≤≤∈. 【解析】(1)设等差数列{}n a 的首项为1a ,公差为d ,根据题意有111989(4)224a d a d a d ⨯⎧+=-+⎪⎨⎪+=⎩, 解答182a d =⎧⎨=-⎩,所以8(1)(2)210n a n n =+-⨯-=-+,所以等差数列{}n a 的通项公式为210n a n =-+; (2)由条件95S a =-,得559a a =-,即50a =,因为10a >,所以0d <,并且有5140a a d =+=,所以有14a d =-, 由n n S a ≥得11(1)(1)2n n na d a n d -+≥+-,整理得2(9)(210)n n d n d -≥-, 因为0d <,所以有29210n n n -≤-,即211100n n -+≤, 解得110n ≤≤,所以n 的取值范围是:110()n n N *≤≤∈例3.(2019·江苏高考真题)定义首项为1且公比为正数的等比数列为“M-数列”. (1)已知等比数列{a n }满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M-数列”; (2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M-数列”{c n }θ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-,当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n N ∈.②由①知,b k =k ,*k N ∈.因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1;当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x -=. 令()0f 'x =,得x =e .列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==.取q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k qk -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5. 例4.(2010·湖南高考真题)数列中,是函数的极小值点(Ⅰ)当a=0时,求通项; (Ⅱ)是否存在a ,使数列是等比数列?若存在,求a 的取值范围;若不存在,请说明理由. 【答案】(1);(2)详见解析【解析】 易知.令.(1)若,则当时,单调递增;当时,单调递减;当时,单调递增.故在取得极小值.由此猜测:当时,.下面先用数学归纳法证明:当时,.事实上,当时,由前面的讨论知结论成立.假设当时,成立,则由(2)知,,从而,所以.故当时,成立.于是由(2)知,当时,,而,因此.综上所述,当时,,,.(Ⅱ)存在,使数列是等比数列.事实上,由(2)知,若对任意的,都有,则.即数列是首项为,公比为3的等比数列,且.而要使,即对一切都成立,只需对一切都成立.记,则令,则.因此,当时,,从而函数当时,可得数列不是等比数列.综上所述,存在,使数列是等比数列,且的取值范围为.例5.(2017·浙江高考真题)已知数列{}n x 满足: ()()*1n n 1n 1x =1x x ln 1x n N ++=++∈, 证明:当*n N ∈时 (I )n 1n 0x x +<<;(II )n n 1n 1n x x 2x -x 2++≤; (III) n n 1n-211x 22-≤≤【答案】(I )见解析;(II )见解析;(Ⅲ)见解析. 【解析】(Ⅰ)用数学归纳法证明: 0n x >. 当n =1时,x 1=1>0. 假设n =k 时,x k >0,那么n =k +1时,若10k x +≤,则()110ln 10k k k x x x ++<=++≤,矛盾,故10k x +>. 因此()*0n x n N >∈.所以()111ln 1n n n n x x x x +++=++>,因此()*10n n x x n N +<<∈. (Ⅱ)由()11ln 1n n n x x x ++=++得,()()21111114222ln 1n n n n n n n n x x x x x x x x ++++++-+=-+++.记函数()()()()222ln 10f x x x x x x =-+++≥,()()22'ln 10(0)1x x f x x x x +=++>>+,函数f (x )在[0,+∞)上单调递增,所以()()0f x f ≥=0,因此()()()21111122ln 10n n n n n x x x x f x +++++-+++=≥,故()*1122n n n n x x x x n N ++-≤∈. (Ⅲ)因为()11111ln 12n n n n n n x x x x x x +++++=++≤+=, 所以112n n x -≥, 由1122n n n n x x x x ++≥-,得111112022n n x x +⎛⎫-≥-> ⎪⎝⎭, 所以1211111111222222n n n n x x x ---⎛⎫⎛⎫-≥-≥⋅⋅⋅≥-= ⎪ ⎪⎝⎭⎝⎭, 故212n n x -≤.综上,()*121122n n n x n N --≤≤∈. 例6.(2019·湖南高考模拟(理))设函数()ln(1)(0)f x x x =+≥,(1)()(0)1x x a g x x x ++=≥+.(1)证明:2()f x x x ≥-.(2)若()()f x x g x +≥恒成立,求a 的取值范围; (3)证明:当*n N ∈时,22121ln(32)49n n n n -++>+++. 【答案】(1)见解析;(2)(,1]-∞;(3)见解析. 【解析】(1)证明:令函数()()2h x ln x 1x x =+-+,[)x 0,∞∈+,()212x xh x 2x 101x 1x+=+=++'-≥,所以()h x 为单调递增函数,()()h x h 00≥=, 故()2ln x 1x x +≥-.(2)()()f x x g x +≥,即为()axln x 11x+≥+, 令()()axm x ln x 11x=+-+,即()m x 0≥恒成立, ()()()()22a 1x ax 1x 1a m x x 11x 1x +-+-=-=++'+, 令()m x 0'>,即x 1a 0+->,得x a 1>-.当a 10-≤,即a 1≤时,()m x 在[)0,∞+上单调递增,()()m x m 00≥=,所以当a 1≤时,()m x 0≥在[)0,∞+上恒成立;当a 10->,即a 1>时,()m x 在()a 1,∞-+上单调递增,在[]0,a 1-上单调递减, 所以()()()min m x m a 1m 00=-<=, 所以()m x 0≥不恒成立.综上所述:a 的取值范围为(],1∞-. (3)证明:由(1)知()2ln x 1x x +≥-,令1x n=,*n N ∈,(]x 0,1∈, 2n 1n 1ln n n +->,即()2n 1ln n 1lnn n-+->,故有ln2ln10->,1ln3ln24->, …()2n 1ln n 1lnn n-+->, 上述各式相加可得()212n 1ln n 149n-+>+++. 因为()()22n 3n 2n 1n 10++-+=+>,2n 3n 2n 1++>+,()()2ln n 3n 2ln n 1++>+,所以()2212n 1ln n 3n 249n-++>+++. 例7.(2018·福建省安溪第一中学高三期中(文))公差不为零的等差数列中,,,成等比数列,且该数列的前10项和为100,数列的前n 项和为,且满足.Ⅰ求数列,的通项公式;Ⅱ令,数列的前n 项和为,求的取值范围.【答案】(I ),;(II ).【解析】Ⅰ依题意,等差数列的公差,,,成等比数列,,即,整理得:,即,又等差数列的前10项和为100,,即,整理得:,,;,,即,当时,,即,数列是首项为1、公比为2的等比数列,;Ⅱ由可知,记数列的前n项和为,数列的前n项和为,则,,,,,,记,则,故数列随着n的增大而减小,又,,.例8.(2019·江苏高考模拟)已知数列满足(),().(1)若,证明:是等比数列;(2)若存在,使得,,成等差数列.① 求数列的通项公式;② 证明:.【答案】(1)见解析;(2)①,②见解析【解析】(1)由,得,得,即,因为,所以,所以(),所以是以为首项,2为公比的等比数列.(2)① 设,由(1)知,,所以,即,所以.因为,,成等差数列,则,所以,所以,所以,即.② 要证,即证,即证.设,则,且,从而只需证,当时,.设(),则,所以在上单调递增,所以,即,因为,所以,所以,原不等式得证.【压轴训练】1.(黑龙江省哈尔滨三中高考模拟)已知1(1)32(1,2)n n n b b a b n b--+-=>≥,若对不小于4的自然数n ,恒有不等式1n n a a +>成立,则实数b 的取值范围是__________. 【答案】3+∞(,) 【解析】由题设可得1(1)(1)32(1)32n n n b b n b b b b-+-+--+->,即22(1)341n b b b ->-+,也即(1)31n b b ->-对一切4n ≥的正整数恒成立,则3141b b b -<≥-,即31444311b b b b -⇒---,所以3b >,应填答案(3,)+∞. 2.(2019·山东济南一中高三期中(理))(1)已知函数的图象经过点,如图所示,求的最小值;(2)已知对任意的正实数恒成立,求的取值范围.【答案】(1)最小值,当且仅当时等号成立;(2)【解析】⑴函数的图象经过点,当且仅当时取等号⑵①令,,当时,,递增当时,,递减代入时,②,令,,,综上所述,的取值范围为3.(2019·桃江县第一中学高三月考(理))已知都是定义在R上的函数,,,且,且,.若数列的前n项和大于62,求n的最小值.【答案】6【解析】∵,∴,∵,∴,即,∴,∵,∴,∴,∴,∴,∴数列为等比数列,∴,∴,即,所以n的最小值为6.4.(2019·福建省漳平第一中学高三月考(文))已知数列的首项,前项和满足,.(1)求数列通项公式;(2)设,求数列的前项为,并证明:.【答案】(1);(2)见解析【解析】 (1)当时,,得. 又由及得,数列是首项为,公比为的等比数列,所以.(2),①②①②得: ,所以,又,故,令,则,故单调递减,又,所以恒成立,所以.5.(2019·江苏高考模拟(文))已知正项等比数列{}n a 的前n 项和为n S ,且218S =,490S =. (1)求数列{}n a 的通项公式;(2)令2115log 3n n b a ⎛⎫=- ⎪⎝⎭,记数列{}n b 的前n 项和为n T ,求n T 及n T 的最大值.【答案】(1)32nn a =⨯(2)22922n n nT =-+;最大值为105. 【解析】(1)设数列{}n a 的公比为(0)q q >,若1q =,有414S a =,212S a =,而4490236S S =≠=,故1q ≠,则()()()()21242211411811119011a q S q a q a q q S q q ⎧-⎪==-⎪⎨-+-⎪===⎪--⎩,解得162a q =⎧⎨=⎩.故数列{}n a 的通项公式为16232n nn a -=⨯=⨯. (2)由215log 215nn b n =-=-,则2(1415)29222n n n n n T +-==-+. 由二次函数22922x x y =-+的对称轴为292921222x =-=⎛⎫⨯- ⎪⎝⎭, 故当14n =或15时n T 有最大值,其最大值为14151052⨯=. 6.(2019·黑龙江高三月考(理))已知数列的前n 项和为, 其中,数列满足.(1)求数列的通项公式;(2)令,数列的前n 项和为,若对一切恒成立,求实数k 的最小值.【答案】(1),;(2)【解析】 (1)由可得,两式相减得: ,又由可得,数列是首项为2,公比为4的等比数列,从而,于是.(2)由(1)知,于是,依题意对一切恒成立,令,则由于易知,即有,∴只需,从而所求k的最小值为.7.(2018·浙江高考模拟)已知数列满足,().(Ⅰ)证明数列为等差数列,并求的通项公式;(Ⅱ)设数列的前项和为,若数列满足,且对任意的恒成立,求的最小值.【答案】(Ⅰ)证明见解析,;(Ⅱ).【解析】∵(n+1)a n+1﹣(n+2)a n=2,∴﹣==2(﹣),又∵=1,∴当n≥2时,=+(﹣)+(﹣)+…+(﹣)=1+2(﹣+﹣+…+﹣)=,又∵=1满足上式,∴=,即a n=2n,∴数列{a n}是首项、公差均为2的等差数列;(Ⅱ)解:由(I)可知==n+1,∴b n=n•=n•,令f(x)=x•,则f′(x)=+x••ln,令f′(x)=0,即1+x•ln=0,解得:x0≈4.95,则f(x)在(0, x0)上单调递增,在(x0,+单调递减.∴0<f(x)≤max{f(4),f(5),f(6)},又∵b5=5•=,b4=4•=﹣,b6=6•=﹣,∴M的最小值为.8.(2018·浙江镇海中学高三期中)已知数列的前项和为,且,(1)求证:数列为等比数列,并求出数列的通项公式;(2)是否存在实数,对任意,不等式恒成立?若存在,求出的取值范围,若不存在请说明理由.【答案】(1)证明略;(2)【解析】证明:(1)已知数列{a n}的前n项和为S n,且,①当n=1时,,则:当n≥2时,,②①﹣②得:a n=2a n﹣2a n﹣1﹣+,整理得:,所以:,故:(常数),故:数列{a n}是以为首项,2为公比的等比数列.故:,所以:.由于:,所以:(常数).故:数列{b n}为等比数列.(2)由(1)得:,所以:+(),=,=,假设存在实数λ,对任意m,n∈N*,不等式恒成立,即:,由于:,故当m=1时,,所以:,当n=1时,.故存在实数λ,且.9.(2019·宁夏银川一中高三月考(理))(1)当时,求证:;(2)求的单调区间;(3)设数列的通项,证明.【答案】(1)见解析;(2)见解析;(3)见解析.【解析】(1)的定义域为,恒成立;所以函数在上单调递减,得时即:(2)由题可得,且.当时,当有,所以单调递减,当有,所以单调递增,当时,当有,所以单调递增,当有,所以单调递减,当时,当有,所以单调递增,当时,当有,所以单调递增,当有,所以单调递减,当时,当有,所以单调递减,当有,所以单调递增,(3)由题意知.由(1)知当时当时即令则,同理:令则.同理:令则以上各式两边分别相加可得:即所以:10.(2019·北京人大附中高考模拟(理))已知数列{a n}满足:a1+a2+a3+…+a n=n-a n,(n=1,2,3,…)(Ⅰ)求证:数列{a n-1}是等比数列;(Ⅱ)令b n=(2-n)(a n-1)(n=1,2,3,…),如果对任意n∈N*,都有b n+t≤t2,求实数t的取值范围.【答案】(Ⅰ)见解析. (Ⅱ).【解析】(Ⅰ)由题可知:,①,②②-①可得.即:,又.所以数列是以为首项,以为公比的等比数列.(Ⅱ)由(Ⅰ)可得,∴.由可得,由可得.所以,,故有最大值.所以,对任意,都有,等价于对任意,都有成立.所以,解得或.所以,实数的取值范围是.11.(2019·江苏高三月考)已知数列的各项均为正数,前项和为,首项为2.若对任意的正整数,恒成立.(1)求,,;(2)求证:是等比数列;(3)设数列满足,若数列,,…,(,)为等差数列,求的最大值.【答案】(1),,;(2)详见解析;(3)3.【解析】(1)由,对任意的正整数,恒成立取,得,即,得.取,,得,取,,得,解得,.(2)取,得,取,得,两式相除,得,即,即.由于,所以对任意均成立,所以是首项为4,公比为2的等比数列,所以,即.时,,而也符合上式,所以.因为(常数),所以是等比数列.(3)由(2)知,.设,,成等差数列,则.即,整理得,.若,则,因为,所以只能为2或4,所以只能为1或2.若,则.因为,故矛盾.综上,只能是,,,成等差数列或,,成等差数列,其中为奇数.所以的最大值为3.12.(2019·上海高考模拟)已知平面直角坐标系xOy,在x轴的正半轴上,依次取点,,,,并在第一象限内的抛物线上依次取点,,,,,使得都为等边三角形,其中为坐标原点,设第n个三角形的边长为.⑴求,,并猜想不要求证明);⑵令,记为数列中落在区间内的项的个数,设数列的前m项和为,试问是否存在实数,使得对任意恒成立?若存在,求出的取值范围;若不存在,说明理由;⑶已知数列满足:,数列满足:,求证:.【答案】⑴,,;⑵;⑶详见解析【解析】,猜想,由,,,,对任意恒成立⑶证明:,记,则,记,则,当时,可知:,13.(2019·广西高考模拟(理))已知函数2()2ln 1()f x ax x x a =--∈R .(1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 【答案】(1)见解析;(2)见解析 【解析】(1)由题意可得,()'222(0,)f x ax lnx x a R =-->∈,由1x e =时,函数()f x 取得极值知12'220af e e ⎛⎫=+-= ⎪⎝⎭,所以0a =. 所以()()21,'22(0)f x xlnx f x lnx x =--=-->, 所以10x e <<时,()'0f x >;1x e>时,()'0f x <; 所以()f x 的单调增区间10e ⎛⎫ ⎪⎝⎭,,单调减区间为1e⎛⎫+∞ ⎪⎝⎭,. (2)当1a =时,()221f x x xlnx =--,所以()()'22221f x x lnx x lnx =--=--,令()ln 1g x x x =--,则()11'1x g x x x-=-=,当01x <<时,()'0g x <;当1x >时,()'0g x >,()g x 的单调减区间为()01,,单调增区间为()1+∞,, 所以()()10g x g ≥=,所以()'0f x ≥,()f x 是增函数,所以1x >时,()()22ln 110f x x x x f =-->=,所以1x >时,12ln x x x->, 令*211,21n x n N n +=>∈-,得2121212ln 212121n n n n n n +-+->-+- 即2221112ln 212121n n n n +⎛⎫+--> ⎪-+-⎝⎭ 所以1121111ln 2122122121n n n n n +⎛⎫>+- ⎪---+⎝⎭上式中123n =,,,…,n ,然后n 个不等式相加, 得到()11111...ln 213521221nn n n ++++>++-+ 14.(2019·宁夏高考模拟(文))已知函数()()ln 1(0)f x ax x a =->.()1求函数()y f x =的单调递增区间;()2设函数()()316g x x f x =-,函数()()h x g x =' .①若()0h x ≥恒成立,求实数a 的取值范围;②证明:()22222ln(123)123.e n n n N +⨯⨯⨯⋯⨯<+++⋯+∈【答案】(1)单调递增区间为[)1,+∞.(2)①(]0,e .②见证明 【解析】()10a >,0x >.()()1'ln 1ln 0f x a x ax a x x=-+⋅=≥. 解得1x ≥.∴函数()y f x =的单调递增区间为[)1,+∞.()2函数()()316g x x f x =-,函数()()21h =x ln 2x g x a x '=-.()'ah x x x=-①,0a ≤时,函数()h x 单调递增,不成立,舍去; 0a >时,()('x x a h x x xx+=-=,可得x =()h x 取得极小值即最小值,()11ln 022h x ha a a ∴≥=-≥,解得:0a e <≤. ∴实数a 的取值范围是(]0,e .②证明:由①可得:a e =,1x ≥时满足:22ln x e x ≥,只有1x =时取等号.依次取x n =,相加可得:()222221232ln1ln2ln ln(12)en e n n +++⋯+>++⋯⋯+=⨯⨯⋯.因此()22222ln(123)123.e n n n N +⨯⨯⨯⋯⨯<+++⋯+∈15.(2019·黑龙江高考模拟(理))已知函数2()2ln 2(1)(0)a f x ax x a a x-=-+-+>. (1)若()0f x ≥在[1,)+∞上恒成立,求实数a 的取值范围; (2)证明:11113521n ++++>-*1ln(21)()221nn n N n ++∈+.【答案】(1)[1,)+∞;(2)证明见解析. 【解析】(1)()f x 的定义域为()0,+∞,()2222222a ax x a f x a x x x--+-=--=' ()221a a x x a x -⎛⎫-- ⎪⎝⎭=. ①当01a <<时,21aa->, 若21a x a -<<,则()0f x '<,()f x 在21,a a -⎡⎫⎪⎢⎣⎭上是减函数,所以21,a x a -⎛⎫∈ ⎪⎝⎭时,()()10f x f <=,即()0f x ≥在[)1,+∞上不恒成立. ②当1a ≥时,21aa-≤,当1x >时,()0f x '>,()f x 在[)1,+∞上是增函数,又()10f =,所以()0f x ≥. 综上所述,所求a 的取值范围是[)1,+∞.(2)由(1)知当1a ≥时,()0f x ≥在[)1,+∞上恒成立.取1a =得12ln 0x x x --≥,所以12ln x x x-≥. 令21121n x n +=>-,*n N ∈,得2121212ln 212121n n n n n n +-+->-+-, 即2221112ln 212121n n n n +⎛⎫+--> ⎪-+-⎝⎭, 所以1121111ln 2122122121n n n n n +⎛⎫>+- ⎪---+⎝⎭. 上式中1,2,3,,n n =,然后n 个不等式相加,得到()11111ln 213521221nn n n ++++>++-+. 16.(2019·江苏高考模拟)已知数列{}n a ,12a =,且211n n n a a a +=-+对任意n N *∈恒成立.(1)求证:112211n n n n a a a a a a +--=+(n N *∈);(2)求证:11nn a n +>+(n N *∈). 【答案】(1)见解析(2)见解析 【解析】(1)①当1n =时,2221112213a a a =-+=-+= 满足211a a =+成立.②假设当n k =时,结论成立.即:112211k k k k a a a a a a +--=+成立下证:当1n k =+时,112211k k k k a a a a a a +-+=+成立.因为()211211111k k k k k a a a a a +++++=-+-+=()()11221112211111k k k k k k k k a a a a a a a a a a a a +--+--=+=++-即:当1n k =+时,112211k k k k a a a a a a +-+=+成立由①、②可知,112211n n n n a a a a a a +--=+(n *N ∈)成立.(2)(ⅰ)当1n =时,221221311a >=-=++成立,当2n =时,()2322222172131112a a a a a =-+=-+=>⨯>++成立,(ⅱ)假设n k =时(3k ≥),结论正确,即:11kk a k +>+成立 下证:当1n k =+时,()1211k k a k ++>++成立.因为()()2211112111111kkkk k k k k k a a a a a k k kk +++++-+==-+>++=++要证()1211k k a k ++>++,只需证()12111k k k k k k +++>++只需证:()121k k k k ++>,只需证:()12ln ln 1k k k k ++>即证:()()12l l n n 10k k k k -++>(3k ≥) 记()()()2ln 11ln h x x x x x -++=∴()()()()2ln 1112ln 11ln ln x x x x h x +-++=-++⎡⎤⎦=⎣'21ln 1ln 12111x x x x ⎛⎫=+=++-+ ⎪++⎝⎭当12x +≥时,1111ln 121ln 221ln 1ln 10122x x e ⎛⎫⎛⎫++-+≥+-+=+>+= ⎪ ⎪+⎝⎭⎝⎭所以()()()2ln 11ln h x x x x x -++=在[)1,+∞上递增, 又()6423ln34ln3ln 34ln729ln2564l 0n h ⨯-=-=->=所以,当3x ≥时,()()30h x h ≥>恒成立. 即:当3k ≥时,()()30h k h ≥>成立.即:当3k ≥时,()()12l l n n 10k k k k -++>恒成立. 所以当3k ≥,()1211k k a k ++>++恒成立.由(ⅰ)(ⅱ)可得:对任意的正整数n *∈N ,不等式11nn a n +>+恒成立,命题得证.。
导数中构造函数的常见题型与方法归纳高考中有一难点,即不给出具体的函数解析式,而是给出函数f(x)及其导数满足的条件,需要据此条件构造抽象函数,再根据条件得出构造函数的单调性,应用单调性解决问题的题目,该类题目具有一定的难度,下面总结其基本类型及其处理方法.题型一f′(x)g(x)±f(x)g′(x)型【例1】设f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是() A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞)【解析】令g(x)=f(x)x,则g′(x)=xf′(x)-f(x)x2,由题意知,当x>0时,g′(x)<0 ,∴g(x)在(0,+∞)上是减函数.∵f(x)是奇函数,f(-1)=0,∴f(1)=-f(-1)=0,∴g(1)=f(1)1=0,∴当x∈(0,1)时,g(x)>0,从而f(x)>0;当x∈(1,+∞)时,g(x)<0,从而f(x)<0.又∵f(x)是奇函数,∴当x∈(-∞,-1)时,f(x)>0;当x∈(-1,0)时,f(x)<0.综上,所求x的取值范围是(-∞,-1)∪(0,1).【例2】设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是________________.【解析】借助导数的运算法则,f′(x)g(x)+f(x)g′(x)>0⇔[f(x)g(x)]′>0,所以函数y=f(x)g(x)在(-∞,0)上单调递增.又由分析知函数y=f(x)g(x)为奇函数,所以其图象关于原点对称,且过点(-3,0),(0,0),(3,0).数形结合可求得不等式f(x)g(x)<0的解集是(-∞,-3)∪(0,3).【小结】(1)对于不等式f′(x)+g′(x)>0(或<0),构造函数F(x)=f(x)+g(x);(2)对于不等式f′(x)-g′(x)>0(或<0),构造函数F(x)=f(x)-g(x);特别地,对于不等式f′(x)>k(或<k)(k≠0),构造函数F(x)=f(x)-kx.(3)对于不等式f′(x)g(x)+f(x)g′(x)>0(或<0),构造函数F(x)=f(x)g(x);(4)对于不等式f′(x)g(x)-f(x)g′(x)>0(或<0),构造函数F(x)=f(x)g(x)(g(x)≠0);(5)对于不等式xf′(x)+f(x)>0(或<0),构造函数F(x)=xf(x);(6)对于不等式xf′(x)-f(x)>0(或<0),构造函数F(x)=f(x)x(x≠0).题型二xf′(x)±nf(x)型【例3】设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,则下列不等式在R上恒成立的是()A.f(x)>0B.f(x)<0C.f(x)>x D.f(x)<x【解析】法一:令g(x)=x2f(x)-14x4,则g′(x)=2xf(x)+x2f′(x)-x3=x[2f(x)+xf′(x)-x2],当x>0时,g′(x)>0,∴g(x)>g(0),即x2f(x)-14x4>0,从而f(x)>14x2>0;当x<0时,g′(x)<0,∴g(x)>g(0),即x2f(x)-14x4>0,从而f(x)>14x2>0;当x=0时,由题意可得2f(0)>0,∴f(0)>0.综上可知,f(x)>0.法二:∵2f(x)+xf′(x)>x2,∴令x=0,则f(0)>0,故可排除B、D,不妨令f(x)=x2+0.1,则已知条件2f(x)+xf′(x)>x2成立,但f(x)>x 不一定成立,故C也是错误的,故选A.【例4】已知定义域为{x|x≠0}的偶函数f(x),其导函数为f′(x),对任意正实数x满足xf′(x)>-2f(x),若g(x)=x2f(x),则不等式g(x)<g(1)的解集是()A.(-∞,1) B.(-1,1)C.(-∞,0)∪(0,1) D.(-1,0)∪(0,1)【解析】∵f(x)是定义域为{x|x≠0}的偶函数,∴f(-x)=f(x).对任意正实数x满足xf′(x)>-2f(x),∴xf′(x)+2f(x)>0.∵g(x)=x2f(x),∴g(x)也是偶函数,当x∈(0,+∞)时,g′(x)=2xf(x)+x2f′(x)>0.∵g(x)在(0,+∞)上单调递增,∴g (x )在(-∞,0)递减.若g (x )<g (1),则|x |<1(x ≠0),解得0<x <1或-1<x <0.故g (x )<g (1)的解集是(-1,0)∪(0,1).【小结】(1)对于xf ′(x )+nf (x )>0型,构造F (x )=x n f (x ),则F ′(x )=x n -1[xf ′(x )+nf (x )](注意对x n -1的符号进行讨论), 特别地,当n =1时,xf ′(x )+f (x )>0,构造F (x )=xf (x ), 则F ′(x )=xf ′(x )+f (x )>0;(2)对于xf ′(x )-nf (x )>0(x ≠0)型,构造F (x )=f (x )x n ,则F ′(x )=xf ′(x )-nf (x )x n +1(注意对x n +1的符号进行讨论), 特别地,当n =1时,xf ′(x )-f (x )>0,构造F (x )=f (x )x ,则F ′(x )=xf ′(x )-f (x )x 2>0. 题型三 λf (x )±f ′(x )(λ为常数)型【例5】已知f (x )为R 上的可导函数,且∀x ∈R ,均有f (x )>f ′(x ),则有( )A .e 2 019f (-2 019)<f (0),f (2 019)>e 2 019f (0)B .e 2 019f (-2 019)<f (0),f (2 019)<e 2 019f (0)C .e 2 019f (-2 019)>f (0),f (2 019)>e 2 019f (0)D .e 2 019f (-2 019)>f (0),f (2 019)<e 2 019f (0)【解析】构造函数h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x<0,即h (x )在R 上单调递减,故h (-2 019)>h (0),即f (-2 019)e-2 019>f (0)e 0⇒e 2 019f (-2019)>f(0);同理,h(2 019)<h(0),即f(2 019)<e2 019·f(0),故选D.【小结】(1)对于不等式f′(x)+f(x)>0(或<0),构造函数F(x)=e x f(x);(2)对于不等式f′(x)-f(x)>0(或<0),构造函数F(x)=f(x) e x.。
