分数应用题类型
- 格式:docx
- 大小:92.07 KB
- 文档页数:1
分数除法应用题6种类型
1.小明和小刘同组完成一个非常复杂的创意项目,他们总共花了16
小时完成,小明负责了8小时,小刘负责了多少小时?
8小时。
16÷2=8。
2.李娜买了一件价值60元的衣服,折扣八折后只花了48元,价格折
扣了多少?
12元。
60÷8=7.5,7.5×8=60,60-48=12。
3.李雷和王芳同组做一个项目,李雷支付了32元,王芳支付了多少?
24元。
32÷2=16,16×2=32,32-24=8。
4.学校开设了一个课程,上课每隔2周小组报告一次,这个课程一共
有多少次小组报告?
12次。
2÷2=1,1×12=12。
5.某商店把一件原价150元的商品打了六五折,现在售价多少?
97.5元。
150÷5=30,30×6.5=195,195-97.5=97.5。
6.李明和陈刚租了一辆共享汽车,李明支付了90元,陈刚支付多少?
45元。
90÷2=45。
分数利用题三种基本类型之杨若古兰创作分数利用题存在三种基本量:对应分率、对应量、单位“1”看见分率几几,要想到它的单位“1”和对应量是什么.也就是要弄清楚谁是谁的几几,从而得到数量关系式为:单位“1”×对应分率=对应量如:一桶油用去了25.25暗示把一桶油平均分成5份,用去的占如许的2份.即用去的是(占)一桶油的25.25是用去的对应分率,它的对应量是用去的数量,单位“1”是一桶油,其关系式为:一桶油×25=用去的一.求分率1.求一个数是另一个数的几分之几,就是用一个数÷另一个数.2.求一个数比另一个数多几分之几或少几分之几,就是求多的或少的是单位“1”的几分之几,用多的或少的÷单位“1”.分两步:先求出多的或少,再用多的或少的÷单位“1”(比后面的量)二.求对应量1.求一个数的几分之几是多少,就是求对应量,用“一个数×几几”,即单位“1”×几几=对应量.2.求比一个数多几分之几或少几分之几的数是多少,用“一个数×(1+几几).如:A比B多或少几几,把比多或少几几转化为是几几,即A是B 的(1+几几).A=B ×(1+几几)三.求单位“1”1.已知一个数的几分之几是多少,求这个数.用“是多少÷几几”,即对应量÷对应分率=单位“1”2.已知比一个数多几几或少几几的数是多少,求这个数.用“是多少÷(1+几几)”如:A比B多或少几几,把比多或少几几转化为是几几,即A是B 的(1+几几).已知A求B,B=A÷(1+几几).练:五年级有男生25人,女生20人男生是女生的几分之几?2、女生是男生的几分之几?3、男生比女生多几分之几?4、女生比男生少几分之几?五年级有男生25人,根据上面的条件求女生有多少人?1.女生是男生的45.3、男生是女生的542.女生比男生少15.4、男生比女生多14。
分数乘法应用题4种类型总结1、简单的求一个数的几分之几是多少的实际问题。
例如:A 有18个,B 是A 的61,B 是多少个?线段图: 列式:18×61=3(个)2、两个单位1.求一个数的几分之几是多少的实际问题见量,起牵线搭桥的作用。
列式:A 单位“1”×分率=B 所对应的数量B 所对应的数量×分率=C 所对应的数量例如,A 有18个,B 是A 的31,C 是B 的21,C 是多少个?线段图:3、已知一个部分量是总量的几分之几,求另一个部分量的实际问题总结:出这个部分量。
例如:六一班有4885线段图:列式:48-48×85=18(人) 48×(1-85)=18 4、一个数量比另一个数量多(或少)几分之几,求这个数量的实际问题 总结:例如:小明有存款320元,小林的存款比小明多41,小林有存款多少钱? 线段图: 列式:320+320×41=400(元) 320×(1+41)=400(元) 例如:六二班有男生25人,女生比男生少51,女生有多少人? 线段图: 列式:25-25×51=20(人) 25×(1-51)=20(人) 5、一个数量比另一个数量多(或少)几分之几,多的(或少的)部分是多少 总结:单位“1”×多或少的几分之几=多或少的部分 例如:小明有存款320元,小林的存款比小明多41,小林比小明做几分之几?线段图: 列式: 320×41=80(元) 例如:六二班有男生25人,女生比男生少51,女生比男生少多少人? 线段图: 列式: 25×51=5(人)分数乘法练习题1、五年级运砖150块,六年级运的是五年级的52,六年级运砖多少块?2、小王读一本300页故事书,上午读了全书的1/20,上午读了多少页?3、一桶油10千克,用去了这桶油的45 ,还剩多少千克?4、小王一天读一本300页故事书,上午读了全书的1/20,下午读了多少页?5、教师公寓有三居室180套,二居室的套数是三居室的32,一居室的套数是二居室的41。