利用导数运算法则构造函数✬导数的常见构造类型1. 对于()()x g x f ''>,可构造()()()x g x f x h -=注:遇到()()0'≠>a a x f 导函数大于某种非零常数(若0=a 则无需构造),则可构造()()ax x f x h -=2. 对于()()0''>+x g x f ,可构造()()()x g x f x h +=3. 对于()()0'>+x f x f ,可构造()()x f e x h x =4. 对于()()x f x f >'(或()()0'>-x f x f ),可构造()()xex f x h = 5. 对于()()0'>+x f x xf ,可构造()()x xf x h = 6. 对于()()0'>-x f x xf ,可构造()()x x f x h =7. 对于()()x nf x f +'形式,可构造()()x f e x F nx = 8. 对于()()x nf x f -'形式,可构造()()nx ex f x F =✬典型例题:类型1:和差导数公式逆用: 例1. 设函数()f x ,()g x 在[],a b 上均可导,且()()f x g x '>',则当a x b <<时,有.A ()()f x g x > .B ()()f x g x <.C ()()()()f x g a g x f a +>+ .D ()()()()f x g b g x f b +>+解:构造)()()(x g x f x F -=,0)()()(>'-'='x g x f x F , )(x F 为增函数,)()()(b F x F a F << )()()()()()(b g b f x g x f a g a f -<-<-, ∴()()()()f x g b g x f b +>+,选D 类型2,积的导数公式逆用:例 2.设函数()f x 是定义在(),0-∞上的可导函数,其导函数为()f x ',且有x x f x x f <'+)()(,则不等式0)2(2)2014()2014(>-+++f x f x 的解集为( )A .(),2012-∞-B .()20120-,C .(),2016-∞-D .()20160-,解:由()()f x xf x x '+<,0x <得: [()]0xf x x '<<,令()()F x xf x =,则当0x <时,()0F x '<, 即()F x 在(,0)-∞是减函数,(2014)+=F x (2014)(2014)x f x ++ ,(2)(2)(2)F f -=--,由题意:(2014)F x +>(2)F -又()F x 在(,0)-∞是减函数,∴20142x +<-,即2016x <-,故选C类型3,商的导数公式逆用:当出现导数差的形式是,可以考虑商的导数 例3.已知函数)(x f 是定义在R 上的奇函数,0)1(=f , 当0x >时,有2()()0xf x f x x'->成立,则不等式0)(>x f 的解集是 A .(1,0)(1,)-+∞ B .(1,0)- C .(1,)+∞ D .(,1)(1,)-∞-+∞解:由当0x >时,有2()()0xf x f x x '->成立, 知函数x x f x F )()(=的导函数0)()()(2>-'='x x f x f x x F 在),0(+∞上恒成立, 所以函数xx f x F )()(=在),0(+∞上是增函数,又因为函数)(x f 是定义在R 上的奇函数,所以函数xx f x F )()(=是定义域上的偶函数,且由0)1(=f 得0)1()1(==-F F ,由此可得函数xx f x F )()(=的大致图象为:由图可知不等式0)(>x f 的解集是),1()0,1(+∞⋃-. 故选A.例4.若定义在R 上的函数f(x)的导函数为()f x ',且满足()()f x f x '>,则(2011)f 与2(2009)f e 的大小关系为( ).A 、(2011)f <2(2009)f eB 、(2011)f =2(2009)f eC 、(2011)f >2(2009)f eD 、不能确定 【答案】C解:构造函数x ex f x g )()(=,则x e x f x f x g )()()(''-=,因为()()f x f x '>,所以0)('>x g ; 即函数)(x g 在R 上为增函数, 则20092011)2009()2011(ef e f >,即2)2009()2011(e f f >. 类型4,构造组合函数形式例 5. 定义在上R 上的可导函数)(x f ,满足2)()(x x f x f =+-,当0<x 时,x x f <')(,则不等式x x f x f +-≥+)1(21)(的解集为_________解:221)()(x x f x g -=,0)()(=-+x g x g ,)(x g 为奇函数,当0<x 时,0)()(<-'='x x f x g ,)(x g 为减函数,,x x f x f +-≥+)1(21)(, 可得22)1(21)1(21)(x x f x x f ---≥-,即)1()(x g x g -≥∴x x -≤1,即21≤x ✬好题训练 一、单选题1.已知定义在R 上的函数()f x 满足()()102f x f x '+>,且有()112f =,则()122x f x e->的解集为( )A .(),2-∞B .()1,+∞C .(),1-∞D .()2,+∞2.若定义在R 上的函数()f x 满足()()1f x f x '+>,(0)4f =,则不等式()3x x e f x e ⋅>+ (其中e 为自然对数的底数)的解集为( )A .(,0)(0,)-∞+∞B .(,0)(3,)-∞⋃+∞C .(0,)+∞D .(3,)+∞3.已知函数()f x 是(0,)+∞上的可导函数,且()()0f x f x x'+>,则( ) A .(3)(2)f f > B .(3)(2)f f < C .3(3)2(2)f f >D .3(3)2(2)f f <4.已知定义在R 上的可导函数()f x ,对x R ∀∈,都有()()2xf x e f x -=,当0x >时()()0f x f x '+<,若()()211211a a e f a e f a -+-≤+,则实数a 的取值范围是( )A .[]0,2B .(][),12,-∞-⋃+∞C .(][),02,-∞⋃+∞D .[]1,2-5.已知函数()f x 是定义在R 上的偶函数,其导函数为()f x ',若()()f x f x '<,且()2f x +是偶函数,()20174f =,则不等式()40xef x e ->的解集为( )A .(),1-∞B .(),e -∞C .()0,+∞D .1,e ⎛⎫+∞ ⎪⎝⎭6.已知函数()f x 为R 上的可导函数,且x R ∀∈,均有()()f x f x '<,则有( ) A .2021e (2021)(0)f f -<,2021(2021)e (0)f f < B .2021e (2021)(0)f f -<,2021(2021)e (0)f f >C .2021e (2021)(0)f f ->,2021(2021)e (0)f f >D .2021e (2021)(0)f f ->,2021(2021)e (0)f f <7.已知可导函数()f x 的导函数为()'f x ,若对任意的x R ∈,都有()()1f x f x '->.且()2022f x -为奇函数,则不等式()2021e 1x f x ->的解集为( ) A .(),0-∞B .()0,+∞C .(),e -∞D .()e,+∞8.函数()f x 的定义域是R ,()02f =,对任意R x ∈,()()1f x f x +'>,则不等式()e e 1x xf x >+⋅的解集为( )A .{} |0x x >B .{}|0x x <C .{|1x x <-或}1x >D .{|1x x <-或}01x <<9.已知函数()f x 满足()11f =,且()f x 的导函数()13f x '<,则()233x f x <+的解集为( ) A .{}1x x <-B .{1x x <-或}1x >C .{}1x x >D .{}0x x <10.定义在R 上的奇函数()f x 的图象光滑连续不断,其导函数为()f x ',对任意正实数x 恒有()()2xf x f x >-',若()()2g x x f x =,则不等式()()23log 110g x g ⎡⎤-+-<⎣⎦的解集是( )A .()0,2B .()2,2-C .()3,2-D .()()2,11,2--⋃11.已知函数()f x 满足()()0f x f x +-=,且当(,0)x ∈-∞时,()()0f x xf x '+<成立,若()()0.60.622a f =⋅,(ln 2)(ln 2)b f =⋅,2211loglog 88c f ⎛⎫⎛⎫=⋅ ⎪ ⎪⎝⎭⎝⎭,则a ,b ,c 的大小关系是( ) A .a b c >>B .c b a >>C .a c b >>D .c a b >>12.已知偶函数()f x 的定义域为,22ππ⎛⎫- ⎪⎝⎭,其导函数为()f x ',当02x π<<时,有()cos ()sin 0f x x f x x '+<成立,则关于x 的不等式()2cos 3f x f x π⎛⎫< ⎪⎝⎭的解集为( )A .,,2332ππππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭B .,33ππ⎛⎫- ⎪⎝⎭C .,23ππ⎛⎫-- ⎪⎝⎭D .,32ππ⎛⎫ ⎪⎝⎭13.已知奇函数()f x 是定义在R 上的可导函数,其导函数为()'f x ,当0x ≥时,有22()()f x xf x x +'>,则不等式()()()220182018420x f x f +++-<的解集为( ) A .(),2016-∞-B .()2016,2012--C .(),2018-∞-D .()2016,0-14.已知()f x 是定义在R 上的奇函数,(2)0f =,当0x ≠时,2()()f x f x x '>,则不等式()0f x <的解集为( ) A .(,2)(0,2)-∞-⋃ B .(2,0)(2,)-+∞ C .(,2)(2,)-∞-+∞D .(2,0)(0,2)-15.已知()f x 是定(,0)(0,)-∞+∞的奇函数,()'f x 是()f x 的导函数,(1)0f <,且满足:()()ln 0f x f x x x+'⋅<,则不等式(1)()0x f x -⋅<的解集为( ) A .(1,)+∞B .(,1)(0,1)-∞-C .(,1)-∞D .(,0)(1,)-∞⋃+∞ 16.已知定义在R 上的可导函数()f x ,对任意的实数x ,都有()()4f x f x x --=,且当()0,x ∈+∞时,()2f x '>恒成立,若不等式()()()1221f a f a a --≥-恒成立,则实数a 的取值范围是( )A .1,02⎛⎫- ⎪⎝⎭B .10,2⎡⎤⎢⎥⎣⎦C .1,2⎛⎫-∞ ⎪⎝⎭ D .1,2⎡⎫+∞⎪⎢⎣⎭17.已知定义域为R 的奇函数()y f x =的导函数为()y f x '=,当0x ≠时,()()0f x f x x '+<,若2211(),2(2),ln (ln )3333a fb fc f ==--=,则,,a b c 的大小关系正确的是( ) A .a b c <<B .b c a <<C .a c b <<D .c a b <<18.已知函数()f x 的定义域为R ,且()21f =,对任意x ∈R ,()()0f x xf x '+<,则不等式()()112x f x ++>的解集是( ) A .(),1-∞ B .(),2-∞ C .()1,+∞D .()2,+∞19.已知定义在R 上的函数()f x 满足1()()02f x f x '+>且有1(2)f e=,则()f x >)A .1,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .(2,)+∞20.已知()f x 是定义在R 上的函数,()'f x 是()f x 的导函数,满足:()(1)()0x x e f x e f x ++'>,且1(1)2f =,则不等式1()2(1)x e f x e +>+的解集为( ) A .()1,1-B .()(),11,-∞-+∞C .(),1-∞-D .()1,+∞21.设函数()f x 在R 上的导函数为()f x ',若()()1x f f x '+>,()()6f x f x ''=-,()31f =,()65f =,则不等式()ln 210f x x ++<的解集为( )A .()0,1B .()0,3C .()1,3D .()3,622.设函数()f x 在R 上的导函数为()'f x ,若()()1f x f x '>+,()(6)2f x f x +-=,(6)5f =,则不等式()210x f x e ++<的解集为( )A .(,0)-∞B .(0,)+∞C .(0,3)D .(3,6)23.已知函数()y f x =对于任意的,22x ππ⎛⎫∈- ⎪⎝⎭满足()()cos sin 0f x x f x x '+>(其中()f x '是函数()f x 的导函数),则下列不等式成立的是( )A .()04f π⎛⎫> ⎪⎝⎭B 34f ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭C 34f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D .()023f f π⎛⎫> ⎪⎝⎭24.已知定义在,22ππ⎛⎫- ⎪⎝⎭上的奇函数()f x 的导函数为()f x ',且()tan ()0f x x f x '+⋅>,则( )A 063ππ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭B 063ππ⎛⎫⎛⎫-+> ⎪ ⎪⎝⎭⎝⎭C 064ππ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D 046ππ⎛⎫⎛⎫-+> ⎪ ⎪⎝⎭⎝⎭25.已知在定义在R 上的函数()f x 满足()()62sin 0f x f x x x ---+=,且0x ≥时,()3cos f x x '≥-恒成立,则不等式()π3ππ6224f x f x x x ⎛⎫⎛⎫≥--++ ⎪ ⎪⎝⎭⎝⎭的解集为( ) A .π0,4⎛⎤⎥⎝⎦B .,4π⎡⎫+∞⎪⎢⎣⎭C .,6π⎛⎤-∞ ⎥⎝⎦D .,6π⎡⎫+∞⎪⎢⎣⎭26.已知函数()y f x =对任意的(0,)x π∈满足()cos ()sin f x x f x x '>(其中()f x '为函数()f x 的导函数),则下列不等式成立的是( )A .63f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭ B .63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭C 63f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭D 63f ππ⎛⎫⎛⎫<⎪ ⎪⎝⎭⎝⎭27.已知定义在R 上的函数()f x 的导函数为'()f x ,'()()ln 20f x f x +<,则下列不等关系成立的是( ) A .2(1)(0)f f > B .2(2)(1)f f > C .2(0)(1)f f >-D .()23log 32(1)f f <28.已知定义在R 上的函数()f x 的导函数为()f x ',且满足()()0f x f x '->,2022(2022)e 0f -=,则不等式1ln 4f x ⎛⎫< ⎪⎝⎭)A .()6063e,+∞ B .()20220,eC .()8088e,+∞ D .()80880,e29.已知函数()y f x =是定义在R 上的奇函数,且当(),0x ∈-∞时,不等式()()0f x xf x '+>恒成立,若()0.30.322a f =,()()log 2log 2b f ππ=,2211log log 44c f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系是( )A .a b c >>B .c b a >>C .b a c >>D .a c b >>30.已知奇函数()f x 是定义在R 上的可导函数,其导函数为()'f x ,当0x >时,有22()()f x xf x x '+>,则不等式2(2021)(2021)4(2)0x f x f +++-<的解集为( ) A .(,2019)-∞- B .(2023,2019)-- C .(2023)-∞-, D .(2019,0)-二、多选题31.设函数()f x '是奇函数()()f x x R ∈的导函数,()10f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 的取值范围是( )A .(),1-∞-B .()0,1C .()1,0-D .()1,+∞32.已知函数()f x 的定义域为(0,)+∞,其导函数为()f x ',对于任意,()0x ∈+∞,都有()ln ()0x xf x f x '+>,则使不等式1()ln 1f x x x+>成立的x 的值可以为( ) A .12B .1C .2D .333.定义在(0,)+∞上的函数()f x 的导函数为()f x ',且()()2(32)()x x f x x f x '+<+恒成立,则必有( ) A .(3)20(1)f f >B .(2)6(1)f f <C .13(1)162f f ⎛⎫> ⎪⎝⎭D .(3)3(2)f f <34.已知函数()f x 的导函数为()f x ',若()()()2f x xf x f x x <<-′对()0,x ∈+∞恒成立,则下列不等式中,一定成立的是( ) A .()()1f f ππ< B .()()1f f ππ> C .()()21142f f <+ D .()()21142f f +< 35.已知函数()f x 的定义域、值域都是()0,∞+,且满足()()12f x f x '<,则下列结论一定正确的是( ) A .若()1e f =,则()322e f > B .()()23f f <C .()()3224f f >D .181176e 43f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭第II 卷(非选择题)请点击修改第II 卷的文字说明三、双空题36.定义在R 上的函数()f x 的导函数为()f x ',且()()1f x f x '>-,()06f =,则函数()()5x xg x e f x e =--在R 上单调递_______(填“增”或“减”);不等式()5x xe f x e >+(其中e 为自然对数的底数)的解集是_______.37.设()f x '是奇函数()f x 的导函数,()23f -=-,且对任意x ∈R 都有()2f x '<,则()2f =_________,使得()e 2e 1x xf <-成立的x 的取值范围是_________.四、填空题38.已知函数()f x 是定义在R 上的函数,且满足()()0f x f x +'>其中()f x '是()f x 的导函数,设()0a f =,()2ln2b f =,()e 1c f =,,,a b c 的大小关系是________.39.已知定义在R 上的函数()f x 的导函数为()'f x ,且满足()()xf x f x '<,若(ln 4)(3)(1),,ln 43f f a f b c ===,则,,a b c 的大小关系为_________. 40.已知定义在()0,∞+的函数()f x 满足()()0xf x f x '-<,则不等式()210x f f x x ⎛⎫-< ⎪⎝⎭的解集为___________. 41.已知定义在R 上的偶函数()f x 的导函数为()'f x ,当0x >时,有()()0f x xf x '+>,且(1)0f =,则使得()0f x <成立的x 的取值范围是___________. 42.若定义在R 上的函数()f x 满足()()30f x f x '->,13f e ⎛⎫= ⎪⎝⎭,则不等式()3x f x e >的解集为________________.43.若()f x 是定义在R 上函数,且(2)y f x =-的图形关于直线2x =对称,当0x <时,()()0f x xf x '+<,且(3)0f -=,则不等式()0f x >的解集为___________.答案第1页,共24页参考答案1.B 【分析】构造函数()()2xF x f x e =⋅,利用导数,结合已知条件判断()F x 的单调性,由此化简不等式()122xf x e ->并求得其解集. 【详解】设()()2x F x f x e =⋅,则()()()()()222110 22x x xF x f x e f x e e f x f x ⎡⎤'''=⋅+⋅=+>⎢⎥⎣⎦,所以函数()F x 在R 上单调递增,又()112f =,所以()()11221112F f e e =⋅=.又()122xf x e->等价于()12212x f x e e ⋅>,即()()1F x F >,所以1x >,即所求不等式的解集为()1,+∞. 故选:B 2.C 【分析】构造函数()()3x x g x e f x e =⋅--,求导结合题干条件可证明()g x 在R 上单调递增,又(0)0g =,故()0(0)0g x g x >=⇒>,即得解 【详解】令()()3x x g x e f x e =⋅--,则()()()[()()1]0x x x x g x e f x e f x e e f x f x '''=⋅+⋅-=+-> 所以()g x 在R 上单调递增, 又因为00(0)(0)30g e f e =⋅--=, 所以()0(0)0g x g x >=⇒>, 即不等式的解集是(0,)+∞ 故选:C 3.C 【分析】由已知构造函数()()g x xf x =,求导,由导函数的符号得出所令函数的单调性,从而可得选项. 【详解】 解:因为()()0f x f x x'+>,所以当0x >时,有()()0xf x f x '+>, 令()()g x xf x =,则当0x >时,()'()()>0g x xf x f x '=+,所以()g x 在()0+∞,上单调递增,所以()()3>2g g ,即3(3)2(2)f f >, 故选:C. 4.C 【分析】令()()x g x e f x =,由已知得()()xg x e f x =在区间()0,∞+单调递减, ()g x 为偶函数,且在区间(),0∞-单调递增,由此可将不等式等价转化为211a a -≥+,求解即可. 【详解】解:令()()x g x e f x =,则当0x >时,()()()0x g x e f x f x ''=+<⎡⎤⎣⎦,所以()()x g x e f x =在区间()0,∞+单调递减,又()()()()()()2x x x xg x e f x e e f x e f x g x ---=-===,所以()g x 为偶函数,且在区间(),0∞-单调递增,又()()211211a a ef a e f a -+-≤+,即()()211g a g a -≤+,所以211a a -≥+,即()()22211a a -≥+,得0a ≤或2a ≥, 故选:C. 5.A 【分析】由函数()f x 是定义在R 上的偶函数,()2f x +是偶函数可得()f x 是周期为4的周期函数,令()()x f x g x e=,然后利用()g x 的单调性可解出不等式. 【详解】因为函数()f x 是定义在R 上的偶函数,()2f x +是偶函数, 所以()()()4f x f x f x +=-=,即()f x 是周期为4的周期函数, 所以()()201714f f ==, 令()()xf xg x e=,则()()()x f x f x g x e '-'=,因为()()f x f x '<,所以()0g x '<, 所以()g x 在R 上单调递减,由()40xef x e ->可得()4x f x ee>,即()()41g x g e>=,所以1x <,故选:A. 6.B 【分析】 令()()e xf xg x =,x ∈R 并求导函数,根据已知可得函数()g x 的单调性,进而得出结论. 【详解】令()()e x f x g x =,x ∈R ,则()()()e xf x f xg x ''-=,x R ∀∈,均有()()f x f x '<,()g x ∴在R 上单调递增,(2021)(0)(2021)g g g ∴-<<,可得:2021e (2021)(0)f f -<,2021(2021)e (0)f f >.故选:B. 7.A 【分析】根据题意构造()()1e xf x F x -=,结合已知条件,讨论其单调性,再将不等式()2021e 1x f x ->转化为()F x 的不等式,即可利用单调性求解.【详解】根据题意,构造()()1exf x F x -=,则()()1xf x F x e =+,且''()()1()0exf x f x F x -+=<,故()F x 在R 上单调递减; 又()2022f x -为R 上的奇函数,故可得()020220f -=,即()02022f =,则()02021F =.则不等式()2021e 1x f x ->等价于()()20210F x F >=, 又因为()F x 是R 上的单调减函数,故解得0x <. 故选:A. 【点睛】关键点点睛:本题考查构造函数法,涉及利用导数研究函数的单调性以及利用函数单调性求解不等式;本题中,根据()()1f x f x '->以及题意,构造()()1e xf x F x -=是解决问题的关键,属中等偏上题. 8.A 【分析】构造函数()()e e x xg x f x =⋅-,结合已知条件可得()0g x '>恒成立,可得()g x 为R 上的减函数,再由()01g =,从而将不等式转换为()()0g x g >,根据单调性即可求解. 【详解】构造函数()()e e x xg x f x =⋅-,因为()()()e e e x x xx f x f x g '=⋅+-'⋅()()e e e e 0x x x x f x f x +--=⎡⎤⎣⎦='>,所以()()e e x xg x f x =⋅-为R 上的增函数.又因为()()000e 0e 1g f -⋅==,所以原不等式转化为()e e 1x xf x ->,即()()0g x g >,解得0x >.所以原不等式的解集为{}|0x x >, 故选:A. 9.C 【分析】构造函数()()233x g x f x =--,求函数的导数,利用函数的单调性即可得到结论. 【详解】解:设()()233x g x f x =--,则函数()g x 的导函数()()13g x f x ''=-,f x 的导函数()13f x '<,()()103g x f x ''∴=-<,则函数()g x 单调递减,()11f =,()()1211033g f ∴=--=,则不等式()233x f x <+,等价为()0g x <, 即()()1g x g <, 则1x >,即()233x f x <+的解集为{}1x x >, 故选:C. 10.D 【分析】分析函数()g x 的奇偶性,利用导数分析函数()g x 在R 上的单调性,将所求不等式变形为()()23log 11g x g ⎡⎤-<⎣⎦,可得出()23log 11x -<,解此不等式即可. 【详解】因为函数()f x 为R 上的奇函数,则()()2g x x f x =的定义域为R ,且()()()()22g x x f x x f x g x -=-=-=-,所以,函数()g x 为奇函数,且()00g =,对任意正实数x 恒有()()()22xf x f x f x >-=-',即()()20xf x f x '+>,则()()()()()2220g x xf x x f x x xf x f x '''=+=+>⎡⎤⎣⎦,所以,函数()g x 在()0,∞+上为增函数,故函数()g x 在(),0∞-上也为增函数, 因为函数()g x 在R 上连续,故函数()g x 在R 上为增函数,由()()23log 110g x g ⎡⎤-+-<⎣⎦得()()()23log 111g x g g ⎡⎤-<--=⎣⎦,所以,()23log 11x -<,故有2013x <-<,解得21x -<<-或12x <<.故选:D. 11.D 【分析】构造函数()()g x x f x =⋅,利用奇函数的定义得函数()g x 是偶函数,再利用导数研究函数的单调性,结合0.621ln 212log 8<-<<,再利用单调性比较大小得结论. 【详解】解:因为函数()f x 满足()()0f x f x +-=,即()()f x f x =--,且在R 上是连续函数,所以函数()f x 是奇函数,不妨令()()g x x f x =⋅,则()()()()g x x f x x f x g x -=-⋅-=⋅=,所以()g x 是偶函数, 则''()()()g x f x x f x =+⋅,因为当(,0)x ∈-∞时,()'()0f x xf x +<成立, 所以()g x 在(,0)x ∈-∞上单调递减,又因为()g x 在R 上是连续函数,且是偶函数,所以()g x 在()0+∞,上单调递增, 则()0.62a g =,(ln 2)b g =,2211loglog 88c g g ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭, 因为0.621>,0ln 21<<,()21log 33>08-=--=,所以0.621ln 212log 8<-<<,所以c a b >>,故选:D. 12.A 【分析】 先构造函数()()cos f x g x x=,进而根据题意判断出函数的奇偶性和单调性,进而解出不等式. 【详解】因为偶函数()f x 的定义域为,22ππ⎛⎫- ⎪⎝⎭,设()()cos f x g x x=,则()()()()cos cos f x f x g x x x--==-,即()g x 也是偶函数.当02x π<<时,根据题意()()()2cos sin 0cos f x x f x xg x x'+'=<,则()g x 在0,2π⎛⎫⎪⎝⎭上是减函数,而函数为偶函数,则()g x 在,02π⎛⎫- ⎪⎝⎭上是增函数.于是,()()3()2cos 3cos 3cos 3f f x f x f xg x g x ππππ⎛⎫ ⎪⎛⎫⎛⎫⎝⎭<⇔<⇔< ⎪ ⎪⎝⎭⎝⎭,所以3,,233222x x x πππππππ⎧>⎪⎪⎛⎫⎛⎫⇒∈--⋃⎨⎪ ⎪⎝⎭⎝⎭⎪-<<⎪⎩. 故选:A. 13.A 【分析】利用22(()0)f xf x x x '>+≥,构造出()()2g x x f x =,会得到()g x 在R 上单调递增,再将待解不等式的形式变成和()g x 相关的形式即可. 【详解】设()()2g x x f x =,因为()f x 为R 上奇函数,所以()()()()22g x x f x x f x -=--=-,即()g x 为R 上奇函数对()g x 求导,得[]()2()()g x f x x x xf '=+',而当0x >时,有()()220f x xf x x '>+≥,故0x >时,()0g x '>,即()g x 单调递增,所以()g x 在R 上单调递增 不等式()()()22018+2018420x f x f ++-<()()()22018+201842x f x f +<--,又()f x 是奇函数,则()()()22018+201842x f x f +<,即()()20182g x g +<所以20182x +<,解得2016x <-,即(,2016)x ∈-∞-. 故选:A. 14.A 【分析】根据题意,构造出函数()()2f x g x x=,则()0()0f x g x <⇔<,进而结合题意求得答案.【详解】设()()2f x g x x=,则()0()0f x g x <⇔<,()()()()()24322f x x xf x xf x f x g x x x ''⋅--'==,若x >0,由2()()()2()0f x f x xf x f x x ''>⇒->,则()0g x '>,即()()2f x g x x =在()0,∞+上单调递增.因为()f x 是R 上的奇函数,(2)0f =,容易判断,()()2f x g x x =在R 上是奇函数,且(2)0=g ,则函数()g x 在(),0-∞上单调递增,且(2)0g -=,所以()0<g x 的解集为:(,2)(0,2)-∞-⋃.于是()0f x <的解集为:(,2)(0,2)-∞-⋃. 故选:A. 15.D 【分析】 令()()g x lnxf x =对函数求导可得到函数()g x 单调递减,再结合()10g =,和()f x 的奇偶性,通过分析得到当0x >,()0f x <,0x <,()0f x >,故不等式(1)()0x f x -⋅<等价于()10x f x >⎧⎨<⎩或()10x f x <⎧⎨>⎩,求解即可.【详解】 令()()g x lnxf x =,则1()()()0g x f x lnx f x x'=+'<, 故函数()g x 单调递减,定义域为()0,∞+,g (1)0=,01x ∴<<时,()0>g x ;1x <时,()0<g x .01x <<时,0lnx <;1x >时,0lnx >.∴当0x >,1x ≠时,()0f x <,又f(1)0<.∴当0x >,()0f x <,又()f x 为奇函数, ∴当0x <,()0f x >.不等式(1)()0x f x -⋅<等价于()10x f x >⎧⎨<⎩或()10x f x <⎧⎨>⎩解得1x >或者0x < 故答案为:D.【分析】由题意可得()()()f x x f x x -=---,令()()2F x f x x =-,根据奇偶性的定义,可得()F x 为偶函数,利用导数可得()F x 的单调性,将题干条件化简可得()2(1)2(1)f a a f a a -≥---,即()(1)F a F a ≥-,根据()F x 的单调性和奇偶性,计算求解,即可得答案. 【详解】由()()4f x f x x --=,得()2()2()f x x f x x -=---, 记()()2F x f x x =-,则有()()F x F x =-,即()F x 为偶函数, 又当(0,)x ∈+∞时,()()20F x f x ''=->恒成立, 所以()F x 在(0,)+∞上单调递增,所以由()()()1221f a f a a --≥-,得()2(1)2(1)f a a f a a -≥---, 即()(1)F a F a ≥-(||)(|1|)F a F a ⇔-,所以|||1|a a -,即2212a a a ≥+-,解得12a, 故选:D. 17.B 【分析】 根据()()0f x f x x'+<构造函数()()g x xf x =,利用函数()g x 的奇偶性、单调性比较大小. 【详解】解:令函数()()g x xf x =,因为定义域为R 的()y f x =是奇函数,所以函数()g x 为偶函数;()()()g x f x xf x ''=+,当0x >时,因为()()0f x f x x '+<,所以()()0xf x f x x'+<,所以()()0xf x f x '+<,即()0g x '<,所以()g x 在(0,)+∞上为减函数,()()()()222111(),2(2)22,ln (ln )ln ln 3ln 3333333a f g b f g g c f g g g ⎛⎫⎛⎫===--=-====-= ⎪ ⎪⎝⎭⎝⎭, 因为2ln 323<<,所以()()2ln 323g g g ⎛⎫>> ⎪⎝⎭,即a c b >>.18.A 【分析】构造函数()()g x xf x =,利用导数法结合条件,得到()g x 在R 上单调递减,利用单调性可得答案. 【详解】设()()g x xf x =,则()()()0g x f x xf x =+'<' 所以()g x 在R 上单调递减,又()()2222g f == 由()()112x f x ++>,即()()12g x g +>,所以12x +< 所以1x < 故选:A 19.D 【分析】构造函数2()e ()x g x f x =,求导后确定其单调性,原不等式转化为关于()g x 的不等式,再利用单调性得解集. 【详解】设2()e ()x g x f x =,则221()e ()()2x x g x f x e f x ''=+,因为1()()02f x f x '+>,所以()0g x '>,所以()g x 是R 上的增函数,(2)e (2)1g f ==,不等式()f x >2e ()1xf x >,即()(2)g x g >,所以2x >, 故选:D . 20.D 【分析】构造函数()()1()xg x e f x =+,利用导数求得()g x 的单调性,由此求得不等式1()2(1)x e f x e +>+的解集. 【详解】令()()1()x g x e f x =+,则()()()1()0x xg x e f x e f x =+'+>',所以()g x 在R 上单调递增,不等式()1()21x e f x e +>+可化为()11()2x e e f x ++>, 而1(1)2f =,则1(1)(1)(1)2e g ef +=+=,即()()1g x g >, 所以1x >,即不等式解集为(1,)+∞. 故选:D 21.A 【分析】 构造函数()1(),xf xg x e+=得到()g x 也是R 上的单调递增函数.,分析得到函数()f x 关于点(3,1)对称.由()ln 210f x x ++<得到(ln )(0)g x g <,即得解. 【详解】 构造函数()1()()1(),()0x xf x f x f xg x g x e e '+--'==>, 所以()g x 也是R 上的单调递增函数.因为()()6f x f x ''=-,所以()'f x 关于直线3x =对称,所以12()(6),()(6)f x dx f x dx f x c f x c ''=-∴+=--+⎰⎰,(12,c c 为常数),21()(6)f x f x c c ∴+-=-,令3x =,所以21212(3),(3)2c c f c c f -=-∴=. 因为()31f =,所以212,c c -=所以()(6)2f x f x +-=,所以函数()f x 关于点(3,1)对称. 由(3)1,(6)5f f ==得到(0)3f =-,因为()()ln ln 210ln 122x f x x f x x e ++<∴+<-=-,, 所以()ln ln 12xf x e +<-, 所以031(ln )2(0)g x g e -+<-==, 所以(ln )(0)g x g <, 所以ln 0,01x x <∴<<. 故选:A22.A 【分析】 令()()1xf xg x e +=,根据因为()()1f x f x '>+,得到()0g x '>,得出函数()g x 为R 上的单调递增函数,由题设条件,令0x =,求得()02g =-,把不等式转化为()()0g x g <,结合单调性,即可求解. 【详解】令()()1x f x g x e +=,可得()()()()11x xf x f x f xg x e e ''+--⎛⎫'== ⎪⎝⎭, 因为()()1f x f x '>+,可得()()10f x f x '-->,所以()0g x '>,所以函数()g x 为R 上的单调递增函数, 由不等式()210x f x e ++<,可得()12x f x e +<-, 所以()12xf x e +<-,即()2g x <- 因为()(6)2f x f x +-=,令0x =,可得(0)(6)2f f +=,又因为(6)5f =,可得(0)3f =-,所以()()00102f g e+==- 所以不等式等价于()()0g x g <,由函数()g x 为R 上的单调递增函数,所以0x <,即不等式的解集为(,0)-∞. 故选:A. 23.C 【分析】 可构造函数()()cos f x g x x=,由已知可证()g x 在,22x ππ⎛⎫∈- ⎪⎝⎭单增,再分别代值检验选项合理性即可 【详解】 设()()cos f x g x x=,则()()()2cos sin 0cos f x x f g x x xx'+='>,则()g x 在,22x ππ⎛⎫∈-⎪⎝⎭单增, 对A ,()04cos0cos 4f f ππ⎛⎫ ⎪⎝⎭<,化简得()04f π⎛⎫< ⎪⎝⎭,故A 错;对B ,34cos cos 34f f ππππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭<⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭34f ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,故B 错; 对C ,43cos cos 43f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭<⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭34f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故C 正确;对D ,()03cos0cos 3f f ππ⎛⎫⎪⎝⎭<⎛⎫⎪⎝⎭,化简得()023f f π⎛⎫< ⎪⎝⎭,故D 错, 故选:C 24.B 【分析】 令()()cos f x g x x =,,22x ππ⎛⎫∈- ⎪⎝⎭,得到()g x 是奇函数,单调递增,再利用函数的单调性和奇偶性分析判断得解. 【详解】因为()tan ()0f x x f x '+⋅>,所以()sin ()0,cos xf x f x x'+⋅> cos ()sin ()0x f x x f x '∴⋅+⋅>,令()()cos f x g x x =,,22x ππ⎛⎫∈- ⎪⎝⎭,则()2cos ()sin ()0cos f x x f x x g x x'⋅+⋅'=>, 所以()g x 单调递增, 所以()()()()cos()cos f x f x g x g x x x---===--,所以()g x 为奇函数,(0)0g =,所以6430cos cos cos643f f f ππππππ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭<<<,即0643πππ⎛⎫⎛⎫⎛⎫<<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以A ,C 错误;63ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,所以063ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,又因为()f x 为奇函数,所以063ππ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭,所以B 正确;64ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭064ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭.又因为()f x 为奇函数,所以046ππ⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭,所以D 错误. 故选:B 25.B 【分析】结合已知不等式,构造新函数()()3sin g x f x x x =-+,结合单调性及奇偶性,列出不等式,即可求解. 【详解】由题意,当0x ≥时,()3cos f x x '≥-恒成立,即()3cos 0f x x '-+≥恒成立, 又由()()62sin 0f x f x x x ---+=,可得()3sin ()3sin f x x x f x x x -+=-+-, 令()()3sin g x f x x x =-+,可得()()g x g x -=-,则函数()g x 为偶函数, 且当0x ≥时,()g x 单调递增,结合偶函数的对称性可得()g x 在(,0)-∞上单调递减,由()36224f x f x x x πππ⎛⎫⎛⎫≥--++ ⎪ ⎪⎝⎭⎝⎭,化简得到()3sin 3()sin()222f x x x f x x x πππ⎛⎫-+≥---+- ⎪⎝⎭,即()()2g x g x π≥-,所以2x x π≥-,解得4x π≥,即不等式的解集为,4π⎡⎫+∞⎪⎢⎣⎭.故选:B. 26.D 【分析】令()()cos g x f x x =,求出函数的导数,根据函数的单调性判断即可. 【详解】解:令()()cos g x f x x =,(0,)x π∈ 故()()cos ()sin 0g x f x x f x x ''=->,故()g x 在(0,)π递增,所以()()36g g ππ>,可得1()()236f f ππ63f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,所以D 正确;故选:D . 27.D 【分析】根据题意构造函数()()2x h x f x =,利用导数研究函数的单调性,根据单调性结合2log 31>即可求解.【详解】设()()2x h x f x =,则()()()()()22ln 22ln 2xx x h x f x f x f x f x '''=+=+⎡⎤⎣⎦,又()()ln 20f x f x '+<,20x >,所以()0h x '<,所以()h x 在(),-∞+∞上单调递减,由10>可得2(1)(0)f f >,故A 错; 由21>可得22(2)2(1)f f <,即2(2)(1)f f <,故B 错; 由01>-可得012(0)2(1)f f -<-,即2(0)(1)f f <-,故C 错; 因为2log 31>,所以()()2log 31h h <,得()()23log 321f f <,故D 正确. 故选:D 28.D 【分析】 由题设()()xf x F x e =,由已知得函数()F x 在R 上单调递增,且1ln 1(2022)4F x F ⎛⎫<= ⎪⎝⎭,根据函数的单调性建立不等式可得选项. 【详解】 由题可设()()ex f x F x =,因为()()0f x f x '->, 则2()e ()e ()()()0e e x x x xf x f x f x f x F x ''--'==>, 所以函数()F x 在R 上单调递增,又2022(2022)(2022)1e f F ==,不等式1ln 4f x ⎛⎫< ⎪⎝⎭1ln 41ln 41e x f x ⎛⎫ ⎪⎝⎭<, ∴1ln 1(2022)4F x F ⎛⎫<= ⎪⎝⎭,所以1ln 20224x <,解得80880e x <<,所以不等式1ln 4f x ⎛⎫< ⎪⎝⎭()80880,e .故选:D. 29.C 【分析】设()()g x xf x =,由奇偶性定义知()g x 为偶函数,结合导数和偶函数性质可确定()g x 在()0,∞+上单调递减,由指数和对数函数单调性可确定0.32log 42log 20π>>>,结合偶函数性质和单调性可得()()0.321log 22log4g g g π⎛⎫>> ⎪⎝⎭,由此可得大小关系. 【详解】设()()g x xf x =,则()()()()g x xf x xf x g x -=--==,()g x ∴为定义在R 上的偶函数; 当(),0x ∈-∞时,()()()0g x f x xf x ''=+>,()g x ∴在(),0-∞上单调递增, 由偶函数性质可知:()g x 在()0,∞+上单调递减,0.32log 4221log 20π=>>>>,()()()0.32log 22log 4g g g π∴>>,又()()2221log 4log 4log 4g g g ⎛⎫=-= ⎪⎝⎭,()()0.321log 22log4g g g π⎛⎫∴>> ⎪⎝⎭, 即b a c >>. 故选:C. 30.A 【分析】构造函数2()()g x x f x =,然后结合已知可判断()g x 的单调性及奇偶性,从而可求. 【详解】解:设2()()g x x f x =,由()f x 为奇函数,可得22()()()()()g x x f x x f x g x -=--=-=-, 故()g x 为R 上的奇函数,当0x >时,202()()f x xf x x '>>+,()[2()()]0g x x f x xf x ''∴=+>,()g x 单调递增,根据奇函数的对称性可知,()g x 在R 上单调递增, 则不等式2(2021)(2021)4(2)0x f x f +++-<可转化为()2(2021)(2021)4(2)42x f x f f ++<--=,即()()20212g x g +<,20212x ∴+<即2019x <-,即(),2019x ∈-∞-.故选:A 31.AB 【分析】首先根据已知条件构造函数()()f xg x x=,利用其导数得到()g x 的单调性,然后结合()f x 奇函数,将不等式()0f x >转化为()·0x g x >求解. 【详解】解:设()()f xg x x=, 则()()()2''xf x f x g x x -=,当0x >时总有()()'xf x f x <成立, 即当0x >时, ()'g x <0恒成立,∴当0x >时,函数()()f xg x x =为减函数, 又()()()()f x f x g x g x xx---===--,∴函数()g x 为定义域上的偶函数,又()()1101f g --==-,所以不等式()0f x >等价于()·0x g x >, 即()00x g x >⎧⎨>⎩或()0x g x <⎧⎨<⎩, 即01x <<或1x <-,所以()0f x > 成立的x 的取值范围是()(),10,1-∞-⋃. 故选:AB . 32.CD 【分析】构造函数1()()ln 1g x f x x x=+-,由导数确定其单调性,再由单调性解不等式,确定正确选项. 【详解】令1()()ln 1g x f x x x=+-,所以()2()1()ln f x g x f x x x x''=++, 因为()ln ()0xf x x f x x'+>,210x >,所以()0g x '>,所以()g x 在(0,)+∞上单调递增,又(1)0g =,可得()0>g x 的解集为(1,)+∞. 故选:CD. 33.BD 【分析】首先根据条件构造函数()()32f x g x x x=+,0x >,根据()()()()()()322232320f x x x f x x x g x xx+-'+'+=<得到()g x 在()0,∞+上单调递减,从而得到()()()11232g g g g ⎛⎫>>> ⎪⎝⎭,再化简即可得到答案. 【详解】由()()()()232x x f x x f x +'+<及0x >,得()()()()32232x x f x x x f x +'+<.设函数()()32f xg x x x =+,0x >, 则()()()()()()322232320f x x x f x x x g x xx+-'+'+=<, 所以()g x 在()0,∞+上单调递减,从而()()()11232g g g g ⎛⎫>>> ⎪⎝⎭,即()()()112323212368f f f f ⎛⎫ ⎪⎝⎭>>>,所以()()3181f f <,()()261f f <,()131162f f ⎛⎫< ⎪⎝⎭,()()332f f <.故选:BD 34.AD 【分析】。
高中数学:导数构造函数的基本原理与方法策略
高考数学中常以导数为工具来求函数的单调区间、极值、最值、证明不等式等,而构造函数是求解导数问题常用的方法。
为什么要构造函数呢?因为构造函数可以使函数的形式变得更为简单。
那么怎么构造函数呢?在含有导数的题目中,构造函数实质上就是逆用导数的求导法则。
但是构造函数要讲究方式方法,不合理的构造函数会使解题过程变得更为复杂,甚至会无果而终;那么怎样合理的构造函数呢?
今天我们就将导数构造函数的基本原理与方法策略,整理并分享给大家。
一、导数构造函数的基本原理:
我们知道,对于两个函数f(x)与g(x)乘积或商的导数,有如下法则:
在我们构造函数时,一般需要使用这两个基本法则。
我们通过观察发现两个函数的乘法求导后是体现的是“ ”法,两个函数的除法求导后体现的是“-”法。
题目中我们遇到最多的g(x)一般为基本初等函数如:x或e^x或sinx等,现在我们就来具体看看构造函数的方法:
二、导数构造函数的方法及例题解析
2.1、题目中的关系式为“ ”法时,我们优先构造乘法型f(x)g(x):。
导数构造函数解决问题类型总结一、重点题型目录【题型一】构造函数x n f (x )型【题型二】构造函数e nx f (x )型【题型三】构造函数f (x )x n 型【题型四】构造函数f (x )e nx型【题型五】构造函数sin x 与函数f (x )型【题型六】构造函数cos x 与函数f (x )型【题型七】构造e n 与af (x )+bf (x )型【题型八】构造kx +b 与f (x )型【题型九】构造ln kx +b 型【题型十】构造综合型二、题型讲解总结【题型】一、构造函数x n f (x )型例1.(2022·四川·盐亭中学模拟预测(文))已知定义在0,+∞ 上的函数f x 满足2xf x +x 2f x <0,f 2 =34,则关于x 的不等式f x >3x 2的解集为( )A.0,4B.2,+∞C.4,+∞D.0,2 【答案】D【分析】构造函数h x =x 2f x ,得到函数h x 的单调性,根据单调性解不等式即可.【详解】令h x =x 2f x ,则h x =2xf x +x 2f x <0,所以h x 在0,+∞ 单调递减,不等式f x >3x 2可以转化为x 2f x >4×34=22f 2 ,即h x >h 2 ,所以0<x <2.故选:D .例2.(2022·河北·高三阶段练习)已知奇函数f x 的定义域为R ,导函数为f x ,若对任意x ∈0,+∞ ,都有3f x +xf x >0恒成立,f 2 =2,则不等式x -1 3f x -1 <16的解集是__________.【答案】-1,3【分析】构造新函数g x =x 3f x ,根据f (x )的性质推出g (x )的性质,最后利用g (x )单调性解不等式.【详解】设g x =x 3f x ,x ∈R ,f x 为奇函数,∴g -x =-x 3f (-x )=x 3f (x )=g x ,即g x 是偶函数,有g (x )=g (-x )=g x ,∵∀x ∈0,+∞ ,3f x +xf x >0恒成立,故x ∈0,+∞ 时,g x =3x 2f x +x 3f x =x 23f x +xf x ≥0,∴函数g x 在0,+∞ 上为增函数,∵f 2 =2,∴g 2 =g -2 =16,x -1 3f x -1 <16等价于g x -1 <16=g (2),g (x -1)=g x -1 <g (2),且函数g x 在0,+∞ 上为增函数,∴x -1 <2,解得-1<x <3.故答案为:-1,3【题型】二、构造函数e nx f (x )型例3.(2022·河南·襄城高中高二阶段练习(理))已知奇函数f x 的定义域为R ,其函数图象连续不断,当x >0时,x +2 f x +xf x >0,则( )A.f 1 4e >f 2 B.f 2 <0 C.f -3 ⋅f 1 >0 D.f -1 e>4f -2 【答案】D【解析】令g x =x 2e x f x ,根据导数可知其在0,+∞ 上单调递增,由g 2 >g 1 >g 0 =0可知AB 错误,同时得到f 1 e<4f 2 ,f 1 >0,f 3 >0,结合奇偶性知C 错误,D 正确.【详解】对于AB ,令g x =x 2e x f x ,则g 0 =0,g x =x x +2 e x f x +x 2e x f x ,当x ≥0时,g x =xe x x +2 ⋅f x +xf x ≥0,∴g x 在0,+∞ 上单调递增,∴g 0 <g 1 <g 2 ,即0<ef 1 <4e 2f 2 ,∴f 2 >0,f 1 4e <f 2 ,AB 错误;对于C ,由A 的推理过程知:当x >0时,g x =x 2e x f x >0,则当x >0时,f x >0,∴f 1 >0,f 3 >0,又f x 为奇函数,∴f -3 =-f 3 <0,∴f -3 ⋅f 1 <0,C 错误.对于D ,由A 的推理过程知:f 1 e <4f 2 ,又f -1 =-f 1 ,f -2 =-f 2 ,∴-f -1 e <-4f -2 ,则f -1 e>4f -2 ,D 正确.故选:D .例4.(2022·江苏·南师大二附中高二期末)已知f (x )为R 上的可导函数,其导函数为f x ,且对于任意的x ∈R ,均有f x +f x >0,则( )A.e -2021f (-2021)>f (0),e 2021f (2021)<f (0)B.e-2021f(-2021)<f(0),e2021f(2021)<f(0)C.e-2021f(-2021)>f(0),e2021f(2021)>f(0)D.e-2021f(-2021)<f(0),e2021f(2021)>f(0)【答案】D【解析】通过构造函数法,结合导数确定正确答案.【详解】构造函数F x =e x⋅f x ,F x =f x +f x⋅e x>0,所以F x 在R上递增,所以F-2021<F0 ,F0 <F2021,即e-2021⋅f-2021<f0 ,f0 <e2021⋅f2021.故选:D例5.(2022·辽宁·大连二十四中模拟预测)已知函数y=f x ,若f x >0且f x +xf x >0,则有( )A.f x 可能是奇函数,也可能是偶函数B.f-1>f1C.π4<x<π2时,f(sin x)<e cos2x2f(cos x)D.f(0)<e f(1)【答案】D【解析】根据奇函数的定义结合f x >0即可判断A;令g x =e x22f x ,利用导数结合已知判断函数g x 的单调性,再根据函数g x 的单调性逐一判断BCD即可得解.【详解】解:若f x 是奇函数,则f-x=-f x ,又因为f x >0,与f-x=-f x 矛盾,所有函数y=f x 不可能时奇函数,故A错误;令g x =e x22f x ,则g x =xe x22f x +e x22f x =e x22xf x +f x,因为e x22>0,f x +xf x >0,所以g x >0,所以函数g x 为增函数,所以g-1<g1 ,即e 12f-1<e12f1 ,所以f-1<f1 ,故B错误;因为π4<x<π2,所以0<cos x<22,22<sin x<1,所以sin x>cos x,故g sin x>g cos x,即e sin2x2f sin x>e cos2x2f cos x,所以f sin x>e cos2x-sin2x2f cos x=e cos2x2f cos x,故C错误;有g0 <g1 ,即f0 <e f1 ,故D正确.故选:D.例6.(2022·黑龙江·哈尔滨三中高三阶段练习)f x 是定义在R上的函数,满足2f x +f x =xe x,f-1=-12e,则下列说法错误的是( )A.f x 在R上有极大值B.f x 在R上有极小值C.f x 在R上既有极大值又有极小值D.f x 在R上没有极值【答案】ABC【分析】先由题意得f -1=0,再构造g x =e2x f x ,得到g x =xe3x,进而再构造h x =e2x f x =xe3x-2g x ,判断出h x >0,即f x >0,由此得到选项.【详解】根据题意,2f x +f x =xe x,故2f-1+f -1=-e-1,又f-1=-12e,得2-12e+f -1 =-1e,故f -1 =0,令g x =e2x f x ,则g x =2e2x f x +e2x f x =e2x2f x +f x=e2x⋅xe x=xe3x,又2e2x f x +e2x f x =xe3x,记h x =e2x f x =xe3x-2e2x f x =xe3x-2g x ,所以h x =e3x+3xe3x-2g x =e3x+3xe3x-2xe3x=e3x x+1,当x<-1时,h x <0,h x 单调递减;当x>-1时,h x >0,h x 单调递增,所以h x >h-1=e-2f -1=0,即e2x f x >0,即f x >0,所以f x 在R上单调递增,故f x 在R上没有极值.故选项ABC说法错误,选项D说法正确.故选:ABC【题型】三、构造函数f(x)x n型例7.(2022·山东·潍坊一中高三期中)设函数f (x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x> 0时,xf (x)-f(x)>0,则使得f(x)>0成立的x取值范围是( )A.(-∞,-1)∪(1,+∞)B.(-1,0)∪(0,1)C.(-∞,-1)∪(0,1)D.(-1,0)∪(1,+∞)【答案】D【分析】根据题意构造函数g(x)=f(x)x,由求导公式和法则求出g (x),结合条件判断出g (x)的符号,即可得到函数g(x)的单调区间,根据f(x)奇函数判断出g(x)是偶函数,由f(-1)=0求出g(-1)=0,结合函数g(x)的单调性、奇偶性,再转化f(x)>0,由单调性求出不等式成立时x的取值范围.【详解】由题意设g(x)=f(x)x,则g (x)=xf (x)-f(x)x2∵当x>0时,有xf (x)-f(x)>0,∴当x>0时,g (x)>0,∴函数g(x)=f(x)x在(0,+∞)上为增函数,∵函数f(x)是奇函数,∴g(-x)=g(x),∴函数g(x)为定义域上的偶函数,g(x)在(-∞,0)上递减,由f(-1)=0得,g(-1)=0,∵不等式f(x)>0⇔x∙g(x)>0,∴x>0g(x)>g(1)或x<0g(x)<g(-1),即有x>1或-1<x<0,∴使得f(x)>0成立的x的取值范围是:(-1,0)∪(1,+∞),故选:D例8.(2022·安徽·砀山中学高三阶段练习)已知a=ln24,b=1e2,c=lnπ2π则a,b,c的大小关系为( )A.a<c<bB.b<a<cC.a<b<cD.c<a<b 【答案】C【分析】构造函数,根据函数的单调性比较大小.【详解】令f x =ln xx2,则fx =x-2x ln xx4,令f x <0,解得x>e,因此f x =ln xx2在e,+∞上单调递减,又因为a=ln24=ln416=f4 ,b=1e2=ln ee2=f e ,c=lnπ2π=lnππ=fπ,因为4>e>π>e,所以a<b<c.故选:C.【题型】四、构造函数f(x)e nx型例9.(2022·陕西·西安中学高二期中)已知定义在R上的函数f x 的导函数f x ,且f x <f x <0,则( )A.ef2 >f1 ,f2 >ef1B.ef2 >f1 ,f2 <ef1C.ef 2 <f 1 ,f 2 <ef 1D.ef 2 <f 1 ,f 2 >ef 1【答案】D 【分析】据已知不等式构造函数,结合导数的性质进行求解即可.【详解】构造函数g (x )=f (x )e x ⇒g (x )=f (x )-f (x )ex ,因为f x <f x ,所以g (x )>0,因此函数g (x )是增函数,于是有g (2)>g (1)⇒f (2)e 2>f (1)e ⇒f (2)>ef (1),构造函数h (x )=f (x )⋅e x ⇒h (x )=e x [f (x )+f (x )],因为f x <f x <0,所以h (x )<0,因此h (x )是单调递减函数,于是有h (2)<h (1)⇒e 2f (2)<ef (1)⇒ef (2)<f (1),故选:D例10.(2022·江苏·涟水县第一中学高三阶段练习)f x 是定义在R 上的函数,f x 是f x 的导函数,已知f x >f x ,且f (1)=e ,则不等式f 2x -5 -e 2x -5>0的解集为( )A.-∞,-3B.-∞,-2C.2,+∞D.3,+∞【答案】D【分析】根据已知条件构造函数,利用导数法求函数的单调性,结合函数的单调性即可求解.【详解】由f x >f x ,得f x -f x >0,设g x =f x e x ,则g x =f x -f x e x>0,所以函数g x 在-∞,+∞ 上单调递增,因为f 1 =e ,所以g 1 =f 1 e 1=1,所以不等式f 2x -5 -e 2x -5>0等价于f 2x -5 e 2x -5>1即g 2x -5 >g 1 ,所以2x -5>1,解得x >3,所以不等式f 2x -5 -e 2x -5>0的解集为3,+∞ .故选:D .例11.(2023·江西·赣州市赣县第三中学高三期中(理))设f x 是函数f x 的导函数,且f x >3f x x ∈R ,f 13=e (e 为自然对数的底数),则不等式f ln x <x 3的解集为( )A.0,e 3 B.1e ,e 3 C.0,3e D.e 3,3e【答案】C【分析】构造函数g x =f x e 3x ,由已知可得函数g x 在R 上为增函数,不等式f ln x <x 3即为g ln x <g 13,根据函数的单调性即可得解.【详解】解:令g x =f xe3x,则gx =f x -3f xe3x,因为f x >3f x x∈R,所以g x =f x -3f xe3x>0,所以函数g x 在R上为增函数,不等式f ln x<x3即不等式f ln xx3<1 x>0,又g ln x=f ln xe3ln x=f ln xx3,g13 =f13e=1,所以不等式f ln x<x3即为g ln x<g 13 ,即ln x<13,解得0<x<3e,所以不等式f ln x<x3的解集为0,3e.故选:C.例12.(2022·河北廊坊·高三开学考试)已知定义域为R的函数f x 的导函数为f x ,且f x -f x = 2xe x,f0 =0,则以下错误的有( )A.f x 有唯一的极值点B.f x 在-3,0上单调递增C.当关于x的方程f x =m有三个实数根时,实数m的取值范围为0,4e-1D.f x 的最小值为0【答案】ABC【分析】构造g(x)=f(x)e x,结合已知求g(x)的解析式,进而可得f(x)=x2e x,再利用导数研究f(x)的极值点、单调性,并判断其值域范围,即可判断各选项的正误.【详解】令g(x)=f(x)e x,则g(x)=f (x)-f(x)e x=2x,故g(x)=x2+C,(C为常数),所以f(x)=e x(x2+C),而f0 =e00+C=0,故C=0,所以f(x)=x2e x,则f (x)=(x2+2x)e x,令f (x)=0,可得x=-2或x=0,在(-∞,-2)、(0,+∞)上f (x)>0,f(x)递增;在(-2,0)上f (x)<0,f(x)递减;所以f(x)有2个极值点,在-3,0上不单调,A、B错误;由x趋于负无穷时f(x)趋向于0,f(-2)=4e2,f(0)=0,x趋于正无穷时f(x)趋向于正无穷,所以f x =m有三个实数根时m的范围为0,4e-2,f x 的最小值为0,C错误,D正确;故选:ABC【题型】五、构造函数sin x 与函数f (x )型例13.(2022·云南师大附中高三阶段练习)已知a =sin111,b =331,c =ln1.1,则( )A.a <b <cB.a <c <bC.c <a <bD.b <a <c 【答案】B【分析】根据结构构造函数f (x )=x -sin x ,x ∈0,π2 ,利用导数判断单调性,即可得到a <b ;根据结构构造函数g (x )=ln x +1-x ,利用导数判断单调性,即可得到a <c ;根据结构构造函数h (x )=ln(x +1)-3x 3+x ,利用导数判断单调性,即可得到c <b .【详解】构造函数f (x )=x -sin x ,x ∈0,π2 ,则f (x )=1-cos x ≥0,故函数y =f (x )在0,π2 上单调递增,故f 111 >f (0)=0,即111>sin 111,又331>111,故a <b .构造函数g (x )=ln x +1-x ,则g (x )=1x-1,易知函数y =g (x )在x =1处取得最大值g (1)=0,故g 1011 <0,即ln 1011+1-1011<0,即111<-ln 1011=ln 1110=ln1.1,由前面知sin 111<111,故a <c .构造函数h (x )=ln (x +1)-3x 3+x ,则h (x )=1x +1-9(3+x )2=(3+x )2-9(x +1)(x +1)(3+x )2=x (x -3)(x +1)(3+x )2,故知函数y =h (x )在(0,3)上单调递减,故h (0.1)<h (0)=0,即ln1.1<0.33.1=331,故c <b .综上,a <c <b .故选:B .例14.(2022·全国·高三阶段练习)已知函数f (x )及其导函数f (x )的定义域均为R ,且f (x )为偶函数,f π6 =-2,3f (x )cos x +f (x )sin x >0,则不等式f x +π2 cos 3x -14>0的解集为( )A.-π3,+∞ B.-2π3,+∞ C.-2π3,π3 D.π3,+∞ 【答案】B 【分析】令g x =f x sin 3x -14,结合题设条件可得g x 为R 上的增函数,而原不等式即为g x +π2>0,从而可求原不等式的解集.【详解】f x +π2 cos 3x -14>0可化为f x +π2 sin 3x +π2 -14>0,令g x =f x sin 3x -14,则g x =f x sin 3x +3f x sin 2x cos x =sin 2x f (x )sin x +3f x cos x ,因为3f (x )cos x +f (x )sin x >0,故g x ≥0(不恒为零),故g x 为R 上的增函数,故f x +π2 cos 3x -14>0即为g x +π2>0,而g -π6 =f -π6 sin 3-π6 -14=f π6 sin 3-π6 -14=0,故g x +π2 >0的解为x +π2>-π6,故x >-2π3即f x +π2 cos 3x -14>0的解为-2π3,+∞ .故选:B .【题型】六、构造函数cos x 与函数f (x )型例15.已知函数f x 的定义域为-π2,π2,其导函数是f (x ).有f (x )cos x +f (x )sin x <0,则关于x 的不等式3f (x )<2f π6cos x 的解集为()A.π3,π2 B.π6,π2 C.-π6,-π3 D.-π2,-π6【答案】B【分析】令F x =f x cos x ,根据题设条件,求得F 'x <0,得到函数F x =f x cos x 在-π2,π2内的单调递减函数,再把不等式化为f x cos x <f π6 cos π6,结合单调性和定义域,即可求解.【详解】由题意,函数f x 满足f 'x cos x +f x sin x <0,令F x =f x cos x ,则F 'x =f 'x cos x +f x sin x cos 2x<0函数F x =f x cos x 是定义域-π2,π2内的单调递减函数,由于cos x >0,关于x 的不等式3f (x )<2f π6 cos x 可化为f x cos x <f π6 cos π6,即F x <F π6 ,所以-π2<x <π2且x >π6,解得π2>x >π6,不等式3f (x )<2f π6 cos x 的解集为π6,π2 .故选:B 例16.(2021·重庆·高二期末)已知f x 的定义域为(0,+∞)且满足f x >0,f x 为f x 的导函数,f x -f x =e x (x +cos x ),则下列结论正确的是( )A.f x 有极大值无极小值B.f x 无极值C.f x 既有极大值也有极小值D.f x 有极小值无极大值【答案】B【解析】令F x =f xe x,根据题意得到Fx =x+cos x,设g x =x+cos x,x>0,利用导数求得g x 在区间(0,+∞)单调递增,得到F x >0,由f x =e x⋅F x ,得到f x >0,即函数f x 为单调递增函数,得到函数无极值.【详解】令F x =f xe x,x>0,可得F x =f x -f xe x,因为f x -f x =e x(x+cos x),可得F x =x+cos x,设g x =x+cos x,x>0,可得g x =1-sin x≥0,所以g x 在区间(0,+∞)单调递增,又由g0 =1,所以g x >g0 =1,所以F x >0,所以F x 单调递增,因为f x >0且e x>0 ,可得F x >0,因为F x =f xe x,可得f x =ex⋅F x ,x>0,则f x =e x F x +F x>0,所以函数f x 为单调递增函数,所以函数f x 无极值.故选:B.【题型】七、构造e n与af(x)+bf(x)型例17.(2022·陕西·西安中学高二期中)已知定义在R上的函数f x 的导函数f x ,且f x <f x < 0,则( )A.ef2 >f1 ,f2 >ef1B.ef2 >f1 ,f2 <ef1C.ef2 <f1 ,f2 <ef1D.ef2 <f1 ,f2 >ef1【答案】D【分析】据已知不等式构造函数,结合导数的性质进行求解即可.【详解】构造函数g(x)=f(x)e x⇒g (x)=f (x)-f(x)e x,因为f x <fx ,所以g (x)>0,因此函数g(x)是增函数,于是有g(2)>g(1)⇒f(2)e2>f(1)e⇒f(2)>ef(1),构造函数h(x)=f(x)⋅e x⇒h (x)=e x[f(x)+f (x)],因为f x <f x <0,所以h (x)<0,因此h(x)是单调递减函数,于是有h(2)<h(1)⇒e2f(2)<ef(1)⇒ef(2)<f(1),故选:D例18.(2022·河南·高三阶段练习(文))已知函数f x =ax-e x-k,其中e为自然对数的底数,若k∈-1,e2时,函数f x 有2个零点,则实数a的可能取值为( )A.eB.2eC.e 2D.3e【答案】D【分析】由题意可知方程ax -e x =k ,k ∈-1,e 2 有两个实数根,令g (x )=ax -e x ,则g (x )的图象与直线y =k ,k ∈-1,e 2 有两个交点,结合导数分析函数g (x )的单调性与极值情况即可解决问题.【详解】由题意可知方程ax -e x =k ,k ∈-1,e 2 有两个实数根,令g (x )=ax -e x ,则g (x )的图象与直线y =k ,k ∈-1,e 2 有两个交点,g (x )=a -e x .(1)若a ≤0,g (x )<0在R 上恒成立,所以g (x )在R 上单调递减,g (x )的图象与直线y =k ,k ∈-1,e 2 至多只有一个交点,不合题意;(2)若a >0,当x <ln a 时,g (x )>0,当x >ln a 时,g (x )<0,所以g (x )的单调递增区间是(-∞,ln a ),单调递减区间是(ln a ,+∞),所以当x =ln a 时,g (x )取得极大值,也是最大值,为a ln a -a .当x →-∞时,g (x )→-∞,当x →+∞时,g (x )→-∞,所以要使g (x )的图象与直线y =k ,k ∈-1,e 2 有两个交点,只需a ln a -a >e 2.a ln a -a =a (ln a -1),当0<a ≤e 时,a ln a -a ≤0,当a >e 时,a ln a -a >0,所以a ln a -a >e 2,a >e ,设h (a )=a ln a -a ,a >e ,则h (a )=ln a >0,所以h (a )在(e ,+∞)上单调递增,而h e 2 =e 2,所以a ln a -a >e 2的解为a >e 2,而3e >e 2,故选:D .例19.(2023·全国·高三专题练习)已知定义在R 上的偶函数y =f (x )的导函数为y =f (x ),当x >0时,f (x )+f (x )x <0,且f (2)=-3,则不等式f (2x -1)<-62x -1的解集为( )A.-∞,12 ∪32,+∞ B.32,+∞C.12,32D.-12,12 ∪12,32【答案】A【分析】根据题干中的不等式,构造函数F x =xf x ,结合y =f (x )在在R 上为偶函数,得到F x =xf x 在R 上单调递减,其中F 2 =2f 2 =-6,分x >12与x <12,对f (2x -1)<-62x -1变形,利用函数单调性解不等式,求出解集.【详解】当x >0时,f(x )+f (x )x =xf (x )+f (x )x<0,所以当x >0时,xf (x )+f (x )<0,令F x =xf x ,则当x >0时,F x =xf (x )+f (x )<0,故F x =xf x 在x >0时,单调递减,又因为y=f(x)在在R上为偶函数,所以F x =xf x 在R上为奇函数,故F x =xf x 在R上单调递减,因为f(2)=-3,所以F2 =2f2 =-6,当x>12时,f(2x-1)<-62x-1可变形为2x-1f(2x-1)<-6,即F2x-1<F2 ,因为F x =xf x 在R上单调递减,所以2x-1>2,解得:x>3 2,与x>12取交集,结果为x>32;当x<12时,f(2x-1)<-62x-1可变形为2x-1f(2x-1)>-6,即F2x-1>F2 ,因为F x =xf x 在R上单调递减,所以2x-1<2,解得:x<3 2,与x<12取交集,结果为x<12;综上:不等式f(2x-1)<-62x-1的解集为-∞,12∪32,+∞.故选:A例20.(2022·全国·高三阶段练习(理))已知函数f x =x3-x+2+e x-e-x,其中e是自然对数的底数,若f a-2+f a2>4,则实数a的取值范围是( )A.-2,1B.-∞,-2C.1,+∞D.-∞,-2∪1,+∞【答案】D【分析】构造函数g(x)=f x -2,利用奇偶性的定义、导数的符号变化判定其奇偶性和单调性,再将f (a-2)+f(a2)>4变为g(a-2)>g(-a2),利用g(x)的单调性进行求解.【详解】构造函数g(x)=f x -2=x3-x+e x-e-x,因为g(x)的定义域为(-∞,+∞),且g-x= -x3--x+e-x-e x=-x3+x-e x+e-x=-(x3-x+e x-e-x)=-g(x),即g(x)是奇函数,又g x =3x2-1+e x+e-x≥3x2-1+2e x⋅e-x=3x2+1>0,所以g(x)在 (-∞,+∞)上单调递增;因为f(a-2)+f(a2)>4,所以f(a-2)-2>-[f(a2)-2],即g(a-2)>-g(a2),即g(a-2)>g(-a2),所以a-2>-a2,即a2+a-2>0,解得a>1或a<-2,即a∈(-∞,-2)∪(1,+∞).故选:D.【点睛】方法点睛:利用函数的性质解决不等式问题时,往往要利用题干中的表达式或不等式的结构特点合理构造函数,如本题中,构造函数g(x)=f x -2,将问题转化为利用函数的奇偶性和单调性求g(a-2)>-g(a2)的解集.【题型】八、构造kx+b与f(x)型例21.(2022·河南·高三阶段练习(文))已知定义在0,+∞上的函数f x 的导函数为f x ,若f x < 2,且f4 =5,则不等式f2x>2x+1-3的解集是( )A.0,2B.0,4C.-∞,2D.-∞,4【答案】C【分析】根据所求不等式f2x>2x+1-3的形式,构造函数g x =f x -2x+3,利用题目中的条件判断出g x 在0,+∞上单调递减,进而将所求转化为g2x>g4 ,再利用单调性求出解集.【详解】设g x =f x -2x+3,则g x =f x -2.因为f x <2,所以f x -2<0,即g x <0,所以g x 在0,+∞上单调递减.不等式f2x>2x+1-3等价于不等式f2x-2×2x+3>0,即g2x>0.因为f4 =5,所以g4 =f4 -2×4+3=0,所以g2x>g4 .因为g x 在0,+∞上单调递减,所以2x<4,解得x<2.故选:C.例22.(2022·河南·襄城高中高二阶段练习(理))已知奇函数f x 的定义域为R,其函数图象连续不断,当x>0时,x+2f x +xf x >0,则( )A.f14e>f2 B.f2 <0 C.f-3⋅f1 >0 D.f-1e>4f-2【答案】D【解析】令g x =x2e x f x ,根据导数可知其在0,+∞上单调递增,由g2 >g1 >g0 =0可知AB错误,同时得到f1e<4f2 ,f1 >0,f3 >0,结合奇偶性知C错误,D正确.【详解】对于AB,令g x =x2e x f x ,则g0 =0,g x =x x+2e xf x +x2e x f x ,当x≥0时,g x =xe x x+2⋅f x +xf x≥0,∴g x 在0,+∞上单调递增,∴g0 <g1 <g2 ,即0<ef1 <4e2f2 ,∴f2 >0,f14e<f2 ,AB错误;对于C,由A的推理过程知:当x>0时,g x =x2e x f x >0,则当x>0时,f x >0,∴f1 >0,f3 >0,又f x 为奇函数,∴f-3=-f3 <0,∴f-3⋅f1 <0,C错误.对于D,由A的推理过程知:f1e<4f2 ,又f-1=-f1 ,f-2=-f2 ,∴-f-1e<-4f-2,则f-1e>4f-2,D正确.故选:D.【题型】九、构造ln kx+b型例23.(2023·全国·高三专题练习)定义在(0,+∞)上的函数f(x)满足xf x +1>0,f2 =ln 12,则不等式f(e x)+x>0的解集为( )A.(0,2ln2)B.(0,ln2)C.(ln2,1)D.(ln2,+∞)【答案】D【分析】构造新函数g(x)=f(x)+ln x,(x>0),利用导数说明其单调性,将f(e x)+x>0变形为g(e x) >g(2),利用函数的单调性即可求解.【详解】令g(x)=f(x)+ln x,(x>0) ,则g (x)=f (x)+1x=xf x +1x,由于xf x +1>0,故g (x)>0,故g(x)在(0,+∞)单调递增,而g(2)=f(2)+ln2=ln 12+ln2=0 ,由f(e x)+x>0,得g(e x)>g(2) ,∴e x>2 ,即x>ln2 ,∴不等式f(e x)+x>0的解集为(ln2,+∞),故选:D.例24.(2022·河南·高三阶段练习(理))设a=cos 12,b=78,c=ln158,则a,b,c之间的大小关系为( )A.c<b<aB.c<a<bC.b<c<aD.a<c<b 【答案】A【分析】构造函数g x =ln x+1-x,f x =cos x-1-x2 2,借助函数的单调性分别得出c<b与a>b,从而得出答案.【详解】构造函数g x =ln x+1-x,x>-1,则g x =1x+1-1=-xx+1,当-1<x<0时,g x >0,g x 单调递增,当x>0时,g x <0,g x 单调递减,∴g x ≤g 0 =0,∴ln x +1 ≤x (当x =0时等号成立),∴ln 158=ln 78+1 <78,则c <b ,构造函数f x =cos x -1-12x 2 ,0<x <1,则f x =x -sin x ,令φx =x -sin x ,0<x <1,∴φ x =1-cos x >0,φx 单调递增,∴φx >φ0 =0,∴f x >0,f x 单调递增,从而f x >f 0 =0,∴f 12 >0,即cos 12>1-12⋅122=78,则a >b .∴c <b <a .故选:A .例25.(2022·贵州·高三阶段练习(理))已知命题p :在△ABC 中,若A >π4,则sin A >22,命题q :∀x >-1,x ≥ln (x +1).下列复合命题正确的是( )A.p ∧q B.(¬p )∧(¬q )C.(¬p )∧qD.p ∧(¬q )【答案】C【分析】命题p 可举出反例,得到命题p 为假命题,构造函数证明出q :∀x >-1,x ≥ln (x +1)成立,从而判断出四个选项中的真命题.【详解】在△ABC 中,若A =5π6,此时满足A >π4,但sin A =12<22,故命题p 错误;令f x =x -ln x +1 ,x >-1,则f x =1-1x +1=xx +1,当x >0时,f x >0,当-1<x <0时,f x <0,所以f x 在x >0上单调递增,在-1<x <0上单调递减,所以f x 在x =0处取得极小值,也是最小值,f 0 =0-ln 0+1 =0,所以q :∀x >-1,x ≥ln (x +1)成立,为真命题;故p ∧q 为假命题,(¬p )∧(¬q )为假命题,(¬p )∧q 为真命题,p ∧(¬q )为假命题.故选:C【题型】十、构造综合型例26.(2022·全国·高三阶段练习(理))下列命题为真命题的个数是( )①log 32>23;②e lnπ<π;③sin 12>2348;④3e ln2<4 2.A.1 B.2C.3D.4【答案】C【分析】利用指数式与对数的互化、对数函数的单调性推得①错误;构造函数f x =ln xx,利用导数研究其单调性和最值,进而判定②④正确;构造函数h(x)=sin x-x+16x3,x∈0,π2,利用二次求导确定其单调性,利用h 12 >h(0)得到③正确.【详解】对于①:若log32>23,则2>323,即8>9,显然不成立,故①错误;对于②:将e lnπ<π变为lnππ<ln ee,构造f x =ln xx,则f x =1-ln xx2,则当0<x<e时,f x >0,x>e时,f x <0,所以f x =ln xx在(0,e)上单调递增,在(e,+∞)上单调递减,则x=e时,f x 取得最大值1 e,由fπ <f e 得lnππ<ln ee,即e lnπ<π成立,故②正确;对于③:令h(x)=sin x-x+16x3,x∈0,π2,则g x =h x =cos x-1+12x2,t x =g x =-sin x+1,因为t x =g x =-sin x+1>0在0,π2成立,所以g x =h x =cos x-1+12x2在0,π2上单调递增,又g(0)=cos0-1+0=0,所以g x =h x >0在0,π2上成立,即h(x)=sin x-x+16x3在在0,π2上单调递增,所以h 12 >h(0),即sin12-2348>0,即sin12>2348,故③正确;对于④:将3e ln2<42变为ln2222<ln e e,由②得f22<f e ,即ln2222<ln e e,即3e ln2<42成立,故④正确;综上所述,真命题的个数为3.故选:C.【点睛】方法点睛:利用函数的单调性解决不等式问题时,往往要利用题干中的不等式的结构特点合理构造函数,如本题中证明e lnπ<π、3e ln2<42构造函数f x =ln xx,证明sin12>2348构造h(x)=sin x -x +16x 3,x ∈0,π2,将问题转化为利用导数研究函数的单调性问题.例27.(2022·江苏·南京师大附中高三期中)已知函数f x =ln x -ax 2,则下列结论正确的有( )A.当a <12e 时,y =f x 有2个零点B.当a >12e 时,f x ≤0恒成立C.当a =12时,x =1是y =f x 的极值点D.若x 1,x 2是关于x 的方程f x =0的2个不等实数根,则x 1x 2>e 【答案】BCD【分析】对于A 和B ,由f x =0可得a =ln x x 2,令g x =ln xx 2,利用导数得到g x 的单调性和最值情况即可判断;对于C ,将a =12代入f x ,利用导数得到f x 的单调性即可判断;对于D ,问题转化为2at =ln t 有两个零点,证明t 1t 2>e 2,进而只需要证明ln t 1+ln t 2>2,也即是ln t 1t 2>2t1t 2-1 t 1t 2+1,从而令m =t 1t 2>1,构造函数s m =ln m -2m -1 m +1m >1 求出最值即可【详解】对于A ,令f x =ln x -ax 2=0即a =ln xx 2,令g x =ln x x 2,x >0,则g x =1x⋅x 2-ln x ⋅2x x 2 2=1-2ln x x 3,令g x =0,解得x =e ,故当x ∈0,e ,g x >0,g x 单调递增;当x ∈e ,+∞ ,g x <0,g x 单调递减;所以g x 的最大值为g e =12e,又因为当x <1时,g x =ln x x 2<0;当x >1时,g x =ln xx 2>0,故g x 如图所示,当0<a <12e时,函数y =a 与g x 有两个交点,此时y =f x 有2个零点,故A 错误;对于B ,由A 选项可得g x =ln x x2≤12e ,当a >12e 时,由a >ln xx 2,可整理得ln x -ax 2<0,即f x <0,故B 正确;对于C ,将a =12代入f x 得f x =ln x -12x 2,x >0,所以f x =1x -x =1-x 2x,令f x =0,解得x =1,故当x ∈0,1 ,f x >0,f x 单调递增;当x ∈1,+∞ ,f x <0,f x 单调递减;所以x=1是y=f x 的极大值点,故C正确;对于D,由f x =ln x-ax2=0即ax=ln x x,因为x1,x2是关于x的方程f x =0的2个不等实数根,所以ax1=ln x1x1ax2=ln x2x2,即2ax21=ln x212ax22=ln x22,所以等价于:2at=ln t有两个零点,证明t1t2>e2,不妨令t1>t2>0,由2at1=ln t12at2=ln t2⇒2a=ln t1-ln t2t1-t2,要证t1t2>e2,只需要证明ln t1+ln t2>2,即只需证明:ln t1+ln t2=2a t1+t2=t1+t2ln t1-ln t2t1-t2>2,只需证明:ln t1-ln t2>2t1-t2t1+t2,即lnt1t2>2t1t2-1t1t2+1,令m=t1t2>1,只需证明:ln m>2m-1m+1m>1,令s m=ln m-2m-1m+1m>1,则s m=m-12m m+12>0,即s m在1,+∞上为增函数,又s1 =0,所以s m>s1 =0.综上所述,原不等式成立,即x1x2>e成立,故D正确,故选:BCD【点睛】方法点睛:对于利用导数研究函数的综合问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.例28.(2022·黑龙江·齐齐哈尔市实验中学高三阶段练习)已知函数f x 的定义域是0,+∞,f x 是f x 的导数,若f x =xf x -x,f 1 =1,则下列结论正确的是( )A.f x 在0,1e上单调递减 B.f x 的最大值为eC.f x 的最小值为-1eD.存在正数x0,使得f x0<ln x0【答案】AC【分析】构造g x =f xx,得到g x =1x,从而得到g x =ln x+c,结合f 1 =1,得到f x =x ln x,求导得到f x =ln x+1,从而得到函数的单调性和极值,最值情况,判断出ABC选项;解不等式x-1ln x<0得到解集为∅,故D错误.【详解】由f x =xf x -x得f x =f xx+1,设g x =f xx,则g x =xf x -f xx2=xf xx+1-f xx2=1x.设c为常数,则ln x+c=1 x,∴g x =ln x+c,∴f x =xg x =x ln x+cx.∵f 1 =1,∴f1 =0,∴c=0,所以f x =x ln x,∴f x =ln x+1.当0<x<1e时,f x <0,f x 单调递减,当x>1e时,f x >0,f x 单调递增.∵f 1e =0,∴f x 在x=1e时取得极小值,也是最小值-1e,f x 无最大值.∴A正确,B错误,C正确,由f x <ln x得x ln x<ln x,∴x-1ln x<0.当0<x<1时,x-1<0,ln x<0,x-1ln x>0.当x=1时,x-1ln x=0.当x>1时,x-1>0,ln x>0,x-1ln x>0.因此不等式x-1ln x<0即f x <ln x的解集是∅.所以D错误.故选:AC【点睛】当条件中出现类似f x =xf x -x的条件时,通常要构造函数来解决问题,本题中的难点是利用f x =f xx+1来构造g x =f xx,从而结合f 1 =1求出f x =x ln x.例29.(2023·全国·高三专题练习)已知函数f x =x e x+1,g x =x+1ln x,若f x1=g x2>0,则x2x1可取( )A.1B.2C.eD.e2【答案】CD【分析】由g x =x+1ln x=ln x e ln x+1,利用同构结合f x 在(0,+∞)上单调递增,即可得到x1=ln x2,则x2x1=e x1x1,x1>0,记h(x)=e xx,(x>0),求出h (x)即可判断h(x)在(0,+∞)上的单调性,即可得出x2x1≥e,由此即可选出答案.【详解】因为f x1=g x2>0,所以x1>0,x2>1,因为f x =e x+1+xe x=(x+1)e x+1>0恒成立,所以f x 在(0,+∞)上单调递增,又g x =x+1ln x=ln x e ln x+1,因为f x1=g x2,即x1e x1+1=ln x2e ln x2+1,所以x1=ln x2⇒x2=e x1,所以x2x1=e x1x1,x1>0,记h(x)=e xx,(x>0),所以h (x)=e x(x-1)x2当0<x<1时,h (x)<0,h(x)单调递减,当x>1时,h (x)>0,h(x)单调递增,所以h(x)≥h(1)=e,即x2x1≥e故选:CD.【点睛】本题考查利用导数求函数的最值,属于难题,其中将g x =x+1ln x=ln x e ln x+1变形为f x =x e x+1的结构,是解本题的关键.。
专题06 构造函数法解决导数不等式问题(一)以抽象函数为背景、题设条件或所求结论中具有“f (x )±g (x ),f (x )g (x ),f (x )g (x )”等特征式、旨在考查导数运算法则的逆向、变形应用能力的客观题,是近几年高考试卷中的一位“常客”,常以压轴题小题的形式出现,解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.导数是函数单调性的延伸,如果把题目中直接给出的增减性换成一个f ′(x ),则单调性就变的相当隐晦了,另外在导数中的抽象函数不等式问题中,我们要研究的往往不是f (x )本身的单调性,而是包含f (x )的一个新函数的单调性,因此构造函数变的相当重要,另外题目中若给出的是f ′(x )的形式,则我们要构造的则是一个包含f (x )的新函数,因为只有这个新函数求导之后才会出现f ′(x ),因此解决导数抽象函数不等式的重中之重是构造函数.构造函数是数学的一种重要思想方法,它体现了数学的发现、类比、化归、猜想、实验和归纳等思想.分析近些年的高考,发现构造函数的思想越来越重要,而且很多都用在压轴题(无论是主观题还是客观题)的解答上.构造函数的主要步骤:(1)分析:分析已知条件,联想函数模型;(2)构造:构造辅助函数,转化问题本质;(3)回归:解析所构函数,回归所求问题.考点一 构造F (x )=x n f (x )(n ∈Z ,且n ≠0)类型的辅助函数【方法总结】(1)若F (x )=x n f (x ),则F ′(x )=nx n -1f (x )+x n f ′(x )=x n -1[nf (x )+xf ′(x )];(2)若F (x )=f (x )x n ,则F ′(x )=f ′(x )x n -nx n -1f (x )x 2n =xf ′(x )-nf (x )x n +1. 由此得到结论:(1)出现nf (x )+xf ′(x )形式,构造函数F (x )=x n f (x );(2)出现xf ′(x )-nf (x )形式,构造函数F (x )=f (x )xn . 【例题选讲】[例1](1)已知f (x )的定义域为(0,+∞),f ′(x )为f (x )的导函数,且满足f (x )<-xf ′(x ),则不等式f (x +1)>(x -1)f (x 2-1)的解集是( )A .(0,1)B .(1,+∞)C .(1,2)D .(2,+∞)答案 D 解析 因为f (x )<-xf ′(x ),所以f (x )+xf ′(x )<0,即(xf (x ))′<0,所以函数y =xf (x )在(0,+∞)上单调递减.由不等式f (x +1)>(x -1)f (x 2-1),可得(x +1)f (x +1)>(x 2-1)f (x 2-1),所以⎩⎪⎨⎪⎧ x +1>0,x 2-1>0,x 2-1>x +1,解得x >2.选D . (2)已知函数f (x )是定义在区间(0,+∞)上的可导函数,其导函数为f ′(x ),且满足xf ′(x )+2f (x )>0,则不等式(x +2 021)f (x +2 021)5<5f (5)x +2 021的解集为( ) A .{x |x >-2 016} B .{x |x <-2 016} C .{x |-2 016<x <0} D .{x |-2 021<x <-2 016} 答案 D 解析 构造函数g (x )=x 2f (x ),则g ′(x )=x [2f (x )+xf ′(x )].当x >0时,∵2f (x )+xf ′(x )>0,∴g ′(x )>0,∴g (x )在(0,+∞)上单调递增.∵不等式(x +2 021)f (x +2 021)5<5f (5)x +2 021,∴当x +2 021>0,即x >-2 021时,(x +2 021)2f (x +2 021)<52f (5),即g (x +2 021)<g (5),∴0<x +2 021<5,∴-2 021<x <-2 016.(3)(2015·全国Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)答案 A 解析 设y =g (x )=f (x )x (x ≠0),则g ′(x )=xf ′(x )-f (x )x 2,当x >0时,xf ′(x )-f (x )<0,∴g ′(x )<0,∴g (x )在(0,+∞)上为减函数,且g (1)=f (1)=-f (-1)=0.∵f (x )为奇函数,∴g (x )为偶函数,∴g (x )的图象的示意图如图所示.当x >0时,由f (x )>0,得g (x )>0,由图知0<x <1,当x <0时,由f (x )>0,得g (x )<0,由图知x <-1,∴使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),故选A .(4)设f (x )是定义在R 上的偶函数,当x <0时,f (x )+xf ′(x )<0,且f (-4)=0,则不等式xf (x )>0的解集为________.答案 (-∞,-4)∪(0,4) 解析 构造F (x )=xf (x ),则F ′(x )=f (x )+xf ′(x ),当x <0时,f (x )+xf ′(x )<0,可以推出当x <0时,F ′(x )<0,∴F (x )在(-∞,0)上单调递减.∵f (x )为偶函数,x 为奇函数,∴F (x )为奇函数,∴F (x )在(0,+∞)上也单调递减.根据f (-4)=0可得F (-4)=0,根据函数的单调性、奇偶性可得函数图象如图所示,根据图象可知xf (x )>0的解集为(-∞,-4)∪(0,4).(5)已知f (x )是定义在区间(0,+∞)内的函数,其导函数为f ′(x ),且不等式xf ′(x )<2f (x )恒成立,则( )A .4f (1)<f (2)B .4f (1)>f (2)C .f (1)<4f (2)D .f (1)>4f ′(2)答案 B 解析 令g (x )=f (x )x 2(x >0),则g ′(x )=xf ′(x )-2f (x )x 3,由不等式xf ′(x )<2f (x )恒成立知g ′(x )<0,即g (x )在(0,+∞)是减函数,∴g (1)>g (2),即f (1)1>f (2)4,即4f (1)>f (2),故选B . (6)已知定义域为R 的奇函数y =f (x )的导函数为y =f ′(x ),当x >0时,xf ′(x )-f (x )<0,若a =f (e )e ,b =f (ln 2)ln 2,c =f (-3)-3,则a ,b ,c 的大小关系正确的是( ) A .a <b <c B .b <c <a C .a <c <b D .c <a <b答案 D 解析 设g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2,当x >0时,xf ′(x )-f (x )<0,则g ′(x )=xf ′(x )-f (x )x 2<0,即函数g (x )在x ∈(0,+∞)时为减函数.由函数y =f (x )为奇函数知f (-3)=-f (3),则c =f (-3)-3=f (3)3.∵a =f (e )e =g (e),b =f (ln 2)ln 2=g (ln 2),c =f (3)3=g (3)且3>e >ln 2,∴g (3)<g (e)<g (ln 2),即c <a <b ,故选D . 【对点训练】1.设函数f (x )是定义在(-∞,0)上的可导函数,其导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则不等式(x +2 021)2f (x+2 021)-4f (-2)>0的解集为( )A .(-∞,-2 021)B .(-∞,-2 023)C .(-2 023,0)D .(-2 021,0)1.答案 B 解析 由2f (x )+xf ′(x )>x 2,结合x ∈(-∞,0)得2xf (x )+x 2f ′(x )<x 3<0,故[x 2f (x )]′<0,设g (x )=x 2f (x ),则g (x )在(-∞,0)上单调递减,(x +2 021)2f (x +2 021)-4f (-2)>0可化为(x +2 021)2f (x +2 021)>(-2)2f (-2),所以⎩⎪⎨⎪⎧ x +2 021<-2,x +2 021<0,解得x <-2 023.故选B .2.设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-2)=0,当x >0时,xf ′(x )-f (x )>0,则使得f (x )>0成立的x的取值范围是________.2.答案 (-2,0)∪(2,+∞) 解析 令g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2>0,x ∈(0,+∞).所以函数g (x ) 在(0,+∞)上单调递增.又g (-x )=f (-x )-x =-f (x )-x=f (x )x =g (x ),则g (x )是偶函数,g (-2)=0=g (2).则f (x )=xg (x )>0⇔⎩⎪⎨⎪⎧ x >0,g (x )>0或⎩⎪⎨⎪⎧x <0,g (x )<0.解得x >2或-2<x <0,故不等式f (x )>0的解集为(-2,0)∪(2,+∞). 3.已知偶函数f (x )(x ≠0)的导函数为f ′(x ),且满足f (-1)=0,当x >0时,2f (x )>xf ′(x ),则使得f (x )>0成立的x 的取值范围是________.3.答案 (-1,0)∪(0,1) 解析 构造F (x )=f (x )x 2,则F ′(x )=f ′(x )·x -2f (x )x 3,当x >0时,xf ′(x )-2f (x )<0, 可以推出当x >0时,F ′(x )<0,F (x )在(0,+∞)上单调递减.∵f (x )为偶函数,x 2为偶函数,∴F (x )为偶函数,∴F (x )在(-∞,0)上单调递增.根据f (-1)=0可得F (-1)=0,根据函数的单调性、奇偶性可得函数图象如图所示,根据图象可知f (x )>0的解集为(-1,0)∪(0,1).4.设f (x )是定义在R 上的偶函数,且f (1)=0,当x <0时,有xf ′(x )-f (x )>0恒成立,则不等式f (x )>0的 解集为________.4.答案 (-∞,-1)∪(1,+∞) 解析 构造F (x )=f (x )x ,则F ′(x )=f ′(x )·x -f (x )x 2,当x <0时,xf ′(x )-f (x ) >0,可以推出当x <0时,F ′(x )>0,F (x )在(-∞,0)上单调递增.∵f (x )为偶函数,x 为奇函数,∴F (x )为奇函数,∴F (x )在(0,+∞)上也单调递增.根据f (1)=0可得F (1)=0,根据函数的单调性、奇偶性可得函数图象,根据图象可知f (x )>0的解集为(-∞,-1)∪(1,+∞).5.设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集 是________________.5.答案 (-∞,-2)∪(0,2) 解析 ∵当x >0时,⎣⎡⎦⎤f (x )x ′=xf ′(x )-f (x )x 2<0,∴φ(x )=f (x )x在(0,+∞)上为 减函数,又f (2)=0,即φ(2)=0,∴在(0,+∞)上,当且仅当0<x <2时,φ(x )>0,此时x 2f (x )>0.又f (x )为奇函数,∴h (x )=x 2f (x )也为奇函数,由数形结合知x ∈(-∞,-2)时f (x )>0.故x 2f (x )>0的解集为(-∞,-2)∪(0,2).6.设f (x )是定义在R 上的奇函数,且f (2)=0,当x >0时,xf ′(x )-f (x )x 2<0恒成立,则不等式f (x )x>0的解集 为( )A .(-2,0)∪(2,+∞)B .(-2,0)∪(0,2)C .(-∞,-2)∪(0,2)D .(-∞,-2)∪(2,+∞)6.答案 B 解析 设g (x )=f (x )x ,则g ′(x )=⎣⎡⎦⎤f (x )x ′=xf ′(x )-f (x )x 2,当x >0时,g ′(x )<0,所以函数g (x )=f (x )x 在(0,+∞)上单调递减.因为f (x )是奇函数,所以g (x )=f (x )x是偶函数.因为f (2)=0,所以f (-2)=0.所以不等式f (x )x>0的解集为(-2,0)∪(0,2).故选B . 7.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )-f (x )<0,对任意正数a ,b ,若a <b ,则必有( )A .af (b )<bf (a )B .bf (a )<af (b )C .af (a )<bf (b )D .bf (b )<af (a )7.答案 A 解析 设函数F (x )=f (x )x (x >0),则F ′(x )=[f (x )x ]′=xf ′(x )-f (x )x 2.因为x >0,xf ′(x )-f (x )<0,所 以F ′(x )<0,故函数F (x )在(0,+∞)上为减函数.又0<a <b ,所以F (a )>F (b ),即f (a )a >f (b )b,则bf (a )>af (b ).8.设函数f (x )的导函数为f ′(x ),对任意x ∈R ,都有xf ′(x )<f (x )成立,则( )A .3f (2)>2f (3)B .3f (2)=2f (3)C .3f (2)<2f (3)D .3f (2)与2f (3)大小不确定8.答案 A 解析 令F (x )=f (x )x ,则F ′(x )=xf ′(x )-f (x )x 2<0,所以F (x )为减函数,则f (2)2>f (3)3.所以3f (2)>2f (3). 9.定义在区间(0,+∞)上的函数y =f (x )使不等式2f (x )<xf ′(x )<3f (x )恒成立,其中y =f ′(x )为y =f (x )的导函数,则( )A .8<f (2)f (1)<16B .4<f (2)f (1)<8C .3<f (2)f (1)<4D .2<f (2)f (1)<3 9.答案 B 解析 ∵xf ′(x )-2f (x )>0,x >0,∴⎣⎡⎦⎤f (x )x 2′=f ′(x )·x 2-2xf (x )x 4=xf ′(x )-2f (x )x 3>0,∴y =f (x )x 2在(0,+ ∞)上单调递增,∴f (2)22>f (1)12,即f (2)f (1)>4.∵xf ′(x )-3f (x )<0,x >0,∴⎣⎡⎦⎤f (x )x 3′=f ′(x )·x 3-3x 2f (x )x 6=xf ′(x )-3f (x )x 4<0,∴y =f (x )x 3在(0,+∞)上单调递减,∴f (2)23<f (1)13,即f (2)f (1)<8,综上,4<f (2)f (1)<8. 考点二 构造F (x )=e nx f (x )(n ∈Z ,且n ≠0)类型的辅助函数【方法总结】(1)若F (x )=e nx f (x ),则F ′(x )=n ·e nx f (x )+e nx f ′(x )=e nx [f ′(x )+nf (x )];(2)若F (x )=f (x )e nx ,则F ′(x )=f ′(x )e nx -n e nx f (x )e 2nx =f ′(x )-nf (x )e nx. 由此得到结论:(1)出现f ′(x )+nf (x )形式,构造函数F (x )=e nx f (x );(2)出现f ′(x )-nf (x )形式,构造函数F (x )=f (x )enx . 【例题选讲】[例1](1)若定义在R 上的函数f (x )满足f ′(x )+2f (x )>0,且f (0)=1,则不等式f (x )>1e 2x 的解集为 . 答案 (0,+∞) 解析 构造F (x )=f (x )·e 2x ,∴F ′(x )=f ′(x )·e 2x +f (x )·2e 2x =e 2x [f ′(x )+2f (x )]>0,∴F (x )在R 上单调递增,且F (0)=f (0)·e 0=1,不等式f (x )>1e 2x 可化为f (x )e 2x >1,即F (x )>F (0),∴x >0,∴原不等式的解集为(0,+∞).(2)定义域为R 的可导函数y =f (x )的导函数为f ′(x ),满足f (x )>f ′(x ),且f (0)=1,则不等式f (x )ex <1的解集为________.答案 {x |x >0} 解析 令g (x )=f (x )e x ,则g ′(x )=e x f ′(x )-(e x )′f (x )(e x )2=f ′(x )-f (x )e x.由题意得g ′(x )<0恒成立,所以函数g (x )=f (x )e x 在R 上单调递减.又g (0)=f (0)e 0=1,所以f (x )ex <1,即g (x )<g (0),所以x >0,所以不等式的解集为{x |x >0}.(3)若定义在R 上的函数f (x )满足f ′(x )-2f (x )>0,f (0)=1,则不等式f (x )>e 2x 的解集为________.答案 (0,+∞) 解析 构造F (x )=f (x )e 2x ,则F ′(x )=e 2x f ′(x )-2e 2x f (x )e 4x =f ′(x )-2f (x )e 2x,函数f (x )满足f ′(x )-2f (x )>0,则F ′(x )>0,F (x )在R 上单调递增.又∵f (0)=1,则F (0)=1,f (x )>e 2x ⇔f (x )e 2x >1⇔F (x )>F (0),根据单调性得x >0.(4)设定义域为R 的函数f (x )满足f ′(x )>f (x ),则不等式e x -1f (x )<f (2x -1)的解集为________.答案 (1,+∞) 解析 令g (x )=f (x )e x ,则g ′(x )=f ′(x )-f (x )ex >0,故g (x )在R 上单调递增,不等式e x -1f (x )<f (2x -1),即f (x )e x <f (2x -1)e2x -1,故g (x )<g (2x -1),故x <2x -1,解得x >1,所以原不等式的解集为(1,+∞). (5)定义在R 上的函数f (x )满足:f (x )>1-f ′(x ),f (0)=0,f ′(x )是f (x )的导函数,则不等式e x f (x )>e x -1(其中e 为自然对数的底数)的解集为( )A .(0,+∞)B .(-∞,-1)∪(0,+∞)C .(-∞,0)∪(1,+∞)D .(-1,+∞)答案 A 解析 设g (x )=e x f (x )-e x ,则g ′(x )=e x f (x )+e x f ′(x )-e x .由已知f (x )>1-f ′(x ),可得g ′(x )>0在R 上恒成立,即g (x )是R 上的增函数.因为f (0)=0,所以g (0)=-1,则不等式e x f (x )>e x -1可化为g (x )>g (0),所以原不等式的解集为(0,+∞).(6)定义在R 上的函数f (x )的导函数为f ′(x ),若对任意x ,有f (x )>f ′(x ),且f (x )+2 021为奇函数,则不等式f (x )+2 021e x <0的解集是( )A .(-∞,0)B .(0,+∞)C .⎝⎛⎭⎫-∞,1eD .⎝⎛⎭⎫1e ,+∞ 答案 B 解析 设h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x<0,所以h (x )是定义在R 上的减函数.因为f (x )+2 021为奇函数,所以f (0)=-2 021,h (0)=-2 021.因为f (x )+2 021e x <0,所以f (x )ex <-2 021,即h (x )<h (0),结合函数h (x )的单调性可知x >0,所以不等式f (x )+2 021e x <0的解集是(0,+∞).故选B .(7)已知定义在R 上的偶函数f (x )(函数f (x )的导函数为f ′(x ))满足f ⎝⎛⎭⎫x -12+f (x +1)=0,e 3f (2 021)=1,若f (x )>f ′(-x ),则关于x 的不等式f (x +2)>1ex 的解集为( ) A .(-∞,3) B .(3,+∞) C .(-∞,0) D .(0,+∞)答案 B 解析 ∵f (x )是偶函数,∴f (x )=f (-x ),f ′(x )=[]f (-x )′=-f ′(-x ),∴f ′(-x )=-f ′(x ),f (x )>f ′( -x )=-f ′(x ),即f (x )+f ′(x )>0,设g (x )=e x f (x ),则[]e x f (x )′=e x []f (x )+f ′(x )>0,∴g (x )在(-∞,+∞)上单调递增,由f ⎝⎛⎭⎫x -12+f (x +1)=0,得f (x )+f ⎝⎛⎭⎫x +32=0,f ⎝⎛⎭⎫x +32+f ()x +3=0,相减可得f (x )=f ()x +3,f (x )的周期为3,∴e 3f ()2 021=e 3f (2)=1,g (2)=e 2f (2)=1e ,f (x +2)>1e x ,结合f (x )的周期为3可化为e x -1f (x -1)>1e=e 2f (2),g (x -1)>g (2),x -1>2,x >3,∴不等式的解集为()3,+∞,故选B .(8)已知函数f (x )是定义在R 上的可导函数,f ′(x )为其导函数,若对于任意实数x ,有f (x )-f ′(x )>0,则( )A .e f (2 021)>f (2 022)B .e f (2 021)<f (2 022)C .e f (2 021)=f (2 022)D .e f (2 021)与f (2 022)大小不能确定答案 A 解析 令g (x )=f (x )e x ,则g ′(x )=e x f ′(x )-e x f (x )e 2x =f ′(x )-f (x )e x,因为f (x )-f ′(x )>0,所以g ′(x )<0,所以函数g (x )在R 上单调递减,所以g (2 021)>g (2 022),即f (2 021)e 2 021>f (2 022)e2 022,所以e f (2 021)>f (2 022),故选A .(9)已知f (x )是定义在(-∞,+∞)上的函数,导函数f ′(x )满足f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (2)>e 2f (0),f (2 021)>e 2 021f (0)B .f (2)<e 2f (0),f (2 021)>e 2 021f (0)C .f (2)>e 2f (0),f (2 021)<e 2 021f (0)D .f (2)<e 2f (0),f (2 021)<e 2 021f (0)答案 D 解析 构造F (x )=f (x )e x ,则F ′(x )=e x f ′(x )-e x f (x )e 2x =f ′(x )-f (x )e x,导函数f ′(x )满足f ′(x )<f (x ),则F ′(x )<0,F (x )在R 上单调递减,根据单调性可知选D .(10)已知函数f (x )在R 上可导,其导函数为f ′(x ),若f (x )满足:(x -1)[f ′(x )-f (x )]>0,f (2-x )=f (x )·e 2-2x ,则下列判断一定正确的是( )A .f (1)<f (0)B .f (2)>e 2f (0)C .f (3)>e 3f (0)D .f (4)<e 4f (0)答案 C 解析 构造F (x )=f (x )e x ,则F ′(x )=e x f ′(x )-e x f (x )e 2x =f ′(x )-f (x )e x,导函数f ′(x )满足(x -1)[f ′(x )-f (x )]>0,则x >1时F ′(x )>0,F (x )在[1,+∞)上单调递增.当x <1时F ′(x )<0,F (x )在(-∞,1]上单调递减.又由f (2-x )=f (x )e 2-2x ⇔F (2-x )=F (x )⇒F (x )关于x =1对称,从而F (3)>F (0)即f (3)e 3>f (0)e0,∴f (3)>e 3f (0),故选C .【对点训练】1.已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (0)=12,则不等式f (x )-12e x <0的 解集为( )A .⎝⎛⎭⎫-∞,12B .(0,+∞)C .⎝⎛⎭⎫12,+∞ D .(-∞,0) 1.答案 B 解析 构造函数g (x )=f (x )e x ,则g ′(x )=f ′(x )-f (x )e x,因为f ′(x )<f (x ),所以g ′(x )<0,故函数g (x ) 在R 上为减函数,又f (0)=12,所以g (0)=f (0)e 0=12,则不等式f (x )-12e x <0可化为f (x )e x <12,即g (x )<12=g (0),所以x >0,即所求不等式的解集为(0,+∞).2.已知函数f ′(x )是函数f (x )的导函数,f (1)=1e,对任意实数x ,都有f (x )-f ′(x )>0,则不等式f (x )<e x -2的 解集为( )A .(-∞,e)B .(1,+∞)C .(1,e)D .(e ,+∞)2.答案 B 解析 设g (x )=f (x )e x ,则g ′(x )=f ′(x )e x -e x f (x )(e x )2=f ′(x )-f (x )e x.∵对任意实数x ,都有f (x )-f ′(x )> 0,∴g ′(x )<0,即g (x )为R 上的减函数.g (1)=f (1)e =1e 2,由不等式f (x )<e x -2,得f(x )e x <e -2=1e2,即g (x )<g (1).∵g (x )为R 上的减函数,∴x >1,∴不等式f (x )<e x -2的解集为(1,+∞).故选B .3.已知f ′(x )是定义在R 上的连续函数f (x )的导函数,若f ′(x )-2f (x )<0,且f (-1)=0,则f (x )>0的解集为( )A .(-∞,-1)B .(-1,1)C .(-∞,0)D .(-1,+∞)3.答案 A 解析 设g (x )=f (x )e 2x ,则g ′(x )=f ′(x )-2f (x )e 2x<0在R 上恒成立,所以g (x )在R 上单调递减.因 为f (x )>0,所以g (x )>0,又g (-1)=0,所以x <-1.4.已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )>f (x ),且f (x +3)为偶函数,f (6)=1,则不等式f (x )>e x 的解集为( )A .(-2,+∞)B .(0,+∞)C .(1,+∞)D .(4,+∞)4.答案 B 解析 因为f (x +3)为偶函数,所以f (3-x )=f (x +3),因此f (0)=f (6)=1.设h (x )=f (x )ex , 则原不等式即h (x )>h (0).又h ′(x )=f ′(x )·e x -f (x )·e x (e x )2=f ′(x )-f (x )e x,依题意f ′(x )>f (x ),故h ′(x )>0,因此函数h (x )在R 上是增函数,所以由h (x )>h (0),得x >0.故选B .5.已知函数f (x )的定义域是R ,f (0)=2,对任意的x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集是( )A .{x |x >0}B .{x |x <0}C .|x |x <-1,或x >1|D .{x |x <-1,或0<x <1}5.答案 A 解析 构造函数g (x )=e x ·f (x )-e x -1,求导,得g ′(x )=e x ·f (x )+e x ·f ′(x )-e x =e x [f (x )+f ′(x )-1].由已知f (x )+f ′(x )>1,可得到g ′(x )>0,所以g (x )为R 上的增函数.又g (0)=e 0·f (0)-e 0-1=0,所以e x ·f (x )>e x +1,即g (x )>0的解集为{x |x >0}.6.已知函数f (x )的定义域为R ,且f (x )+1<f ′(x ),f (0)=2,则不等式f (x )+1>3e x 的解集为( )A .(1,+∞)B .(-∞,1)C .(0,+∞)D .(-∞,0)6.答案 C 解析 构造函数g (x )=f (x )+1e x ,则g ′(x )=f ′(x )-f (x )-1e x>0,故g (x )在R 上为增函数.又g (0) =f (0)+1e 0=3,由f (x )+1>3e x ,得f (x )+1e x>3,即g (x )>g (0),解得x >0.故选C . 7.定义在R 上的可导函数f (x )满足f (x )+f ′(x )<0,则下列各式一定成立的是( )A .e 2f (2021)<f (2019)B .e 2f (2021)>f (2019)C .f (2021)<f (2019)D .f (2021)>f (2019)7.答案 A 解析 根据题意,设g (x )=e x f (x ),其导函数g ′(x )=e x f (x )+e x f ′(x )=e x [f (x )+f ′(x )],又由函数f (x )与其导函数f ′(x )满足f (x )+f ′(x )<0,则有g ′(x )<0,则函数g (x )在R 上为减函数,则有g (2021)<g (2019),即e 2021f (2021)<e 2019f (2019),即e 2f (2021)<f (2019).8.定义在R 上的函数f (x )满足f ′(x )>f (x )恒成立,若x 1<x 2,则1e x f (x 2)与2e x f (x 1)的大小关系为( )A .1e x f (x 2)>2e x f (x 1)B .1e x f (x 2)<2e x f (x 1)C .1e x f (x 2)=2e x f (x 1)D .1e x f (x 2)与2e x f (x 1)的大小关系不确定8.答案 A 解析 设g (x )=f (x )e x ,则g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x.由题意得g ′(x )>0,所以g (x )在R 上单调递增,当x 1<x 2时,g (x 1)<g (x 2),即()11e x f x <()22e x f x ,所以1e x f (x 2)>2e xf (x 1). 9.设函数f (x )的导函数为f ′(x ),对任意x ∈R 都有f (x )>f ′(x )成立,则( )A .3f (ln2)<2f (ln3)B .3f (ln2)=2f (ln3)C .3f (ln2)>2f (ln3)D .3f (ln2)与2f (ln3)的大小不确定9.答案 C 解析 令F (x )=f (x )e x ,则F ′(x )=f ′(x )-f (x )e x,因为对∀x ∈R 都有f (x )>f ′(x ),所以F ′(x )<0, 即F (x )在R 上单调递减.又ln2<ln3,所以F (ln2)>F (ln3),即f (ln 2)e ln 2>f (ln 3)e ln 3,所以f (ln 2)2>f (ln 3)3,即3f (ln2)>2f (ln3),故选C .10.已知函数f (x )是定义在R 上的可导函数,且对于∀x ∈R ,均有f (x )>f ′(x ),则有( )A .e 2022f (-2022)<f (0),f (2022)>e 2022f (0)B .e 2022f (-2022)<f (0),f (2022)<e 2022f (0)C .e 2022f (-2022)>f (0),f (2022)>e 2022f (0)D .e 2022f (-2022)>f (0),f (2022)<e 2022f (0)10.答案 D 解析 构造函数g (x )=f (x )e x ,则g ′(x )=f ′(x )e x -(e x )′f (x )(e x )2=f ′(x )-f (x )e x,因为∀x ∈R ,均有f (x )> f ′(x ),并e x >0,所以g ′(x )<0,故函数g (x )=f (x )ex 在R 上单调递减,所以g (-2022)>g (0),g (2022)<g (0), 即f (-2022)e -2022>f (0),f (2022)e 2022<f (0),也就是e 2022f (-2022)>f (0),f (2022)<e 2022f (0). 考点三 构造F (x )=f (x )sin x ,F (x )=f (x )sin x ,F (x )=f (x ) cos x ,F (x )=f (x )cos x类型的辅助函数 【方法总结】(1)若F (x )=f (x )sin x ,则F ′(x )=f ′(x )sin x +f (x )cos x ;(2)若F (x )=f (x )sin x ,则F ′(x )=f ′(x )sin x -f (x )cos x sin 2x; (3)若F (x )=f (x )cos x ,则F ′(x )=f ′(x )cos x -f (x )sin x ;(4)若F (x )=f (x )cos x ,则F ′(x )=f ′(x )cos x +f (x )sin x cos 2x.由此得到结论:(1)出现f ′(x )sin x +f (x )cos x 形式,构造函数F (x )=f (x )sin x ;(2)出现f ′(x )sin x -f (x )cos x sin 2x 形式,构造函数F (x )=f (x )sin x; (3)出现f ′(x )cos x -f (x )sin x 形式,构造函数F (x )=f (x )cos x ;(4)出现f ′(x )cos x +f (x )sin x cos 2x 形式,构造函数F (x )=f (x )cos x. 【例题选讲】[例1](1)已知函数f (x )是定义在⎝⎛⎭⎫-π2,π2上的奇函数.当x ∈[0,π2)时,f (x )+f ′(x )tan x >0,则不等式cos xf (x +π2)+sin xf (-x )>0的解集为( ) A .⎝⎛⎭⎫π4,π2 B .⎝⎛⎭⎫-π4,π2 C .⎝⎛⎭⎫-π4,0 D .⎝⎛⎭⎫-π2,-π4 答案 C 解析 令g (x )=f (x )sin x ,则g ′(x )=f (x )cos x +f ′(x )sin x =[f (x )+f ′(x )tan x ]cos x ,当x ∈[0,π2)时,f (x )+f ′(x )tan x >0,cos x >0,∴g ′(x )>0,即函数g (x )单调递增.又g (0)=0,∴x ∈[0,π2)时,g (x )=f (x )sin x ≥0.∵f (x )是定义在⎝⎛⎭⎫-π2,π2上的奇函数,∴g (x )是定义在⎝⎛⎭⎫-π2,π2上的偶函数.不等式cos xf (x +π2)+sin xf (-x )>0,即sin ⎝⎛⎭⎫x +π2·f ⎝⎛⎭⎫x +π2>sin x ·f (x ),即g ⎝⎛⎭⎫x +π2>g (x ),∴|x +π2|>|x |,∴x >-π4 ①,又-π2<x +π2<π2,故-π<x <0 ②,由①②得不等式的解集是⎝⎛⎭⎫-π4,0.故选C . (2)对任意的x ∈⎝⎛⎭⎫0,π2,不等式f (x )tan x <f ′(x )恒成立,则下列不等式错误的是( ) A .f ⎝⎛⎭⎫π3>2f ⎝⎛⎭⎫π4 B .f ⎝⎛⎭⎫π3>2f (1)cos 1 C .2f (1)cos1>2f ⎝⎛⎭⎫π4 D .2f ⎝⎛⎭⎫π4<3f ⎝⎛⎭⎫π6 答案 D 解析 因为x ∈⎝⎛⎭⎫0,π2,所以sin x >0,cos x >0,构造函数F (x )=f (x )cos x ,则F ′(x )=-f (x )sin x +f ′(x )cos x ,因为对任意的x ∈⎝⎛⎭⎫0,π2,不等式f (x )tan x <f ′(x )恒成立,所以f (x )sin x <f ′(x )cos x 恒成立,即f ′(x )cos x -f (x )sin x >0恒成立,所以F ′(x )>0恒成立,所以函数F (x )在x ∈⎝⎛⎭⎫0,π2上单调递增,所以F ⎝⎛⎭⎫π6<F ⎝⎛⎭⎫π4<F (1)<F ⎝⎛⎭⎫π3,所以f ⎝⎛⎭⎫π6cos π6<f ⎝⎛⎭⎫π4cos π4<f (1)cos1<f ⎝⎛⎭⎫π3cos π3,所以32f ⎝⎛⎭⎫π6<22f ⎝⎛⎭⎫π4<f (1)cos1<12f ⎝⎛⎭⎫π3,所以3f ⎝⎛⎭⎫π6<2f ⎝⎛⎭⎫π4<2f (1)cos1<f ⎝⎛⎭⎫π3,结合选项知D 错误,故选D . (3)定义在⎝⎛⎭⎫0,π2上的函数f (x ),函数f ′(x )是它的导函数,且恒有f (x )<f ′(x )tan x 成立,则( ) A .3f ⎝⎛⎭⎫π4>2f ⎝⎛⎭⎫π3 B .f (1)<2f ⎝⎛⎭⎫π2sin 1 C .2f ⎝⎛⎭⎫π6>f ⎝⎛⎭⎫π4 D .3f ⎝⎛⎭⎫π6<f ⎝⎛⎭⎫π3答案 D 解析 f (x )<f ′(x )tan x ⇔f ′(x )sin x -f (x )cos x >0,令F (x )=f (x )sin x ,则F ′(x )=f ′(x )sin x -f (x )cos x sin 2x>0,即函数F (x )在⎝⎛⎭⎫0,π2上是增函数,∴F ⎝⎛⎭⎫π6<F ⎝⎛⎭⎫π3,即f ⎝⎛⎭⎫π6sin π6<f ⎝⎛⎭⎫π3sin π3,∴3f ⎝⎛⎭⎫π6<f ⎝⎛⎭⎫π3,故选D . (4)已知函数y =f (x )对于任意的x ∈⎝⎛⎭⎫-π2,π2满足f ′(x )cos x +f (x )sin x >0(其中f ′(x )是函数f (x )的导函数),则下列不等式不成立的是( )A .2 f ⎝⎛⎭⎫π3<f ⎝⎛⎭⎫π4B .2 f ⎝⎛⎭⎫-π3<f ⎝⎛⎭⎫-π4C .f (0)<2 f ⎝⎛⎭⎫π4D .f (0)<2f ⎝⎛⎭⎫π3 答案 A 解析 构造F (x )=f (x )cos x ,则F ′(x )=f ′(x )cos x +f (x )sin x cos 2x,导函数f ′(x )满足f ′(x )cos x +f (x )sin x >0,则F ′(x )>0,F (x )在⎝⎛⎭⎫-π2,π2上单调递增.把选项转化后可知选A . (5)已知定义在⎝⎛⎭⎫0,π2上的函数f (x ),f ′(x )是f (x )的导函数,且恒有cos xf ′(x )+sin xf (x )<0成立,则( ) A .f ⎝⎛⎭⎫π6>2f ⎝⎛⎭⎫π4 B .3f ⎝⎛⎭⎫π6>f ⎝⎛⎭⎫π3 C .f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π3 D .2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4 答案 CD 解析 设g (x )=f (x )cos x ,则g ′(x )=f ′(x )·cos x +f (x )·sin x cos 2x,因为当x ∈⎝⎛⎭⎫0,π2时,cos xf ′(x )+sin xf (x )<0,所以当x ∈⎝⎛⎭⎫0,π2时,g ′(x )=f ′(x )·cos x +f (x )·sin x cos 2x<0,因此g (x )在⎝⎛⎭⎫0,π2上单调递减,所以g ⎝⎛⎭⎫π6>g ⎝⎛⎭⎫π3,g ⎝⎛⎭⎫π6>g ⎝⎛⎭⎫π4,即f ⎝⎛⎭⎫π632>f ⎝⎛⎭⎫π312⇒f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π3,f ⎝⎛⎭⎫π632>f ⎝⎛⎭⎫π422⇒2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4.故选CD . (6)已知函数y =f (x )对于任意的x ∈⎝⎛⎭⎫0,π2满足f ′(x )·cos x +f (x )sin x =1+ln x ,其中f ′(x )是函数f (x )的导函数,则下列不等式成立的是( )A .2f ⎝⎛⎭⎫π3<f ⎝⎛⎭⎫π4B .2f ⎝⎛⎭⎫π3>f ⎝⎛⎭⎫π4C .2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4D .2f ⎝⎛⎭⎫π3>f ⎝⎛⎭⎫π6 答案 B 解析 设g (x )=f (x )cos x ,则g ′(x )=f ′(x )cos x +f (x )sin x cos 2x =1+ln x cos 2x ,x ∈⎝⎛⎭⎫0,π2.令g ′(x )=0得x =1e,当x ∈⎝⎛⎭⎫0,1e 时g ′(x )<0,函数g (x )单调递减,当x ∈⎝⎛⎭⎫1e ,π2时,g ′(x )>0,函数g (x )单调递增.∵1e <π6<π4<π3<π2,∴g ⎝⎛⎭⎫π6<g ⎝⎛⎭⎫π4<g ⎝⎛⎭⎫π3,即f ⎝⎛⎭⎫π312>f ⎝⎛⎭⎫π422>f ⎝⎛⎭⎫π632,化简得2f ⎝⎛⎭⎫π3>f ⎝⎛⎭⎫π4,3f ⎝⎛⎭⎫π3>f ⎝⎛⎭⎫π6,3f ⎝⎛⎭⎫π4>2f ⎝⎛⎭⎫π6,故选B .。
高考数学热点必会题型第5讲 导数构造函数解决问题类型总结——每天30分钟7天掌握一、重点题型目录【题型】一、构造函数)(x f x n型【题型】二、构造函数)(x f e nx型【题型】三、构造函数n xx f )(型 【题型】四、构造函数nxe xf )(型 【题型】五、构造函数x sin 与函数)(x f 型 【题型】六、构造函数x cos 与函数)(x f 型 【题型】七、构造ne 与)()(x bf x af +型 【题型】八、构造()b kx +与)(x f 型 【题型】九、构造()b kx +ln 型 【题型】十、构造综合型 二、题型讲解总结第一天学习及训练【题型】一、构造函数)(x f x n型例1.(2022·四川·盐亭中学模拟预测(文))已知定义在()0,+∞上的函数()f x 满足()()22+<0xf x x f x ',()324f =,则关于x 的不等式()23f x x >的解集为( )A .()0,4B .()2,+∞C .()4,+∞D .()0,2例2.(2022·河北·高三阶段练习)已知奇函数()f x 的定义域为R ,导函数为()f x ',若对任意[)0,x ∈+∞,都有()()30f x xf x '+>恒成立,()22f =,则不等式()()31116x f x --<的解集是__________.【题型】二、构造函数)(x f e nx型例3.(2022·河南·襄城高中高二阶段练习(理))已知奇函数()f x 的定义域为R ,其函数图象连续不断,当0x >时,()()()20x f x xf x '++>,则( ) A .()()124f f e> B .()20f <C .()()310f f -⋅>D .()()142f f e->- 例4.(2022·江苏·南师大二附中高二期末)已知f (x )为R 上的可导函数,其导函数为()'f x ,且对于任意的x ∈R ,均有()()'0f x f x +>,则( )A .e -2 021f (-2 021)>f (0),e 2 021f (2 021)<f (0)B .e -2 021f (-2 021)<f (0),e 2 021f (2 021)<f (0)C .e -2 021f (-2 021)>f (0),e 2 021f (2 021)>f (0)D .e -2 021f (-2 021)<f (0),e 2 021f (2 021)>f (0)例5.(2022·辽宁·大连二十四中模拟预测)已知函数()y f x =,若()0f x >且()()0f x xf x '+>,则有( ) A .()f x 可能是奇函数,也可能是偶函数B .()()11f f ->C .42x ππ<<时,cos22s (os )(in c )x f e f x x <D .(0)(1)f <例6.(2022·黑龙江·哈尔滨三中高三阶段练习)()f x 是定义在R 上的函数,满足()()2e x f x f x x '+=,()112ef -=-,则下列说法错误的是( ) A .()f x 在R 上有极大值B .()f x 在R 上有极小值C .()f x 在R 上既有极大值又有极小值D .()f x 在R 上没有极值第二天学习及训练【题型】三、构造函数n xx f )(型 例7.(2022·山东·潍坊一中高三期中)设函数()f x '是奇函数()(R)f x x ∈的导函数,(1)0f -= ,当0x >时,()()0xf x f x '-> ,则使得()0f x >成立的x 取值范围是( ) A .(,1)(1,)-∞-+∞ B .(1,0)(0,1)-⋃ C .(,1)(0,1)-∞-⋃D .(1,0)(1,+)-⋃∞例8.(2022·安徽·砀山中学高三阶段练习)已知a =,21e b =,ln 2c ππ=则a ,b ,c 的大小关系为( ) A .a c b <<B .b a c <<C .a b c <<D .c<a<b【题型】四、构造函数nxe xf )(型 例9.(2022·陕西·西安中学高二期中)已知定义在R 上的函数()f x 的导函数()f x ',且()()0f x f x <'<,则( )A .()()e 21f f >,()()2e 1f f >B .()()e 21f f >,()()2e 1f f <C .()()e 21f f <,()()2e 1f f <D .()()e 21f f <,()()2e 1f f >例10.(2022·江苏·涟水县第一中学高三阶段练习)()f x 是定义在R 上的函数,()f x '是()f x的导函数,已知()()f x f x '>,且(1)e f =,则不等式()2525e0x f x --->的解集为( ) A .(),3-∞- B .(),2-∞- C .()2,+∞ D .()3,+∞例11.(2023·江西·赣州市赣县第三中学高三期中(理))设()f x '是函数()f x 的导函数,且()()()3R f x f x x '>∈,1e 3f ⎛⎫= ⎪⎝⎭(e 为自然对数的底数),则不等式()3ln f x x <的解集为( )A .e 0,3⎛⎫ ⎪⎝⎭B .1e ,e 3⎛⎫ ⎪⎝⎭C .(D .e 3⎛ ⎝例12.(2022·河北廊坊·高三开学考试)已知定义域为R 的函数()f x 的导函数为fx ,且()()2e x f x f x x '-=,()00=f ,则以下错误的有( ) A .()f x 有唯一的极值点 B .()f x 在3,0上单调递增C .当关于x 的方程()f x m =有三个实数根时,实数m 的取值范围为()10,4e -D .()f x 的最小值为0第三天学习及训练【题型】五、构造函数x sin 与函数)(x f 型例13.(2022·云南师大附中高三阶段练习)已知13sin ,,ln1.11131a b c ===,则( ) A .a b c <<B .a c b <<C .c a b <<D .b a c <<例14.(2022·全国·高三阶段练习)已知函数()f x 及其导函数()f x '的定义域均为R ,且()f x 为偶函数,π26f ⎛⎫=- ⎪⎝⎭,3()cos ()sin 0f x x f x x '+>,则不等式3π1cos 024f x x ⎛⎫+-> ⎪⎝⎭的解集为( ) A .π,3⎛⎫-+∞ ⎪⎝⎭B .2π,3⎛⎫-+∞ ⎪⎝⎭C .2ππ,33⎛⎫- ⎪⎝⎭D .π,3⎛⎫+∞ ⎪⎝⎭【题型】六、构造函数x cos 与函数)(x f 型例15.已知函数()f x 的定义域为,22ππ⎛⎫- ⎪⎝⎭,其导函数是()'f x .有()cos ()sin 0f x x f x x '+<,则关于x ()2cos 6x f x π⎛⎫< ⎪⎝⎭的解集为( )A .,32ππ⎛⎫ ⎪⎝⎭B .,62ππ⎛⎫ ⎪⎝⎭C .,63ππ⎛⎫-- ⎪⎝⎭D .,26ππ⎛⎫-- ⎪⎝⎭例16.(2021·重庆·高二期末)已知()f x 的定义域为(0,)+∞且满足()0f x >,()f x '为()f x 的导函数,()()(cos )xf x f x e x x '-=+,则下列结论正确的是( )A .()f x 有极大值无极小值B .()f x 无极值C .()f x 既有极大值也有极小值D .()f x 有极小值无极大值第四天学习及训练【题型】七、构造ne 与)()(x bf x af +型例17.(2022·陕西·西安中学高二期中)已知定义在R 上的函数()f x 的导函数()f x ',且()()0f x f x <'<,则( )A .()()e 21f f >,()()2e 1f f >B .()()e 21f f >,()()2e 1f f <C .()()e 21f f <,()()2e 1f f <D .()()e 21f f <,()()2e 1f f >例18.(2022·河南·高三阶段练习(文))已知函数()e x f x ax k =--,其中e 为自然对数的底数,若21,e k ⎡⎤∈-⎣⎦时,函数()f x 有2个零点,则实数a 的可能取值为( )A .eB .2eC .2eD .3e例19.(2023·全国·高三专题练习)已知定义在R 上的偶函数()y f x =的导函数为()y f x '=,当0x >时,()()0f x f x x '+<,且(2)3f =-,则不等式6(21)21f x x --<-的解集为( ) A .13,,22⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭B .3,2⎛⎫+∞ ⎪⎝⎭C .13,22⎛⎫⎪⎝⎭D .1113,,2222⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭例20.(2022·全国·高三阶段练习(理))已知函数()32e e x xf x x x -=-++-,其中e 是自然对数的底数,若()()224f a f a -+>,则实数a 的取值范围是( )A .()2,1-B .(),2-∞-C .()1,+∞D .()(),21,-∞-⋃+∞【题型】八、构造()b kx +与)(x f 型例21.(2022·河南·高三阶段练习(文))已知定义在()0,∞+上的函数()f x 的导函数为()f x ',若()2f x '<,且()45f =,则不等式()1223x x f +>-的解集是( )A .()0,2B .()0,4C .(),2-∞D .(),4-∞例22.(2022·河南·襄城高中高二阶段练习(理))已知奇函数()f x 的定义域为R ,其函数图象连续不断,当0x >时,()()()20x f x xf x '++>,则( ) A .()()124f f e> B .()20f <C .()()310f f -⋅>D .()()142f f e->- 第五天学习及训练【题型】九、构造()b kx +ln 型例23.(2023·全国·高三专题练习)定义在(0)+∞,上的函数()f x 满足()()110,2ln2xf x f '+=>,则不等式)(e 0x f x +> 的解集为( ) A .(02ln2), B .(0,ln2) C .(ln21), D .(ln2)+∞,例24.(2022·河南·高三阶段练习(理))设1cos 2a =,78b =,15ln 8c ⎛⎫= ⎪⎝⎭,则a ,b ,c 之间的大小关系为( ) A .c <b <aB .c <a <bC .b <c <aD .a <c <b例25.(2022·贵州·高三阶段练习(理))已知命题p :在ABC 中,若π4A >,则sin A >,命题:1q x ∀>-,ln(1)x x ≥+.下列复合命题正确的是( ) A .p q ∧B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝【题型】十、构造综合型例26.(2022·全国·高三阶段练习(理))下列命题为真命题的个数是( )∈32log 23>;∈eln ππ<;∈123sin 248>;∈3eln2< A .1B .2C .3D .4例27.(2022·江苏·南京师大附中高三期中)已知函数()2ln f x x ax =-,则下列结论正确的有( ) A .当12ea <时,()y f x =有2个零点 B .当12ea >时,()0f x ≤恒成立 C .当12a =时,1x =是()y f x =的极值点 D .若12,x x 是关于x 的方程()0f x =的2个不等实数根,则12e x x >例28.(2022·黑龙江·齐齐哈尔市实验中学高三阶段练习)已知函数()f x 的定义域是()0,+∞,()f x '是()f x 的导数,若()()f x xf x x '=-,()1=1f ',则下列结论正确的是( )A .()f x 在10,e ⎛⎫⎪⎝⎭上单调递减B .()f x 的最大值为eC .()f x 的最小值为1e-D .存在正数0x ,使得()00ln f x x <参考答案 第一天学习及训练【题型】一、构造函数)(x f x n型例1.(2022·四川·盐亭中学模拟预测(文))已知定义在()0,+∞上的函数()f x 满足()()22+<0xf x x f x ',()324f =,则关于x 的不等式()23f x x >的解集为( )A .()0,4B .()2,+∞C .()4,+∞D .()0,2【答案】D【分析】构造函数()()2h x x f x =,得到函数()h x 的单调性,根据单调性解不等式即可.【详解】令()()2h x x f x =,则()()()220h x xf x x f x ''=+<,所以()h x 在()0,+∞单调递减,不等式()23f x x >可以转化为()()2234224x f x f >⨯=,即()()2h x h >,所以02x <<. 故选:D.例2.(2022·河北·高三阶段练习)已知奇函数()f x 的定义域为R ,导函数为()f x ',若对任意[)0,x ∈+∞,都有()()30f x xf x '+>恒成立,()22f =,则不等式()()31116x f x --<的解集是__________. 【答案】()1,3-【分析】构造新函数()()3g x x f x =,根据()f x 的性质推出()g x 的性质,最后利用()g x 单调性解不等式.【详解】设()()3g x x f x =,x ∈R ,()f x 为奇函数,∈()()()33=()=()=g x x f x x f x g x ---,即()g x 是偶函数,有()()=()=g x g x g x -,∈[)0,+x ∈∀∞,()()30f x xf x '+>恒成立,故[)0,+x ∈∞时,()()()()()()232=3+=3+0g x x f x x f x x f x xf x '''≥,∈函数()g x 在[)0,∞+上为增函数,∈()22f =,∈()()2=2=16g g -,()()311<16x f x --等价于()1<16=(2)g x g -,()(1)=1<(2)g x g x g --,且函数()g x 在[)0,∞+上为增函数,∈1<2x -,解得13x . 故答案为:()1,3-【题型】二、构造函数)(x f e nx型例3.(2022·河南·襄城高中高二阶段练习(理))已知奇函数()f x 的定义域为R ,其函数图象连续不断,当0x >时,()()()20x f x xf x '++>,则( ) A .()()124f f e> B .()20f <C .()()310f f -⋅>D .()()142f f e->- 【答案】D 【解析】 【分析】令()()2xg x x e f x =,根据导数可知其在[)0,∞+上单调递增,由()()()2100g g g >>=可知AB 错误,同时得到()()142f f e<,()10f >,()30f >,结合奇偶性知C 错误,D 正确. 【详解】对于AB ,令()()2xg x x e f x =,则()00g =,()()()()22x x g x x x e f x x e f x ++'=',当0x ≥时,()()()()20xg x xe x f x xf x ''=+⋅+≥⎡⎤⎣⎦,()g x ∴在[)0,∞+上单调递增,()()()012g g g ∴<<,即()()20142ef e f <<,()20f ∴>,()()124f f e<,AB 错误; 对于C ,由A 的推理过程知:当0x >时,()()20xg x x e f x =>,则当0x >时,()0f x >,∴()10f >,()30f >,又()f x 为奇函数,()()330f f ∴-=-<,()()310f f ∴-⋅<,C 错误. 对于D ,由A 的推理过程知:()()142f f e<,又()()11f f -=-,()()22f f -=-,()()142f f e-∴-<--,则()()142f f e->-,D 正确. 故选:D.例4.(2022·江苏·南师大二附中高二期末)已知f (x )为R 上的可导函数,其导函数为()'f x ,且对于任意的x ∈R ,均有()()'0f x f x +>,则( )A .e -2 021f (-2 021)>f (0),e 2 021f (2 021)<f (0)B .e -2 021f (-2 021)<f (0),e 2 021f (2 021)<f (0)C .e -2 021f (-2 021)>f (0),e 2 021f (2 021)>f (0)D .e -2 021f (-2 021)<f (0),e 2 021f (2 021)>f (0)【答案】D 【解析】 【分析】通过构造函数法,结合导数确定正确答案. 【详解】构造函数()()()()()''e ,e 0x xF x f x F x f x f x ⎡⎤=⋅=+⋅>⎣⎦,所以()F x 在R 上递增,所以()()()()20210,02021F F F F -<<, 即()()()()20212021e20210,0e 2021f f f f -⋅-<<⋅.故选:D例5.(2022·辽宁·大连二十四中模拟预测)已知函数()y f x =,若()0f x >且()()0f x xf x '+>,则有( ) A .()f x 可能是奇函数,也可能是偶函数 B .()()11f f ->C .42x ππ<<时,cos22s (os )(in c )xf ef x x <D .(0)(1)f <【答案】D 【解析】 【分析】根据奇函数的定义结合()0f x >即可判断A ;令()()22ex g x f x =,利用导数结合已知判断函数()g x 的单调性,再根据函数()g x 的单调性逐一判断BCD 即可得解. 【详解】解:若()f x 是奇函数,则()()f x f x -=-, 又因为()0f x >,与()()f x f x -=-矛盾, 所有函数()y f x =不可能时奇函数,故A 错误; 令()()22ex g x f x =,则()()()()()()222222e eex x x g x x f x f x xf x f x '''=+=+,因为22e0x >,()()0f x xf x '+>,所以()0g x '>,所以函数()g x 为增函数, 所以()()11g g -<,即()()1122e 1e 1f f -<, 所以()()11f f -<,故B 错误;因为42x ππ<<,所以0cos x <sin 12x <<,所以sin cos x x >, 故()()sin cos g x g x >,即()()22sin cos 22e sin ecos x x f x f x >,所以()()()22cos sin cos222sin ecos ecos x xx f x f x f x ->=,故C 错误;有()()01g g <,即()()01f <,故D 正确. 故选:D.例6.(2022·黑龙江·哈尔滨三中高三阶段练习)()f x 是定义在R 上的函数,满足()()2e x f x f x x '+=,()112ef -=-,则下列说法错误的是( ) A .()f x 在R 上有极大值B .()f x 在R 上有极小值C .()f x 在R 上既有极大值又有极小值D .()f x 在R 上没有极值【答案】ABC【分析】先由题意得()10f '-=,再构造()()2e xg x f x =,得到()3e x g x x '=,进而再构造()()()23e e 2x x h x f x x g x '==-,判断出()0h x >,即0fx ,由此得到选项.【详解】根据题意,()()2e x f x f x x '+=,故()()1211e f f -'-+-=-,又()112e f -=-,得()11212e e f ⎛⎫'-+-=- ⎪⎝⎭,故()10f '-=,令()()2e xg x f x =,则()()()()()222232e e e 2e e e x x x x x x g x f x f x f x f x x x '''⎡⎤=+=+=⋅=⎣⎦,又()()2232e e e x x x f x f x x '+=,记()()()()2323e e 2e e 2x x x xh x f x x f x x g x '==-=-,所以()()()333333e 3e 2e 3e 2e e 1x x x x x xh x x g x x x x ''=+-=+-=+,当1x <-时,()0h x '<,()h x 单调递减;当1x >-时,()0h x '>,()h x 单调递增,所以()()()21e 10h x h f -'>-=-=,即()2e 0xf x '>,即0fx ,所以()f x 在R 上单调递增,故()f x 在R 上没有极值. 故选项ABC 说法错误,选项D 说法正确. 故选:ABC第二天学习及训练【题型】三、构造函数nx x f )(型 例7.(2022·山东·潍坊一中高三期中)设函数()f x '是奇函数()(R)f x x ∈的导函数,(1)0f -= ,当0x >时,()()0xf x f x '-> ,则使得()0f x >成立的x 取值范围是( )A .(,1)(1,)-∞-+∞B .(1,0)(0,1)-⋃C .(,1)(0,1)-∞-⋃D .(1,0)(1,+)-⋃∞【答案】D【分析】根据题意构造函数()()f x g x x=,由求导公式和法则求出()g x ',结合条件判断出()g x '的符号,即可得到函数()g x 的单调区间,根据()f x 奇函数判断出()g x 是偶函数,由(1)0f -=求出(1)0g -=,结合函数()g x 的单调性、奇偶性,再转化()0f x >,由单调性求出不等式成立时x 的取值范围. 【详解】由题意设()()f x g x x =,则2()()()xf x f x g x x '-'=当0x >时,有()()0xf x f x '->,∴当0x >时,()0g x '>,∴函数()()f x g x x=在(0,)+∞上为增函数, 函数()f x 是奇函数,()()g x g x ∴-=,∴函数()g x 为定义域上的偶函数,()g x 在(,0)-∞上递减, 由(1)0f -=得,(1)0g -=, 不等式()0()0f x x g x >⇔>,∴>0()>(1)x g x g ⎧⎨⎩或<0()<(1)x g x g -⎧⎨⎩,即有1x >或10x -<<,∴使得()0f x >成立的x 的取值范围是:(1-,0)(1⋃,)+∞, 故选:D例8.(2022·安徽·砀山中学高三阶段练习)已知a =,21e b =,ln 2c ππ=则a ,b ,c 的大小关系为( ) A .a c b <<B .b a c <<C .a b c <<D .c<a<b【分析】构造函数,根据函数的单调性比较大小. 【详解】令()2ln x f x x =,则()42ln x x xf x x -'=,令()0f x '<,解得x >因此()2ln x f x x =在)∞+上单调递减,又因为()ln 4416a f ===,()221ln e e e e b f ===,ln 2c f ππ===,因为4e >>a b c <<. 故选:C.【题型】四、构造函数nxex f )(型 例9.(2022·陕西·西安中学高二期中)已知定义在R 上的函数()f x 的导函数()f x ',且()()0f x f x <'<,则( )A .()()e 21f f >,()()2e 1f f >B .()()e 21f f >,()()2e 1f f <C .()()e 21f f <,()()2e 1f f <D .()()e 21f f <,()()2e 1f f >【答案】D【分析】据已知不等式构造函数,结合导数的性质进行求解即可. 【详解】构造函数()()()()()e e x xf x f x f xg x g x '-'=⇒=,因为()()f x f x '<,所以()0g x '>,因此函数()g x 是增函数, 于是有2(2)(1)(2)(1)(2)e (1)e ef fg g f f >⇒>⇒>, 构造函数()()e ()e [()()]x x h x f x h x f x f x ''=⋅⇒=+,因为()()0f x f x <'<, 所以()0h x '<,因此()h x 是单调递减函数, 于是有2(2)(1)e (2)e (1)e (2)(1)h h f f f f <⇒<⇒<,例10.(2022·江苏·涟水县第一中学高三阶段练习)()f x 是定义在R 上的函数,()f x '是()f x 的导函数,已知()()f x f x '>,且(1)e f =,则不等式()2525e0x f x --->的解集为( ) A .(),3-∞- B .(),2-∞- C .()2,+∞ D .()3,+∞【答案】D【分析】根据已知条件构造函数,利用导数法求函数的单调性,结合函数的单调性即可求解. 【详解】由()()f x f x '>,得()()0f x f x '->, 设()()x f x g x =e ,则()()()0e xf x f xg x '-'=>, 所以函数()g x 在(),-∞+∞上单调递增,因为()1e f =,所以()()1111f g ==e , 所以不等式()2525e0x f x --->等价于()25251e x f x -->即()()251g x g ->,所以251x ->,解得3x >,所以不等式()2525e0x f x --->的解集为()3,+∞. 故选:D.例11.(2023·江西·赣州市赣县第三中学高三期中(理))设()f x '是函数()f x 的导函数,且()()()3R f x f x x '>∈,1e 3f ⎛⎫= ⎪⎝⎭(e 为自然对数的底数),则不等式()3ln f x x <的解集为( )A .e 0,3⎛⎫ ⎪⎝⎭B .1e ,e 3⎛⎫ ⎪⎝⎭C .(D .e 3⎛ ⎝【答案】C【分析】构造函数()()3exf xg x =,由已知可得函数()g x 在R 上为增函数,不等式()3ln f x x <即为()1ln 3g x g ⎛⎫< ⎪⎝⎭,根据函数的单调性即可得解.【详解】解:令()()3e x f x g x =,则()()()33e xf x f xg x '-'=,因为()()()3R f x f x x '>∈, 所以()()()330e xf x f xg x '-'=>,所以函数()g x 在R 上为增函数, 不等式()3ln f x x <即不等式()3ln <1>0f x x x ⎧⎪⎨⎪⎩,又()()()3ln 3ln ln ln e x f x f x g x x ==,11313e f g ⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭, 所以不等式()3ln f x x <即为()1ln 3g x g ⎛⎫< ⎪⎝⎭,即1ln 3x <,解得0x <<所以不等式()3ln f x x <的解集为(.故选:C.例12.(2022·河北廊坊·高三开学考试)已知定义域为R 的函数()f x 的导函数为fx ,且()()2e x f x f x x '-=,()00=f ,则以下错误的有( ) A .()f x 有唯一的极值点 B .()f x 在3,0上单调递增C .当关于x 的方程()f x m =有三个实数根时,实数m 的取值范围为()10,4e -D .()f x 的最小值为0 【答案】ABC 【分析】构造()()ex f x g x =,结合已知求()g x 的解析式,进而可得2()e x f x x =,再利用导数研究()f x 的极值点、单调性,并判断其值域范围,即可判断各选项的正误. 【详解】令()()e x f x g x =,则()()()2exf x f xg x x '-'==,故2()g x x C =+,(C 为常数),所以2()e ()x f x x C =+,而()()00e 00f C =+=,故0C =,所以2()e x f x x =,则2()(2)e x f x x x '=+, 令()0f x '=,可得2x =-或0x =,在(,2)-∞-、(0,)+∞上()0f x '>,()f x 递增;在(2,0)-上()0f x '<,()f x 递减; 所以()f x 有2个极值点,在3,0上不单调,A 、B 错误;由x 趋于负无穷时()f x 趋向于0,24(2)e f -=,(0)0f =,x 趋于正无穷时()f x 趋向于正无穷, 所以()f x m =有三个实数根时m 的范围为()20,4e -,()f x 的最小值为0,C 错误,D 正确;故选:ABC第三天学习及训练【题型】五、构造函数x sin 与函数)(x f 型例13.(2022·云南师大附中高三阶段练习)已知13sin ,,ln1.11131a b c ===,则( ) A .a b c << B .a c b <<C .c a b <<D .b a c <<【答案】B【分析】根据结构构造函数()sin ,0,2f x x x x π⎡⎤=-∈⎢⎥⎣⎦,利用导数判断单调性,即可得到a b <;根据结构构造函数()ln 1g x x x =+-,利用导数判断单调性,即可得到a c <;根据结构构造函数3()ln(1)3xh x x x=+-+,利用导数判断单调性,即可得到c b <. 【详解】构造函数()sin ,0,2f x x x x π⎡⎤=-∈⎢⎥⎣⎦,则()1cos 0f x x =-≥',故函数=()y f x 在0,2π⎡⎤⎢⎥⎣⎦上单调递增,故1(0)011f f ⎛⎫>= ⎪⎝⎭,即11sin 1111>,又313111>,故a b <.构造函数()ln 1g x x x =+-,则1()1g x x'=-,易知函数=()y g x 在=1x 处取得最大值(1)0g =,故10011g ⎛⎫< ⎪⎝⎭,即1010ln 101111+-<,即11011ln ln ln1.1111110<-==,由前面知11sin 1111<,故a c <.构造函数3()ln(1)3x h x x x =+-+,则222219(3)9(1)(3)()1(3)(1)(3)(1)(3)x x x x h x x x x x x x +-+-=-==++++++',故知函数()y h x =在(0,3)上单调递减,故(0.1)(0)0h h <=,即0.33ln1.1 3.131<=,故c b <.综上,a c b <<. 故选:B .例14.(2022·全国·高三阶段练习)已知函数()f x 及其导函数()f x '的定义域均为R ,且()f x 为偶函数,π26f ⎛⎫=- ⎪⎝⎭,3()cos ()sin 0f x x f x x '+>,则不等式3π1cos 024f x x ⎛⎫+-> ⎪⎝⎭的解集为( ) A .π,3⎛⎫-+∞ ⎪⎝⎭B .2π,3⎛⎫-+∞ ⎪⎝⎭C .2ππ,33⎛⎫- ⎪⎝⎭D .π,3⎛⎫+∞ ⎪⎝⎭【答案】B【分析】令()()31sin 4g x f x x =-,结合题设条件可得()g x 为R 上的增函数,而原不等式即为π02g x ⎛⎫+> ⎪⎝⎭,从而可求原不等式的解集.【详解】3π1cos 024f x x ⎛⎫+-> ⎪⎝⎭可化为3ππ1sin 0224f x x ⎛⎫⎛⎫++-> ⎪ ⎪⎝⎭⎝⎭,令()()31sin 4g x f x x =-, 则()()()()()322sin 3sin cos sin ()sin 3cos g x f x x f x x x x f x x f x x '''=+=+,因为3()cos ()sin 0f x x f x x '+>,故0g x (不恒为零),故()g x 为R 上的增函数,故3π1cos 024f x x ⎛⎫+-> ⎪⎝⎭即为π02g x ⎛⎫+> ⎪⎝⎭,而33πππ1ππ1sin sin 06664664g f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-=---=--= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,故π02g x ⎛⎫+> ⎪⎝⎭的解为ππ26x +>-,故2π3x >-即3π1cos 024f x x ⎛⎫+-> ⎪⎝⎭的解为2π,3⎛⎫-+∞ ⎪⎝⎭.故选:B.【题型】六、构造函数x cos 与函数)(x f 型例15.已知函数()f x 的定义域为,22ππ⎛⎫- ⎪⎝⎭,其导函数是()'f x .有()cos ()sin 0f x x f x x '+<,则关于x()2cos 6x f x π⎛⎫< ⎪⎝⎭的解集为( )A .,32ππ⎛⎫ ⎪⎝⎭B .,62ππ⎛⎫ ⎪⎝⎭C .,63ππ⎛⎫-- ⎪⎝⎭D .,26ππ⎛⎫-- ⎪⎝⎭【答案】B 【分析】 令()()cos f x F x x=,根据题设条件,求得()F'0x <,得到函数()()cos f x F x x=在,22ππ⎛⎫- ⎪⎝⎭内的单调递减函数,再把不等式化为()6cos cos 6f f x x ππ⎛⎫ ⎪⎝⎭<,结合单调性和定义域,即可求解.【详解】由题意,函数()f x 满足()()'cos sin 0f x x f x x +<, 令()()cos f x F x x=,则()()()2'cos sin '0cos f x x f x xF x x+=<函数()()cos f x F x x=是定义域,22ππ⎛⎫- ⎪⎝⎭内的单调递减函数,由于cos 0x >,关于x的不等式()2cos 6x f x π⎛⎫< ⎪⎝⎭可化为()6cos cos 6f f x x ππ⎛⎫ ⎪⎝⎭<,即()6F x F π⎛⎫< ⎪⎝⎭,所以22x ππ-<<且6x π>,解得26x ππ>>,()2cos 6x f x π⎛⎫< ⎪⎝⎭的解集为,62ππ⎛⎫ ⎪⎝⎭.故选:B例16.(2021·重庆·高二期末)已知()f x 的定义域为(0,)+∞且满足()0f x >,()f x '为()f x 的导函数,()()(cos )xf x f x e x x '-=+,则下列结论正确的是( )A .()f x 有极大值无极小值B .()f x 无极值C .()f x 既有极大值也有极小值D .()f x 有极小值无极大值 【答案】B 【解析】 【分析】 令()()xf x F x e=,根据题意得到()cos F x x x '=+,设()cos ,0g x x x x =+>,利用导数求得()g x 在区间(0,)+∞单调递增,得到()0F x '>,由()()x f x e F x =⋅,得到()0f x '>,即函数()f x 为单调递增函数,得到函数无极值.【详解】 令()(),0x f x F x x e =>,可得()()()xf x f x F x e'-'=, 因为()()(cos )xf x f x e x x '-=+,可得()cos F x x x '=+,设()cos ,0g x x x x =+>,可得()1sin 0g x x '=-≥, 所以()g x 在区间(0,)+∞单调递增,又由()01g =,所以()()01g x g >=,所以()0F x '>,所以()F x 单调递增, 因为()0f x >且0x e > ,可得()0F x >,因为()()xf x F x e =,可得()(),0xf x e F x x =⋅>, 则()()()[]0xf x e F x F x ''=+>,所以函数()f x 为单调递增函数,所以函数()f x 无极值. 故选:B.第四天学习及训练【题型】七、构造ne 与)()(x bf x af +型例17.(2022·陕西·西安中学高二期中)已知定义在R 上的函数()f x 的导函数()f x ',且()()0f x f x <'<,则( )A .()()e 21f f >,()()2e 1f f >B .()()e 21f f >,()()2e 1f f <C .()()e 21f f <,()()2e 1f f <D .()()e 21f f <,()()2e 1f f >【答案】D【分析】据已知不等式构造函数,结合导数的性质进行求解即可. 【详解】构造函数()()()()()e ex xf x f x f xg x g x '-'=⇒=,因为()()f x f x '<, 所以()0g x '>,因此函数()g x 是增函数, 于是有2(2)(1)(2)(1)(2)e (1)e ef fg g f f >⇒>⇒>, 构造函数()()e ()e [()()]x x h x f x h x f x f x ''=⋅⇒=+,因为()()0f x f x <'<, 所以()0h x '<,因此()h x 是单调递减函数,于是有2(2)(1)e (2)e (1)e (2)(1)h h f f f f <⇒<⇒<,故选:D例18.(2022·河南·高三阶段练习(文))已知函数()e xf x ax k =--,其中e 为自然对数的底数,若21,e k ⎡⎤∈-⎣⎦时,函数()f x 有2个零点,则实数a 的可能取值为( )A .eB .2eC .2eD .3e【答案】D【分析】由题意可知方程2e ,1,e x ax k k ⎡⎤-=∈-⎣⎦有两个实数根,令()e xg x ax =-,则()g x 的图象与直线2,1,e y k k ⎡⎤=∈-⎣⎦有两个交点,结合导数分析函数()g x 的单调性与极值情况即可解决问题.【详解】由题意可知方程2e ,1,e x ax k k ⎡⎤-=∈-⎣⎦有两个实数根,令()e x g x ax =-,则()g x 的图象与直线2,1,e y k k ⎡⎤=∈-⎣⎦有两个交点,()e xg x a '=-.(1)若0,()0a g x '≤<在R 上恒成立,所以()g x 在R 上单调递减,()g x 的图象与直线2,1,e y k k ⎡⎤=∈-⎣⎦至多只有一个交点,不合题意;(2)若0a >,当ln x a <时,()0g x '>,当ln x a >时,()0g x '<, 所以()g x 的单调递增区间是(,ln )a -∞,单调递减区间是(ln ,)a +∞, 所以当ln x a =时,()g x 取得极大值,也是最大值,为ln a a a -. 当x →-∞时,()g x →-∞,当x →+∞时,()g x →-∞,所以要使()g x 的图象与直线2,1,e y k k ⎡⎤=∈-⎣⎦有两个交点,只需2ln e a a a ->.ln (ln 1)a a a a a -=-,当0e a <≤时,ln 0a a a -≤,当e a >时,ln 0a a a ->,所以2ln e ,e a a a a ->>,设()ln ,e h a a a a a =->,则()ln 0h a a '=>,所以()h a 在(e,)+∞上单调递增,而()22e e h =,所以2ln e a a a ->的解为2e a >,而23e e >, 故选:D .例19.(2023·全国·高三专题练习)已知定义在R 上的偶函数()y f x =的导函数为()y f x '=,当0x >时,()()0f x f x x '+<,且(2)3f =-,则不等式6(21)21f x x --<-的解集为( ) A .13,,22⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭B .3,2⎛⎫+∞ ⎪⎝⎭C .13,22⎛⎫ ⎪⎝⎭D .1113,,2222⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭【答案】A【分析】根据题干中的不等式,构造函数()()F x xf x =,结合()y f x =在在R 上为偶函数,得到()()F x xf x =在R 上单调递减,其中()()2226F f ==-,分12x >与12x <,对6(21)21f x x --<-变形,利用函数单调性解不等式,求出解集. 【详解】当0x >时,()()()()0f x xf x f x f x x x'+'+=<, 所以当0x >时,()()0xf x f x '+<,令()()F x xf x =,则当0x >时,()()()0F x xf x f x +''=<, 故()()F x xf x =在0x >时,单调递减, 又因为()y f x =在在R 上为偶函数, 所以()()F x xf x =在R 上为奇函数, 故()()F x xf x =在R 上单调递减, 因为(2)3f =-,所以()()2226F f ==-, 当12x >时,6(21)21f x x --<-可变形为()21(21)6x f x --<-, 即()()212F x F -<,因为()()F x xf x =在R 上单调递减, 所以212x ->,解得:32x >, 与12x >取交集,结果为32x >;当12x <时,6(21)21f x x --<-可变形为()21(21)6x f x -->-, 即()()212F x F ->,因为()()F x xf x =在R 上单调递减, 所以212x -<,解得:32x <, 与12x <取交集,结果为12x <; 综上:不等式6(21)21f x x --<-的解集为13,,22⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭.故选:A例20.(2022·全国·高三阶段练习(理))已知函数()32e e x xf x x x -=-++-,其中e 是自然对数的底数,若()()224f a f a -+>,则实数a 的取值范围是( )A .()2,1-B .(),2-∞-C .()1,+∞D .()(),21,-∞-⋃+∞【答案】D【分析】构造函数()()2g x f x =-,利用奇偶性的定义、导数的符号变化判定其奇偶性和单调性,再将2(2)()4f a f a -+>变为2(2)()g a g a ->-,利用()g x 的单调性进行求解.【详解】构造函数()3()2e e x xg x f x x x -=-=-+-,因为()g x 的定义域为(,)-∞+∞,且()()()33e e e e x x x x g x x x x x ---=---+-=-+-+ 3e )()e (x x g x x x -=--+-=-,即()g x 是奇函数,又()22231e +e 31310x x g x x x x -=-+≥-+=+>', 所以()g x 在 (,)-∞+∞上单调递增;因为2(2)()4f a f a -+>,所以2(2)2[()2]f a f a -->--, 即2(2)()g a g a ->-,即2(2)()g a g a ->-,所以22a a ->-, 即220a a +->,解得1a >或2a <-, 即(,2)(1,)a ∈-∞-+∞. 故选:D.【点睛】方法点睛:利用函数的性质解决不等式问题时,往往要利用题干中的表达式或不等式的结构特点合理构造函数,如本题中,构造函数()()2g x f x =-,将问题转化为利用函数的奇偶性和单调性求2(2)()g a g a ->-的解集. 【题型】八、构造()b kx +与)(x f 型例21.(2022·河南·高三阶段练习(文))已知定义在()0,∞+上的函数()f x 的导函数为()f x ',若()2f x '<,且()45f =,则不等式()1223x x f +>-的解集是( )A .()0,2B .()0,4C .(),2-∞D .(),4-∞【答案】C【分析】根据所求不等式()1223x x f +>-的形式,构造函数()()23g x f x x =-+,利用题目中的条件判断出()g x 在()0,∞+上单调递减,进而将所求转化为()()24xg g >,再利用单调性求出解集.【详解】设()()23g x f x x =-+,则()()2g x f x ''=-.因为()2f x '<,所以()20f x '-<,即()0g x '<,所以()g x 在()0,∞+上单调递减.不等式()1223x x f +>-等价于不等式()22230x x f -⨯+>,即()20xg >.因为()45f =,所以()()442430g f =-⨯+=,所以()()24xg g >.因为()g x 在()0,∞+上单调递减,所以24x <,解得2x <. 故选:C .例22.(2022·河南·襄城高中高二阶段练习(理))已知奇函数()f x 的定义域为R ,其函数图象连续不断,当0x >时,()()()20x f x xf x '++>,则( ) A .()()124f f e> B .()20f <C .()()310f f -⋅>D .()()142f f e->- 【答案】D 【解析】令()()2xg x x e f x =,根据导数可知其在[)0,∞+上单调递增,由()()()2100g g g >>=可知AB 错误,同时得到()()142f f e<,()10f >,()30f >,结合奇偶性知C 错误,D 正确. 【详解】对于AB ,令()()2xg x x e f x =,则()00g =,()()()()22x x g x x x e f x x e f x ++'=',当0x ≥时,()()()()20xg x xe x f x xf x ''=+⋅+≥⎡⎤⎣⎦,()g x ∴在[)0,∞+上单调递增,()()()012g g g ∴<<,即()()20142ef e f <<,()20f ∴>,()()124f f e<,AB 错误; 对于C ,由A 的推理过程知:当0x >时,()()20xg x x e f x =>,则当0x >时,()0f x >,∴()10f >,()30f >,又()f x 为奇函数,()()330f f ∴-=-<,()()310f f ∴-⋅<,C 错误. 对于D ,由A 的推理过程知:()()142f f e<,又()()11f f -=-,()()22f f -=-,()()142f f e-∴-<--,则()()142f f e->-,D 正确. 故选:D.第五天学习及训练【题型】九、构造()b kx +ln 型例23.(2023·全国·高三专题练习)定义在(0)+∞,上的函数()f x 满足()()110,2ln2xf x f '+=>,则不等式)(e 0x f x +> 的解集为( ) A .(02ln2), B .(0,ln2) C .(ln21), D .(ln2)+∞,【分析】构造新函数()()ln ,(0)g x f x x x =+>,利用导数说明其单调性,将)(e 0x f x +>变形为)>(e (2)x g g ,利用函数的单调性即可求解. 【详解】令()()ln ,(0)g x f x x x =+> , 则()11()()xf x g x f x x x'+''=+=,由于()10xf x '+>, 故()0g x '>,故()g x 在(0)+∞,单调递增, 而1(2)(2)ln2ln ln 202g f =+=+= ,由)(e 0x f x +>,得)>(e (2)x g g , ∈e 2x > ,即ln2x > ,∈不等式)(e 0x f x +>的解集为(ln2)+∞,, 故选:D .例24.(2022·河南·高三阶段练习(理))设1cos 2a =,78b =,15ln 8c ⎛⎫= ⎪⎝⎭,则a ,b ,c 之间的大小关系为( ) A .c <b <a B .c <a <bC .b <c <aD .a <c <b【答案】A【分析】构造函数()()ln 1g x x x =+-,()212cos f x x x ⎛⎫-- ⎝=⎪⎭,借助函数的单调性分别得出c <b 与a >b ,从而得出答案.【详解】构造函数()()ln 1g x x x =+-, x >-1,则()1111xg x x x -'=-=++, 当-1<x <0时,()0g x '>,()g x 单调递增,当x >0时,()0g x '<,()g x 单调递减, ∈()()00g x g ≤=,∈()ln 1x x ≤+(当x =0时等号成立), ∈1577ln ln 1888⎛⎫⎛⎫=+< ⎪ ⎪⎝⎭⎝⎭,则c <b ,构造函数()21cos 12f x x x ⎛⎫=-- ⎪⎝⎭,0<x <1,则()sin f x x x '=-,令()sin x x x ϕ=-,0<x <1,∈()1cos 0x x ϕ'=->,()x ϕ单调递增, ∈()()00ϕϕ>=x ,∈0fx,()f x 单调递增,从而()()00f x f >=,∈102f ⎛⎫> ⎪⎝⎭,即21117cos 12228⎛⎫>-⋅= ⎪⎝⎭,则a >b .∈c <b <a . 故选:A .例25.(2022·贵州·高三阶段练习(理))已知命题p :在ABC 中,若π4A >,则sin A >,命题:1q x ∀>-,ln(1)x x ≥+.下列复合命题正确的是( ) A .p q ∧ B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝【答案】C【分析】命题p 可举出反例,得到命题p 为假命题,构造函数证明出:1q x ∀>-,ln(1)x x ≥+成立,从而判断出四个选项中的真命题.【详解】在ABC 中,若5π6A =,此时满足π4A >,但1sin 2A =<p 错误; 令()()ln 1,1f x x x x =-+>-, 则()1111xf x x x '=-=++, 当0x >时,0f x,当10x -<<时,()0f x '<,所以()f x 在0x >上单调递增,在10x -<<上单调递减, 所以()f x 在0x =处取得极小值,也是最小值,()()00ln 010f =-+=,所以:1q x ∀>-,ln(1)x x ≥+成立,为真命题;故p q ∧为假命题,()()p q ⌝∧⌝为假命题,()p q ⌝∧为真命题,()p q ∧⌝为假命题.故选:C【题型】十、构造综合型例26.(2022·全国·高三阶段练习(理))下列命题为真命题的个数是( )∈32log 23>;∈eln ππ<;∈123sin 248>;∈3eln2< A .1 B .2C .3D .4【答案】C【分析】利用指数式与对数的互化、对数函数的单调性推得∈错误;构造函数()ln xf x x=,利用导数研究其单调性和最值,进而判定∈∈正确;构造函数31()=sin 6h x x x x -+,π(0,)2x ∈,利用二次求导确定其单调性,利用1()>(0)2h h 得到∈正确.【详解】对于∈:若32log 23>,则2323>,即89>, 显然不成立,故∈错误; 对于∈:将eln ππ<变为ln πlne <πe, 构造()ln x f x x =,则()21ln xf x x -'=, 则当0e x <<时,0f x,e x >时,()0f x '<,所以()ln xf x x=在(0,e)上单调递增,在(e,+)∞上单调递减, 则e x =时,()f x 取得最大值1e,由()()πe f f <得ln πlne <πe, 即eln ππ<成立,故∈正确;对于∈:令31()=sin 6h x x x x -+,π(0,)2x ∈,。
导数运算中的构造函数1. 若()()0f x f x '+>,则可构造函数()()xF x e f x =⋅; 2. 若()()0f x f x '->,则可构造函数()()xf x F x e =; 3. ①若()2()0f x f x '+>,则可构造函数12()()x F x e f x =⋅; ②若()()0f x nf x '+>,则可构造函数1()()x nF x e f x =⋅,(*n N ∈).4. ①若()2()0f x f x '->,则可构造函数12()()x f x F x e=;②若()()0f x nf x '->,则可构造函数1()()x nf x F x e=,(*n N ∈).5. ①若2()()0f x f x '+>,则可构造函数2()()xF x f x e =⋅; ②若()()0nf x f x '+>,则可构造函数()()nxF x f x e =⋅,(*n N ∈).6. ①若2()()0f x f x '->,则可构造函数2()()xf x F x e =; ②若()()0nf x f x '->,则可构造函数()()nx f x F x e=,(*n N ∈).7. 若()()0f x x f x '+⋅>,则可构造函数()()F x x f x =⋅; 8. 若()()0f x x f x '-⋅>,则可构造函数()(),(0)f x F x x x=≠; 9.①若22()()0x f x x f x '⋅+⋅>,则可构造函数2()()F x x f x =⋅;②若2()()0f x x f x '⋅+⋅>,则可构造函数2()()F x x f x =⋅(注意x 的正负);③若()()0n f x x f x '⋅+⋅>,则可构造函数()()n F x x f x =⋅(注意x 的正负,n 的奇偶); 10. 若()()0n f x x f x '⋅-⋅>,则可构造函数()()n f x F x x=(注意x 的正负,n 的奇偶); 11. ① 若()cos ()sin 0f x x f x x '+>,则可构造函数()sin ()F x x f x =⋅;②若()()tan 0f x f x x '+>,则可构造函数()sin ()F x x f x =⋅(注意x 的取值范围); 12. ①若()cos ()sin 0f x x f x x '->,则可构造函数()()sin f x F x x=; ②若()()tan 0f x f x x '->,则可构造函数()()sin f x F x x= (注意x 的取值范围); 13. ①若()ln ()0f x x f x x'+⋅>,则可构造函数()ln ()F x x f x =⋅; ②若()ln ()0f x x x f x '+⋅⋅>,则可构造函数()ln ()F x x f x =⋅;14. ①若()ln ()0f x x f x x '-⋅>,则可构造函数()()ln f x F x x=(0,1x x >≠); ②若()ln ()0f x x x f x '-⋅⋅>,则可构造函数()()ln f x F x x=(0,1x x >≠);练习题1.已知定义在R 上的函数()(),'f x f x 是其导函数,且满足()()()212f x f x f e '->=-,,则不等式()2xf x e +≥的解集为( )A .(,1)-∞B .[1,)+∞C . (,2)-∞D .(2,)+∞ 解: 令()()2x f x F x e +=,则()()()()'2'0,xf x f x F x F x e --=>∴在R 上为增函数,又()12f e =-, ()()()1211,2x f F f x e e +∴==+≥Q 可化为()21xf x e+≥,即()()1F x F ≥,[1,)x ∴∈+∞ 故选:B2.定义在R 上的函数()f x 导函数为()f x ',若对任意实数x ,有()()f x f x '>,且()2019f x +为奇函数,则不等式()2019e 0xf x +<的解集为( ) A .(),0-∞ B .()0,∞+C .1(,)e-∞D .1(,)e+∞解:由题意,构造新函数()()x f x F x e =,则()()()xf x f x F x e'-'=, 因为()()f x f x '>,所以()0F x '<,所以函数()F x 在R 上单调递减, 又因为()2019f x +为奇函数,所以()020190f +=, 所以()02019f =-,则()02019F =-, 所以不等式()20190xf x e +<等价于()2019xf x e <-,又等价于()()0F x F <,即0x >, 所以不等式()2019e 0x f x +<的解集为()0,∞+,故选B.3.己知定义在R 上的可导函数()f x 的导函数为()f x ',满足()()f x f x <',且(2)f x +为偶函数,(4)1f =,则不等式()xf x e <的解集为A .(2,)-+∞B .(0,)+∞C .(1,)+∞D .(4,)+∞ 解:设()()x f x F x e=(x R ∈),则2()()()()()()x x x x f x e f x e f x f x F x e e ''--'== 又∵()()f x f x <',∴()0F x '<(x R ∈),∴函数()F x 在定义域上单调递减∵(2)f x +为偶函数,即将()f x 的图象向左平移2个单位后,图象关于y 轴对称, ∴()f x 的图象关于2x =对称∴(4)(0)1f f ==,所以0(0)(0)1f F e== 作出F (x )模拟图象,如下图思考:我们对所构造的函数要研究它的哪些性质?∵()()()1x xf x f x e F x e <⇔=<,由图象可知:0x >,故选B .4.已知函数f x ()在0x >上可导且满足()()0f x f x '->,则下列一定成立的为( )A .23(2)(3)e f e f > B .23(3)(2)e f e f < C .32(2)(3)e f e f < D .23(2)(3)e f e f <解:令()()x f x F x e=,()0,x ∈+∞ 则()()()()()()2x x x x f x e e f x f x f x F x e e ''--'== ()()0f x f x '->Q ()()()()()()20x x xx f x e e f x f x f x F x e e ''--'==>即()()x f x F x e =在定义域()0,∞+上单调递增 ()()32F F ∴>,即()()3232f f e e>, ()()2332e f e f ∴> 故C 正确,故选:C5.已知定义在R 上的偶函数()f x 满足:当0x <时()()20f x xf x '+<,则( ) A .()()()24293f e f e f >>B .()()()24293f f e f e ->->-C .()()()29342f f e f e >>-D .()()()24293e f e f f >->-解:构造新函数为:2()()F x x f x =,因为()f x 是偶函数,故()()f x f x -=,于是有22()()()()()F x x f x x f x F x -=--==,所以函数()F x 是偶函数.2()2()()[2()()]F x xf x x f x x f x xf x '''=+=+,当0x <时,()()20f x xf x '+<,所以当0x <时,()0.F x '>则()F x 在(,0)-∞上是增函数, 根据()F x 是偶函数得知,()F x 在(0,)+∞上是减函数23e <<Q ,(2)()(3)F F e F ∴>>,即2222(2)()3(3)f e f e f >>故选:A 6.设函数'()f x 是奇函数()f x (x ∈R )的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值范围是( )A .(,1)(0,1)-∞-UB .(1,0)(1,)-⋃+∞C .(,1)(1,0)-∞--UD .(0,1)(1,)⋃+∞ 解: 构造新函数()()f x F x x =,由()f x 为奇函数知()F x 为偶函数. ()()()2 'xf x f x F x x'-=Q , 当0x >时()'0F x <.∴()()f x F x x=在()0,∞+上单减,由()10f =,得()10F =. 根据()F x 为偶函数可知,()()f x F x x=在(),0-∞上单增,且(1)0F -=.故选A.7.已知函数()y f x =是定义在实数集R 上的奇函数,且当(,0)x ∈-∞时()()xf x f x <-'成立(其中()()f x f x '是的导函数),若a =,(1)b f =,2211(log )(log )44c f =则,,a b c 的大小关系是( ) A .c a b >>B .c b a >>C .a b c >>D .a c b >>解:由题意当(,0)x ∈-∞时,()()(),()()0,(())0,xf x f x f x xf x f x xf x '<-=-∴<'+<'∴令()()F x xf x =,则()F x 是(,0)-∞上的减函数,而()F x 是偶函数(奇乘奇=偶),所以()F x 是(0,)+∞上的增函数, 而21(1),(log )(2)(2)4a Fb Fc F F F ====-=,且12<<,b a c <<.8.若函数()f x 在R 上可导,()()f x xf x '<则( )A .()()e 1e f f <B .()()e 1e f f >C .()()e 1e f f =D .()()1e f f =解:根据()'()f x xf x <可得'()()0xf x f x ->,可知当0x >时,2'()()0xf x f x x ->,即()[]'0f x x>, 所以可知函数()f x x 在(0,)+∞上是增函数,即(1)()1f f e e<,从而得(1)()ef f e <,故选A.9.若函数()f x 在()0,∞+上可导,且满足()()'f x xf x <,则一定有( ) A .函数()()f x F x x=在()0,∞+上为增函数 B .函数()()f x F x x=在()0,∞+上为减函数 C .函数()()G x xf x =在()0,∞+上为增函数 D .函数()()G x xf x =在()0,∞+上为减函数 解:因为()()f x xf x <',构造新函数()()f x F x x=,其导数为()()2()0f x x f x F x x -=''>,所以函数()()f x F x x=在(0,)+∞上单调递增,故选A .10.定义在{}|0x x ≠上的函数()f x 满足()()0,()f x f x f x --=的导函数为()'f x ,且满足(1)0f =,当0x >时,()2()xf x f x '<,则使得不等式()0f x >的解集为( )A .()(),10,1-∞-⋃B .()(),11,-∞-+∞UC .()()1,01,-⋃+∞D .()()1,00,1-U解:由函数定义域为{}|0x x ≠,且()()0f x f x --=,即()()f x f x -=,所以函数()f x 为偶函数令()()2f x F x x =,则()()()32f x x f x F x x-'=', 由当0x >时,()2()xf x f x '<,即()22()x f x xf x '<,此时()0F x '<,所以可知()F x 在()0,∞+递减 则()F x 在(),0-∞递增,又(1)0f =,所以()()110f F ==,同理(1)(1)0F F -== 作出()F x 列表:故选:D11.已知函数()f x 的定义为R ,(1)f e -=,若对任意实数x 都有()f x e '>,则不等式()2f x ex e >+的解集是( )A .(1)-∞-,B .(1)-+∞,C .(11)-,D .(1)+∞, 解:令()()F x f x ex =-,Q 对任意实数x 都有()f x e '>,()()0F x f x e ''∴=->,∴函数()F x 为定义在R 上的单调递增函数,(1)f e -=Q ()()112F f e e ∴-=-+=,作出F (x )模拟图象,如下图()2f x ex e >+Q ,()2f x ex e ∴->,()2F x e ∴>,1x ∴>- 故不等式()2f x ex e >+的解集是(1)-+∞,. 故选:B 12.已知函数()()y f x x R =∈的图象过点()1,1,()f x ' 为函数()f x 的导函数,e 为自然对数的底数.若 ()1f x '>恒成立,则不等式()f x x >的解集为( )A .10,e ⎛⎫ ⎪⎝⎭B .()0,1C .()1,+∞D .(),e +∞解:设()()F x f x x =-,则()()''1F x f x =-,因为()1f x '>恒成立,()'0F x ∴>恒成立,()F x ∴单调递增, ()11f =Q ,()()1110F f ∴=-=,作出F (x )模拟图象,如下图Q 不等式()f x x >()0F x ⇔>, 由图象知 1x ∴>,故选:C .13.定义在R 上的函数()f x,()f x '是其导函数,且满足()()2f x f x +'>, ()412f e=+,则不等式()42x x e f x e >+的解集为( )A .(,1)-∞B .(1,)+∞C .(,2)-∞D .(2,)+∞解:令()()24xxF x e f x e =--,()()()2[()()2]xxxxF x e f x e f x e e f x f x '=+'-=+'-;()()2f x f x +'>Q ; ()0F x ∴'>; ()F x ∴在R 上单调递增; 4(1)2f e =+Q ;∴4(1)(2)240F e e e=+--=;,作出F (x )模拟图象,如下图 ()42()0x x e f x e F x >+⇔>Q 1x ∴> ∴原不等式的解集为(1,)+∞.故选:B .14.设函数()f x 在R 上存在导函数()f x ',对于任意的实数x 都有2()4()f x x f x -=-,当(,0]x ∈-∞时,()41f x x '<-,若()()142f m f m m +≤-++,则实数m 的取值范围是( )A .1,2⎡⎫-+∞⎪⎢⎣⎭B .3,2⎡⎫-+∞⎪⎢⎣⎭C .[1,)-+∞D .[2,)-+∞解:由已知条件()41f x x '<-分析,可构造函数2()()2F x f x x x =-+,求导得()()41F x f x x ''=-+.显然()0F x '<,从而()F x 在(,0]x ∈-∞上单调递减. 已知条件2()4()f x x f x -=-如何利用?如何才能出现()()f x f x -+?我们计算22222()()()2()()()2()()4440F x F x f x x x f x x x f x f x x x x -+=---+-+-+=-+-=-= 即()()F x F x -=-,这能说明()F x 为奇函数.()F x 在(0,)+∞上单调递减,从而()F x 在R 上调递减.下一个已知条件()()142f m f m m +≤-++如何利用?如何才能出现(1)()f m f m +--?我们计算:22(1)()(1)2(1)(1)[()2()()](1)()21422121F m F m f m m m f m m m f m f m m m m m +--=+-+++----+-=+----≤+--=+ 再经过变形得:(1)(1)()()F m m F m m +-+≤---.这个不等式两边在形式上具有一致性,我们继续构造函数: 令()()x F x x ϕ=-,由前面分析()F x 在R 上单调递减,可知()x ϕ在R 上单调递减 .我们所要研究的不等式(1)(1)()()F m m F m m +-+≤---等价于(1)()m m ϕϕ+≤-,从而1m m +≥-,求得12m ≥-.15.已知定义域为(0,)+∞的函数()f x 的图象经过点(2,4),且对(0,)+∞,都有()1f x '>,则不等式(22)2x xf -<的解集为( ) A .(0,)+∞B .(0,2)C .(1,2)D .(0,1)解:由已知:(2)4f =.令22x t -=,0t >,且22x t =+,不等式(22)2x x f -<等价于()2f t t <+.构造函数令()()(0)F t f t t t =-> ,对其求导()()10F t f t ''=->,于是()F t 在(0,)+∞上单调递增. 为了利用上(2)4f =,我们得计算(2)(2)22F f =-=.作出F (t )模拟图象,如下图2<等价于()2F t <. 由图象可知:02t <<,所以0222x <-<,(1,2)x ∴∈,应选答案C.16.定义域为R 的可导函数()y f x =的导函数()f x ',满足()()f x f x '>,且()12f =,则不等式1()2x f x e -<的解集为( ) A .()1,+∞B .(),2-∞C .(),1-∞D .()2,+∞解:构造函数()()()2'()'()()'()()x xxx xf x f x e f x e f x f x F x F x ee e--=⇒==因为()()()0()f x f x F x F x '⇒<⇒'>单调递减.()212(1)f F e=⇒=作出F (x )模拟图象,如下图所求的不等式()1()2)22(x x f x F x e f e e ex -<<⇔⇔< ,由图象知1x > , 故答案选A0时,()()0f x xf x '+>,且(3)0f -=,则不等式)()33,+∞U D .()(),30,3-∞-U()0x '> ()F x ∴在(,0)-∞是单调递增,列表:所以()0f x <的解集为(3,0)(0,3)-⋃. 故选:B.18.已知定义在R 上的函数()f x 的导函数为()f x '、(1)f x +的图象关于点(1,0)-对称,且对于任意的实数x ,均有()()ln 2f x f x '>成立,若(2)2f -=,则不等式1()2x f x ->-的解集为( ) A .(2,)-+∞B .(2,)+∞C .(,2)-∞-D .(,2)-∞解:)1(f x +Q 的图象关于点(1,0)-对称,也就是说把函数()f x 图象向左平移1个单位后关于点(1,0)-对称,()f x ∴图象关于原点对称,从而()f x 为奇函数.由已知:()()()()ln 2<0ln 2f x f x f x f x ''>⇔-, 令()()2xf x F x =, 则()2()22()ln 2()()ln 2()022x x xxf x f x f x f x F x ''⋅-⋅-'==<,则()F x 在(,+)-∞∞上单调递减,由(2)2f -=,得(2)2f =-,所以(2)1(2)42f F ==-. 作出F (x )模拟图象,如下图所以1()2x f x ->-⇔()()11222x f x F x >-⇔>-,由图象知:2x <. 故选:D .19.函数()f x 是定义在(0,)+∞上的可导函数,()f x '为其导函数,若()()xxf x f x e '+=,且(2)0f =,则()0f x <的解集为( ) A .(0, 1)B .(0, 2)C .(1, 2)D .(1, 4)解:由()()xxf x f x e '+=得[()]xxf x e '=,()xxf x e c ∴=+,从而()(0)x e c f x x x+=>,又(2)0f =,2c e ∴=-,2()(0)x e e f x x x-∴=>,()0f x <时,2x <,又(0,)x ∈+∞,故02x <<.故选:B .20.已知()f x ' 是奇函数()f x 的导函数,()10f -=,当0x >时,()()0xf x f x '->,则使得()0f x >成立的x 的取值范围是__________. 解:令()()f x F x x=,因为()f x 为奇函数,所以()F x 为偶函数,定义域(,0)(0,)-∞⋃+∞ 对()F x 求导得:()2()()xf x f x F x x'-'=,因为当0x >时,()()0xf x f x '->,所以当0x >时,()0F x '>,即()F x 在(0,)+∞上单调递增 由()F x 为偶函数知:()F x 在(,0)-∞上单调递减由()10f -=,可知 (1)0F =,则(1)(1)0F F -==.作出()F x 草图:列表:综上,()0f x >时,1x >或10x -<< 故答案为:()()1,01,-⋃+∞21.已知函数()f x 是定义在R 上的偶函数,当0x >时,()()'>xf x f x ,若()20f =,则不等式()0x f x ⋅>的解集为________解:由题意,令()()f x F x x=,因为()f x 是定义在R 上的偶函数,所以 ()F x 为奇函数,定义域为(,0)(0,)-∞⋃+∞对()F x 求导得:2()()()xf x f x F x x'-'=.由已知当0x >时,()()'>xf x f x ,所以 ()F x 在(0,)+∞上单调递增.再由()F x 为奇函数,可得()F x 在(,0)-∞上单调递增. 由()20f =得(2)0,(2)(2)0F F F =-=-=. 作出()F x 草图:∴不等式()0()0x f x F x >⇔>g 的解集为{|20x x -<<或2}x >.故答案为:()()2,02,-+∞U .22.若定义域为R 的函数()f x 满足'()()f x f x >,则不等式(ln )(1)0ef x xf -<的解集为______(结果用区间表示). 解:令()()xf x F x e =, 则2(()())()x xe f x f x F x e '-'=,因为()()f x f x >',所以()0F x '>, 所以,函数()F x 为(,)-∞+∞上的增函数, 由(ln )(1)ef x xf <,得:(ln )(1)f x f x e<,即ln 1(ln )(1)xf x f e e <,即(ln )(1)F x F <, 因为函数()F x 为(,)-∞+∞上的增函数,所以ln 1x <.所以不等式的解集是(0,)e .故答案为(0,)e .23.定义在()0,+∞上的函数()f x 满足()0f x >,()() f x f x '为的导函数,且()()()23f x xf x f x '<<对()0,x ∈+∞恒成立,则()()23f f 的取值范围是_______解:设()()2(0)f x F x x x =>,则()()()320xf x f x F x x-''=>,故函数()F x 在()0,+∞上单调递增, 因为:23<,所以(2)(3)F F <,即()()2349f f <,故()()2439f f <. 设()()3(0)f x G x x x=>,则()()()430xf x f x G x x-''=<,故()G x 在()0,+∞上单调递减,因为23<,所以(2)(3)G G >所以()()23827f f >,则()()28327f f >, 所以()()2842739f f <<. 故()()23f f 的取值范围是84,279⎛⎫⎪⎝⎭.24.函数()f x 的定义域为R ,()11f -=,对任意x ∈R ,()4f x '>,则()45f x x <+的解集为________. 解:令()()4F x f x x =-,则()()4F x f x ''=-, 因为x ∈R 时,()40f x '->,即()0F x '>,因此,()F x 在定义域R 上为单调递增函数;由于()11f -=,则()51F -=, 作出F (x )模拟图象,如下图要求()45f x x <+,则()45f x x -<,即()5F x <, 由()F x 的图象知1x <-.故答案为:(),1-∞-.25.已知定义在R 上的可导函数()f x 的导函数为()f x ',满足()()f x f x '<,且()2f x +为偶函数,()41f =,则不等式()xf x e <的解集为______解:设()()x f x Fx e=,则:()()()()()2x x e f x f x F x e '-'=()()f x f x '<Q ,()0F x ∴'<.所以函数()F x 是R 上的减函数,Q 函数(2)f x +是偶函数,∴函数()f x 图象关于直线2x =对称, (4)(0)1f f ∴==为了利用上(0)1f =,我们得计算0(0)(0)1f F e==.作出F (x )模拟图象,如下图原不等式()xf x e <等价为()1F x <,由图象知0x >,故答案为: (0,)+∞26.已知函数()f x 的导数为()'f x ,()11f =,若对任意的实数x 都有()()'0f x f x ->,则()1x f x e e<的解集为__________.解:设()()x F x f x e =,则2()()()()()x x x xf x e f x e f x f x F x e e'-'-'==, 因为对任意的实数x 都有()()0f x f x -'>, 所以()0F x '<,即()F x 在R 上单调递减, 又因为(1)1f =,所以1(1)F e=,作出F(x)模拟图象,如下图所求不等式()1x f x e e <等价于1()F x e<,由图象知,1x >. 故答案为:(1,)+∞ 27.函数()()f x x R ∈满足(1)2f =,且()f x 在R 上的导函数'()f x 满足'()3f x >,则不等式(2)321x x f <⋅-的解集为________.解:构造函数()()3F x f x x =-,则'()'()30F x f x =->,说明()F x 在R 上是增函数, 为了利用(1)2f =,我们得计算(1)(1)31F f =-=-. 作出F(x)模拟图象,如下图又不等式(2)321x x f <⋅-可化为(2)321x x f -⋅<-,即(2)1xF <-,∴21x <, 解得0x <.∴不等式(2)321x x f <⋅-的解集为(,0)-∞.故答案为:(,0)-∞28.函数()f x (x ∈R )满足(1)2f =且()f x 在R 上的导数'()f x 满足'()30f x ->,则不等式33(log )3log 1f x x <-的解集为___________.解:构造函数()()3F x f x x =-,则'()'()30F x f x =->,说明()F x 在R 上是增函数, 为了利用(1)2f =,我们得计算(1)(1)31F f =-=-.作出F(x)模拟图象,如下图又不等式33(log )3log 1f x x <-可化为33(log )3log 1f x x -<-,即3(log )1F x <-, ∴3log 1x <,解得03x <<. ∴不等式33(log )3log 1f x x <-的解集为(0,3). 故答案为:(0,3)29.已知函数()f x 的定义域为R , ()'f x 是()f x 的导函数,且()23f =, ()'1f x <,则不等式()1f x x >+的解集为_______.解:令()()()1F x f x x =-+,则()()1F x f x ''=-,由已知()'1f x <可知()0F x '<, 从而()F x 在R 上单调递减.为了利用上()23f =,我们得计算(2)(2)30F f =-=. 作出F(x)模拟图象,如下图试卷第21页,总21页所求不等式()1f x x >+等 价于()0F x >,由图象知:2x <. 即不等式()1f x x >+的解集为(),2-∞.30.已知()f x ,()g x 都是定义在R 上的函数,且满足以下条件: ① ()()(,)01x f x a g x a a >≠⋅=; ② ()0g x ≠;③ ()()()()f x g x f x g x ''>⋅⋅, 若(1)(1)5(1)(1)2f fg g -+=-, 则log 1>a x 成立的x 的取值范围是________.解:由已知g(x)≠0,所以得()()x f x a g x =, 于是有()()()()()()20xf xg x f x g x a g x '-''=<成立, 所以()()x f x a g x =是R 上的减函数,即有01a << 又由(1)(1)5(1)(1)2f f g g -+=-,代入得152a a -+=,得12a =,(2a =舍去) 所以有:11221log log 1log 2a x x =>=,可得102x <<, 故答案为:10,2⎛⎫ ⎪⎝⎭.。
构造法处理导数中的不等关系一、典型例题:类型一:利用()f x 与nx 构造抽象函数 1、利用()f x 与 x 构造抽象函数:常用构造形式有()xf x ,()f x x .这类形式是对μν⋅, μν型导数计算的推广及应用.μν⋅型导函数中体现的是“+”法, μν型导函数中体现的是“-”法,由此,我们可以猜测,当导函数形式出现的是“+”法形式时,优先考虑构造μν⋅型函数,当导函数形式出现的是“-”法形式时,优先考虑构造μν型函数. 例1:已知定义在()0,+∞上的函数()f x 满足:()0,x ∀∈+∞,()()0f x xf x '-<,其中()f x '为()f x 的导函数,则不等式()()()()231123x f x x f x -+>+-的解集为( )A .3,42⎛⎫ ⎪⎝⎭B .()4,+∞C .()1,4-D .(),4-∞变式1:已知函数()f x 导函数为()f x ',在()0,+∞上满足()()xf x f x '>,则下列结论一定成立的是( )A .()()20202021f f >B .()()2020202120212020f f <C .()()20202021f f <D .()()2020202120212020f f >2、利用()f x 与n x 构造抽象函数 出现()()nf x xf x '+形式,构造函数()()nF x f x x =⋅; 出现()()xf x nf x '-形式,构造函数()()nf x F x x =.例2:已知偶函数()()0f x x ≠的导函数为()f x ',且满足()10f -=,当0x >时,()()2f x xf x '>,则使得 ()0f x >成立的x 的取值范围是 .变式1:(2021无锡一中高二下-期中,8)定义在()0,+∞上的函数()y f x =,有不等式()()()23f x xf x f x '<<恒成立,其中()y f x '=为函数()y f x =的导函数,则( )A .()()24161f f << B .()()2481f f << C .()()2341f f << D .()()2241f f <<类型二:利用()f x 与nx e 构造抽象函数 1、利用()f x 与xe 构造抽象函数 ()f x 与x e 构造,一方面是对μν⋅,μν型函数的导数的考查,另一方面是对()x x e e '=的考查.对于()()f x f x '±类型函数,我们可以等同()xf x ,()f x x类型函数的处理方法,“+”法形式时优先考虑构造()()x F x f x e =⋅型函数,“-”法形式时优先考虑构造()()x f x F x e =型函数. 例3:(2021启东高二下-期中,8)已知()f x 是定义在R 上的奇函数,且当0x >时,()()f x f x '<,则( )A .()()43f ef >B .()()242f e f >C .()()242f e f ->- D .()()43ef f ->-变式1:(2021震泽中学高二下-3月份月考,15)设定义域为R 的函数()f x 满足()()f x f x '>,则不等式()()121x e f x f x -<-的解集为 .2、利用()f x 与nxe 构造抽象函数 出现()()f x nf x '+形式,构造函数()()nx F x f x e =⋅;出现()()f x nf x '-形式,构造函数()()nx f x F x e=. 例4:若定义在R 上的函数()f x 满足()()20f x f x '->,()01f =,则不等式()2x f x e >的解集为 .变式1:(2020徐州高二下-期末,16)已知定义在()0,+∞上的函数()0f x >,且满足()()()2f x f x f x '<<,若()()12f k f =⋅,则实数k 的取值范围为 .类型三:根据等式、不等式、函数等的结构特征构造函数例5:(2021南通通州区、启东市高三上-期末联考,7)已知4ln04a a -=<,3ln 03b b -=<,2ln 02c c -=<,则( )A .c b a <<B .b c a <<C .a b c <<D .a c b <<变式1:(2021张家港高二下-期中,8)若4a <且44a a =,5b <且55b b =,6c <且66c c =,则( )A .a b c <<B .c b a <<C .b c a <<D .a c b <<例6:(2021扬州高二下-期中,8)已知函数()cos f x x a x =+,对于任意1x ,()212x R x x ∈≠,都有()()12212f x f x a a x x ->--恒成立,则实数a 的取值范围是( ) A.1⎡+⎣ B.1⎡⎤⎣⎦ C .[]1,1- D.1,1⎡-⎣变式1:(2021常熟高二下-期中,8)已知定义在R 上的连续奇函数()f x 的导函数为()f x ',已知()10f ≠,且当0x >时,有()()ln x x f x f x '⋅<-成立,则使()()240x f x ->成立的x 的取值范围是( ) A .()()2,00,2-⋃ B .()(),20,2-∞-⋃C .()()2,02,-⋃+∞D .()(),22,-∞-⋃+∞二、巩固练习:1.已知定义在R 上的函数()f x 的导函数为()f x ',且满足()()xf x f x '<,若()1a f =,()ln 4ln 4f b =,()33f c =,则a ,b ,c 的大小关系为( ) A .a b c >> B .c a b >> C .b a c >> D .a c b >>2.设()f x 是定义在R 上的偶函数,且()10f =,当0x <时,有()()0xf x f x '->恒成立,则不等式 ()0f x >的解集为 .3.(2021南京六校高二下-期中联考,8)定义在R 上的函数()f x 的导函数为()f x ',若对任意实数x ,有()()f x f x '>,且()2022f x +为奇函数,则不等式()20220x f x e +<的解集是( )A .(),0-∞B .(),ln 2022-∞C .()0,+∞D .()2022,+∞4.(2021南师附中高二下-期中,8)定义在R 上的函数()f x 的导函数为()f x ',若()()f x f x '>,()22021f =,则不等式()21120210x e f x e ++->的解集为( )A .(),1-∞B .()1,+∞C .()1,-+∞D .()2,+∞5.已知定义在R 上的函数()f x 满足:对任意x R ∈,()()0f x f x '-<恒成立,其中()f x '为()f x 的导函数,则不等式()()4123x e f x e f x +>-的解集为( )A .()4,+∞B .()1,4-C .(),3-∞D .(),4-∞6.(2021徐州高二下-期中,8)定义在R 上的函数()f x 满足:()()1f x f x '+>,()20f =,则不等式()2x x e f x e e <-的解集为( )A .()(),00,2-∞⋃B .()(),02,-∞⋃+∞C .()0,+∞D .(),2-∞7.已知定义在R 上的函数()f x 满足,()()20f x f x '+>且有112f e ⎛⎫= ⎪⎝⎭,则()21x f x e >的解集为()A .10,2⎛⎫ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭ C .()0,2 D .()0,+∞8.若函数()f x 对任意的x R ∈都有()()2f x f x '>成立,则( )A .()()9ln 24ln3f f >B .()()9ln 24ln3f f <C .()()9ln 24ln3f f =D .()9ln 2f 与()4ln3f 大小关系不定9.若定义在R 上的函数()f x 满足()()240f x f x '-->,()01f =-,则不等式()22x f x e >-的解集为 .10.(2021星海中学高二下-期中,12,多选题)已知函数()ln f x x x =,若120x x <<,则下列结论正确的是( )A .()()2112x f x x f x <B .()()1122x f x x f x +<+C .()()12120f x f x x x -<- D .当ln 1x >-时,()()()1122212x f x x f x x f x +>构造法处理导数中的不等关系(答案解析)一、典型例题:类型一:利用()f x 与nx 构造抽象函数 1、利用()f x 与 x 构造抽象函数:常用构造形式有()xf x ,()f x x .这类形式是对μν⋅, μν型导数计算的推广及应用.μν⋅型导函数中体现的是“+”法, μν型导函数中体现的是“-”法,由此,我们可以猜测,当导函数形式出现的是“+”法形式时,优先考虑构造μν⋅型函数,当导函数形式出现的是“-”法形式时,优先考虑构造μν型函数. 例1:已知定义在()0,+∞上的函数()f x 满足:()0,x ∀∈+∞,()()0f x xf x '-<,其中()f x '为()f x 的导函数,则不等式()()()()231123x f x x f x -+>+-的解集为( )A .3,42⎛⎫ ⎪⎝⎭B .()4,+∞C .()1,4-D .(),4-∞答案:A . 构造函数()()()()()()()200f x xf x f x g x x g x g x x x '-'=>⇒=>⇒在()0,+∞上递增,()()()()()()123231123123f x f x x f x x f x x x +--+>+-⇒>+-,即()()3123123042g x g x x x x +>-⇒+>->⇒<<. 变式1:已知函数()f x 导函数为()f x ',在()0,+∞上满足()()xf x f x '>,则下列结论一定成立的是( )A .()()20202021f f >B .()()2020202120212020f f <C .()()20202021f f <D .()()2020202120212020f f >答案:D .构造函数()()()()()()()200f x xf x f x g x x g x g x x x'-'=>⇒=>⇒在()0,+∞上递增()()()()202120202020202120212020g g f f ⇒>⇒>.2、利用()f x 与nx 构造抽象函数 出现()()nf x xf x '+形式,构造函数()()n F x f x x =⋅;出现()()xf x nf x '-形式,构造函数()()nf x F x x =. 例2:已知偶函数()()0f x x ≠的导函数为()f x ',且满足()10f -=,当0x >时,()()2f x xf x '>,则使得 ()0f x >成立的x 的取值范围是 .答案:()()1,00,1-⋃.构造函数()()()()()()()23200f x xf x f x g x x g x g x x x'-'=>⇒=<⇒在()0,+∞上递减,()()()g x g x g x -=⇒为定义在()(),00,-∞⋃+∞上的偶函数,()()()01,00,1f x x >⇒∈-⋃.变式1:(2021无锡一中高二下-期中,8)定义在()0,+∞上的函数()y f x =,有不等式()()()23f x xf x f x '<<恒成立,其中()y f x '=为函数()y f x =的导函数,则( )A .()()24161f f << B .()()2481f f << C .()()2341f f << D .()()2241f f << 答案:B .构造函数()()()()()()2320f x xf x f x g x g x g x x x'-'=⇒=>⇒在()0,+∞上递增()()21g g ⇒>,即()()()()221441f f f f >⇒>;构造函数()()()()()()3430f x xf x f x h x h x h x x x '-'=⇒=<⇒在()0,+∞上递减()()21h h ⇒<,即()()()()()()2221848811f f f f f f <⇒<⇒<<.1、利用()f x 与x e 构造抽象函数()f x 与x e 构造,一方面是对μν⋅,μν型函数的导数的考查,另一方面是对()x x e e '=的考查.对于()()f x f x '±类型函数,我们可以等同()xf x ,()f x x类型函数的处理方法,“+”法形式时优先考虑构造()()x F x f x e =⋅型函数,“-”法形式时优先考虑构造()()x f x F x e =型函数. 例3:(2021启东高二下-期中,8)已知()f x 是定义在R 上的奇函数,且当0x >时,()()f x f x '<,则( )A .()()43f ef >B .()()242f e f >C .()()242f e f ->- D .()()43ef f ->- 答案:C .0x >时,构造函数()()()()()()0x xf x f x f xg x g x g x e e '-'=⇒=<⇒在()0,+∞上递减,()()()()()()43434343f f g g f ef e e <⇒<⇒<,()()()()()()242424242f f g g f e f e e<⇒<⇒<,()f x 是定义在R 上的奇函数()()()()4343f ef f ef ⇒--<--⇒->-,()()()()224242f e f f e f --<--⇒->-.变式1:(2021震泽中学高二下-3月份月考,15)设定义域为R 的函数()f x 满足()()f x f x '>,则不等式()()121x e f x f x -<-的解集为 .答案:()1,+∞.构造函数()()()()()()0x x f x f x f x g x g x g x e e'-'=⇒=>⇒在R 上递增,()()()()()()1121212121x x x x f x f x f x e f x f x f x e e e -----<-⇒<⇒<,即()()21211g x g x x x x <-⇒<-⇒>.2、利用()f x 与nxe 构造抽象函数 出现()()f x nf x '+形式,构造函数()()nx F x f x e =⋅;出现()()f x nf x '-形式,构造函数()()nx f x F x e=. 例4:若定义在R 上的函数()f x 满足()()20f x f x '->,()01f =,则不等式()2x f x e >的解集为 .答案:()0,+∞.构造函数()()()()()()2220x xf x f x f xg x g x g x e e '-'=⇒=>⇒在R 上递增,()()0101f g =⇒=,()()221x x f x f x e e>⇒>,即()()00g x g x >⇒>.变式1:(2020徐州高二下-期末,16)已知定义在()0,+∞上的函数()0f x >,且满足()()()2f x f x f x '<<,若()()12f k f =⋅,则实数k 的取值范围为 . 答案:211,e e ⎛⎫ ⎪⎝⎭. 构造函数()()()()()()0x xf x f x f xg x g x g x e e '-'=⇒=>⇒在()0,+∞上递增()()21g g ⇒>,即()()()()221112f f f e e f e>⇒<,即1k e <;构造函数()()()()()()2220x x f x f x f x h x h x h x e e '-'=⇒=<⇒在()0,+∞上递减()()()()()()4222111212f f f h h e e f e⇒<⇒<⇒>,即21k e >,综上:211k e e <<. 类型三:根据等式、不等式、函数等的结构特征构造函数例5:(2021南通通州区、启东市高三上-期末联考,7)已知4ln04a a -=<,3ln 03b b -=<,2ln 02c c -=<,则( )A .c b a <<B .b c a <<C .a b c <<D .a c b <<答案:C .构造函数()()()11ln 1x f x x x f x f x x x-'=-⇒=-=⇒在()0,1上递减,在()1,+∞上递增,又()()4f a f =,()()3f b f =,()()2f c f =,且4a <,3b <,2c <,故a b c <<.变式1:(2021张家港高二下-期中,8)若4a <且44a a =,5b <且55b b =,6c <且66c c =,则( )A .a b c <<B .c b a <<C .b c a <<D .a c b <<答案:B .构造函数()()()ln 1ln x x f x f x f x x x-'=⇒=⇒在()0,e 上递减,在(),e +∞上递增,又()()4f a f =,()()5f b f =,()()6f c f =,且4a <,5b <,6c <,故c b a <<.例6:(2021扬州高二下-期中,8)已知函数()cos f x x a x =+,对于任意1x ,()212x R x x ∈≠,都有()()12212f x f x a a x x ->--恒成立,则实数a 的取值范围是( ) A.1⎡+⎣ B.1⎡⎤⎣⎦ C .[]1,1- D.1,1⎡-⎣ 答案:B .不妨令12x x >,()()()()()()()()()()12222221212112212f x f x a a f x f x a a x a a x f x a a x f x a a x x x ->-⇒->---⇒-->---构造函数()()()()()22cos g x f x a a x x a x a a x g x =--=+--⇒在R 上递增()0g x '⇒≥x R ∀∈恒成立,即21sin 0a x a a --+≥恒成立2010a a a a ≤⎧⇒⎨+-+≥⎩或201110a a a a a >⎧⇒≤≤⎨--+≥⎩.变式1:(2021常熟高二下-期中,8)已知定义在R 上的连续奇函数()f x 的导函数为()f x ',已知()10f ≠,且当0x >时,有()()ln x x f x f x '⋅<-成立,则使()()240x f x ->成立的x 的取值范围是( ) A .()()2,00,2-⋃ B .()(),20,2-∞-⋃C .()()2,02,-⋃+∞D .()(),22,-∞-⋃+∞答案:B .构造函数()()()()()()()()ln ln ln 0f x x x f x f x g x f x x g x x f x g x x x'⋅+''=⋅⇒=⋅+=<⇒在()0,+∞上递减,又()10g =,则01x <<时,()0g x >,1x >时,()0g x <,故01x <<时,()0f x <,1x >时,()0f x <,又()10f ≠且()f x 为连续函数,故0x >时,()0f x <,()f x 为定义在R 上的奇函数,故0x <时,()0f x >,()()2204040x x f x x <⎧->⇒⎨->⎩或()()20,20,240x x x >⎧⇒∈-∞-⋃⎨-<⎩.二、巩固练习:1.已知定义在R 上的函数()f x 的导函数为()f x ',且满足()()xf x f x '<,若()1a f =,()ln 4ln 4f b =,()33f c =,则a ,b ,c 的大小关系为( ) A .a b c >> B .c a b >> C .b a c >> D .a c b >>答案:A .2.设()f x 是定义在R 上的偶函数,且()10f =,当0x <时,有()()0xf x f x '->恒成立,则不等式 ()0f x >的解集为 .答案:()(),11,-∞-⋃+∞.构造函数()()()()()()()200f x xf x f x g x x g x g x x x '-'=<⇒=>⇒在(),0-∞上递增,()f x 为偶函数()g x ⇒为奇函数()g x ⇒在()0,+∞上递增,()()110g f ==,()()110g g -=-=,当1x <-或01x <<时,()0g x <,当10x -<<或1x >时,()0g x >,()()()0,11,f x x >⇒∈-∞-⋃+∞.3.(2021南京六校高二下-期中联考,8)定义在R 上的函数()f x 的导函数为()f x ',若对任意实数x ,有()()f x f x '>,且()2022f x +为奇函数,则不等式()20220x f x e +<的解集是( )A .(),0-∞B .(),ln 2022-∞C .()0,+∞D .()2022,+∞答案:C .构造函数()()()()()()0x x f x f x f x g x g x g x e e'-'=⇒=<⇒在R 上递减,()2022f x +为奇函数()()020********f f ⇒+=⇒=-,()()()()()002022020220x x x f x f f x e f x e f e e +<⇒<-⇒<=,即()()00g x g x <⇒>.4.(2021南师附中高二下-期中,8)定义在R 上的函数()f x 的导函数为()f x ',若()()f x f x '>,()22021f =,则不等式()21120210x e f x e ++->的解集为( )A .(),1-∞B .()1,+∞C .()1,-+∞D .()2,+∞答案:B .构造函数()()()()()()()()()20x x x x x f x f x e f x e f x f x g x g x g x e e e ''--'=⇒==>⇒在R 上递增()()211212*********x x f x e f x e e e++++->⇒>,即()()12121g x g x x +>⇒+>⇒>.5.已知定义在R 上的函数()f x 满足:对任意x R ∈,()()0f x f x '-<恒成立,其中()f x '为()f x 的导函数,则不等式()()4123x e f x e f x +>-的解集为( ) A .()4,+∞ B .()1,4- C .(),3-∞ D .(),4-∞答案:D .构造函数()()()()()()0x xf x f x f xg x g x g x e e '-'=⇒=>⇒在R 上递增,()()()()4123123123x x x f x f x e f x e f x e e +-+-+>-⇒>,即()()1231234g x g x x x x +>-⇒+>-⇒<.6.(2021徐州高二下-期中,8)定义在R 上的函数()f x 满足:()()1f x f x '+>,()20f =,则不等式()2x x e f x e e <-的解集为( )A .()(),00,2-∞⋃B .()(),02,-∞⋃+∞C .()0,+∞D .(),2-∞答案:D .构造函数()()()()()()110x x g x e f x g x e f x f x g x ''=-⇒=+->⇒⎡⎤⎡⎤⎣⎦⎣⎦在R 上递增,()22g e =-,()()221x x x e f x e e e f x e <-⇒-<-⎡⎤⎣⎦,即()()22g x g x <⇒<.7.已知定义在R 上的函数()f x 满足,()()20f x f x '+>且有112f e ⎛⎫= ⎪⎝⎭,则()21x f x e >的解集为( ) A .10,2⎛⎫ ⎪⎝⎭ B .1,2⎛⎫+∞⎪⎝⎭ C .()0,2 D .()0,+∞ 答案:B .构造函数()()()()()()2220x x g x f x e g x e f x f x g x ''=⋅⇒=+>⇒⎡⎤⎣⎦在R 上递增,11122g f e ⎛⎫⎛⎫=⋅= ⎪ ⎪⎝⎭⎝⎭,()()2211x x f x e f x e >⇒⋅>,即()1122g x g x ⎛⎫>⇒> ⎪⎝⎭.8.若函数()f x 对任意的x R ∈都有()()2f x f x '>成立,则( )A .()()9ln 24ln3f f >B .()()9ln 24ln3f f <C .()()9ln 24ln3f f =D .()9ln 2f 与()4ln3f 大小关系不定答案:B .构造函数()()()()()()2220x x f x f x f x g x g x g x e e'-'=⇒=>⇒在R 上递增()()()()ln3ln 29ln 24ln3g g f f ⇒>⇒<.9.若定义在R 上的函数()f x 满足()()240f x f x '-->,()01f =-,则不等式()22x f x e >-的解集为 .答案:()0,+∞. 构造函数()()()()()()222240x xf x f x f xg x g x g x e e '+--'=⇒=>⇒在R 上递增,()()0101f g =-⇒=,()()22221x x f x f x e e+>-⇒>,即()()00g x g x >⇒>.10.(2021星海中学高二下-期中,12,多选题)已知函数()ln f x x x =,若120x x <<,则下列结论正确的是( )A .()()2112x f x x f x <B .()()1122x f x x f x +<+C .()()12120f x f x x x -<- D .当ln 1x >-时,()()()1122212x f x x f x x f x +> 答案:AD .ln 1x >-时,()()ln 10f x x f x '=+>⇒在()0,+∞上递增,()()12120x x f x f x <<⇒<,()()()()()()()()()()()()()()()()()112221121221122221122112211122212ln ln 02x f x x f x x f x x x f x x f x f x x x f x x f x f x x f x x f x x x x x x f x x f x x f x +-=-+-⎡⎤⎣⎦>-+-⎡⎤⎣⎦=-=->⇒+>.。
专题导数中的构造函数解不等式高考数学总复习之典型例题突破压轴题系列解析专题0 6 导数中的构造函数解不等式导数中经常出现给出原函数与导函数的不等式,再去解一个不等式,初看起来难度很大, 其中这只是一种中等题型,只需根据原函数与。
导函数的关系式或者题目选项所给的提示构造函数,使得可根据原函数与导函数的关系式判断所构造函数的单调性,再将不等式化为两个函数值的形式,根据单调性解不等式即可。
【题型示例】1、定义在R上的函数/(x)满足:/(x) + r(.x)>l, /(0) = 4,则不等式e7Xx)>e" + 3(其中£为自然对数的底数)的解集为()A. (0,+oo)B. (-oo,02 (3,+00)C. (—8,0)5°,+如D. (3,+)【答案】A2、设函数/(x)在/?上的导函数为f何,对VxwR有/(.v)+/(-%) = x2,在(0,+co)上,/'(x)-xvO,若直线/(4-加)-/伽)》8-4〃?,则实数加的取值范围是( )A.. [2,-KX))B.(7,2]C. (-oo,-2] U[2,炖)D. [-2,2]【答案】A【解析】令g(x)=/(x)-|x2,则g(-X)+ g(X)= /(-A)-|A-2+/(X)-|x2 =0,所以函数g(x)为奇函数,当xw(O,~K?)时,g'(x)二/'(X)7VO,所以函数g(x)在(0,+oo)上是减函数,故函数g(x)在(0,0)上也是减函数,由/(0)=0,可得g(x)在/?上是减函数,/./(4_〃?)_/伽)=g(斗一〃J +丄(斗_加)= g(4_〃?)_g(〃?) + 8_4/n8_4? .\g(4-w)^g(w),/.4-w<w,解得加22,实数加的取值范围是< p=""> [2,4<?).3、己知定义在/?上的函数/⑴满足/(2) = 1,且/⑴的导函数f(x)>i 则不等式/(A)<1^2-X+I的解集为()■A. [x\-2<x<2]< p="">B. {x\x<2}c{x 卜>2} D. {x|.r<-2 或x>2}【答案】B【解析】令g(x) = /(x)-** + x, fflg,(x)=/(x)-x+l,因为f(x)>x-l,所以g'(x)>0,即g(x)在/?上为增函数,不等式/(A)<|J;2-.V+1可化为/(A)-|.V2+X<="" p="" 乂j="">g(x)单调递增得工v 2 ,所以不等式的解集为{x\x < 2} ?4、定义在[0,+oo)的函数f(rr)的导函数为严&),对于任意的> 0,恒有> /(r), 仇=绰,^=埠,贝临上的大。
专题06 导数中的构造函数解不等式
导数中经常出现给出原函数与导函数的不等式,再去解一个不等式,初看起来难度很大,其中这只是一种中等题型,只需根据原函数与导函数的关系式或者题目选项所给的提示构造函数,使得可根据原函数与导函数的关系式判断所构造函数的单调性,再将不等式化为两个函数值的形式,根据单调性解不等式即可。
【题型示例】
1、定义在上的函数满足:,,则不等式(其中为自然对数的底数)的解集为( )
A. B. C. D.
【答案】A
2、设函数在上的导函数为,对有,在上,,若直线,则实数的取值范围是()
A..
B.
C.
D.
【答案】A
【解析】
令,则,所以函数为奇函数,当时,,所以函数在上是减函数,故函数在
上也是减函数,由,可得在上是减函数,
,解得,实数的取值范围是.
3、已知定义在上的函数满足,且的导函数,则不等式
的解集为()
A. B. C. D.或
【答案】B
【解析】
令,则,因为,所以,即在上为增函数,不等式可化为,即,又单调递增得,所以不等式的解集为.
4、定义在的函数的导函数为,对于任意的,恒有,,
,则的大小关系是()学科=网
A. B. C. D.无法确定
【答案】B
【解析】
构造函数,因,故在上单调递增,则,即,所以,应选B.
【专题练习】
1、设是定义在上的函数,其导函数为,若,,则不等式
(其中为自然对数的底数)的解集为()
A. B. C. D.
【答案】D
【解析】
构造函数,因,故是单调递减函数,所以等价于,解之可得,应选D.
2、设函数是定义在上的可导函数,其导函数为,且有,则不等式
的解集为()
A. B. C. D.
【答案】D
3、定义在上的函数满足:恒成立,若,则与的大小关系
为()
A. B.
C. D.与的大小关系不确定
【答案】A
【解析】
设,则,由题意,所以单调递增,当时,,即,所以.
4、设函数是定义在上的可导函数,其导函数为,且有,则不等式
的解集为()
A. B. C. D.
【答案】C
【解析】
由,得:,令,则当时,,即在是减函数,,,由题意:
又在是减函数,∴,即,故选C.
5、已知是定义在上的偶函数,其导函数为,若,且,
,则的解集为()
A. B. C. D.
【答案】D
【解析】
∵函数是偶函数,∴,∴,即函数是周期为的周期函数,∵,∴,
设,则函数的导数,
故函数是上的减函数,则不等式等价为,
即,解得,即不等式的解集为.
6、已知定义域为的偶函数,其导函数为,对任意正实数满足,若
,则不等式的解集是()
A. B. C. D.
【答案】D
【解析】
因为,所以,由题意知,当时,,所以,所以在上单调递增,又为偶函数,则也是偶函数,所以,由得,所以,则.故选D.
7、设函数是定义在上的可导函数,其导函数为,且有,则不等式
的解集为()
A. B. C. D.
【答案】D
【解析】
因为函数是定义在上的函数,所以有,
所以不等式可变形为.
构造函数,则,
所以函数在上单调递增,
由,可得.
8、已知的定义域为,为的导函数,且满足,则不等式
的解集是()
A. B. C. D.
【答案】D
9、已知是定义在上的函数,是它的导函数,且恒有成立,则()
A. B. C. D.
【答案】D
【解析】
因为即,所以,所以函数在上单调递增,从而即.
10、若函数在上可导,且满足,则( )
A. B. C. D.
【答案】B
【解析】
由于,恒成立,因此在上时单调递减函数,∴,即,故答案为B。
11、已知定义域为R的函数满足,且的导数,则不等式的解集为()学科=网
A. B. C. D.
【答案】A
【解析】
设,则,,
,由题意,因此当时,,递减,当时,,递增,所以的解集为.。