篇一:分数应用题重点知识归纳(一)分数应用题是小学数学的重要内容之一,通常有三种基本类型:1、求一个数的几分之几是多少.如:一堆煤30吨,运走1/3,运走多少吨?2、已知一个数的几分之几是多少,求这个数.如:一本书看了3/4,正好是75页,这本书有多少页?3、求一个数是另一个数的几分之几.如:某班男生30人,女生20人,男生人数占全班人数的几分之几?(二)把全体的数用单位“1”表示,单位“1”也称标准量,也称单位“1”的量,部分数占全体数的几分之几叫“分率”,部分数叫对应量.三量基本关系为:对应量÷单位“1”的量=分率单位“1”的量×分率=对应量对应量÷分率=单位“1”的量(三)在实际解决问题时,我们必须认真审题,弄清量与分率的对应关系,再选择合适的方法解决问题.三、难点知识剖析例1、(1)一堆水泥60吨,运走3/4吨,还剩多少吨?(2)一堆水泥60吨,运走3/4,还剩多少吨?(3)一堆水泥60吨,运走45吨,还剩几分之几没有运走?(4)一堆水泥运走3/4,恰好是45吨,这堆水泥原来有多少吨?(5)一堆水泥运走3/4,还剩15吨,这堆水泥原来有多少吨?解析:本例中的5个小题反映了5种不同类型的题,解答时要分清各种题型,针对题型用适当的解题方法解答.例2、一段路,已经修了120千米,比未修的长40千米,还剩全长的几分之几没修?解析:本例是求分率的分数应用题,应该找准单位“1”的量和分率的对应量,单位“1”的量是公路的全长,分率的对应量是没有修的长度.例3、小明看一本故事书,看了3天,剩下66页;如果用同样的速度看4天,就剩下全书的2/5.这本书一共有多少页?解析:此例是求单位“1”的量,根据题意,“看了4天,就剩下全书的2/5”,也就是说4天看了全书的1-2/5=3/5,这样每天就看全书的3/5÷4=3/20,3天看全书的3/20×3=9/20那么66对应的`分率就是1-9/20=11/20.例4、某纺织厂第一车间有女工300人,男工人数是女工人数的3/5,已知第二车间人数比第一车间人数多1/12,比第三车间人数少1/14,求第三车间有多少人?解析:本例中有三个单位“1”,即第一车间女工人数、第一车间人数和第三车间人数.要求第三车间人数,应该先求第二车间人数,要求第二车间人数,又要先求第一车间人数.依题意,先求出第一车间男工人数就可以逐步解决问题.解答下面各题:1、150千克减少它的1/6后又减少1/6千克,还剩多少千克?2、一物体的重量等于它本身重量的7/8,再加7/8千克,此物体重多少千克?3、某班有男生30人,比女生多10人,女生人数占全班人数的几分之几?4、水结冰体积要增加1/10,那么冰化成水时体积要减少几分之几?5、某饭店运来一批面粉,每天吃掉 60 千克,5 天后还剩全部面粉的2/5没吃,某饭店运来面粉多少千克?6、一瓶汽水,第一次喝掉全部的一半后连瓶共重 700 克,如果只喝掉汽水的1/3后,连瓶共重 800 克,瓶子的重量是多少克?7、小红和小明做相同道数的数学题,小红做对了全部题的9/10,恰好是45道题,小明做对了全部题的24/25,小明做错了几道题?8、有一个工程队修1200千米的公路,第一天修了全长的1/3,第二天比第一天多修1/20,两天共修多少千米?9、一个工程队,修了一条公路全长的1/3后,离中点还有15千米,这条公路长多少千米?10、教室里有36名学生,其中女生占5/9,后来又来了几名女生,这时女生占总人数的11/19.后来又来了几名女生?11、球从高处自由下落,每次接触地面后弹起的高度是下落高度的2/5.如果球从200米的高处落下,那么第三次弹起的高度是多少米?12、红星实验小学航模组的人数是生物组人数的4/5,比美术组的人数少1/9,生物组有20人,美术组有多少人?篇二:百分数应用题知识点归纳1、求常见的百分率如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几2、求一个数比另一个数多(或少)百分之几实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
分数应用题七种类型公式(一)求一个数是另一个数的几分之几(或百分之几)公式:比较量÷标准量 = 分率(百分率)(二)求一个数比另一个数多(或少)几分之几(或百分之几)1. 多几分之几(或百分之几)公式:(大数 - 小数)÷小数=分率(百分率)2. 少几分之几(或百分之几)公式:(大数 - 小数)÷大数 = 分率(百分率)(三)求一个数的几分之几(或百分之几)是多少。
公式:这个数×分率(百分率)= 部分量。
(四)已知一个数的几分之几(或百分之几)是多少,求这个数。
公式:部分量÷分率(百分率)= 这个数。
(五)求比一个数多(或少)几分之几(或百分之几)的数是多少。
1. 多几分之几(或百分之几)公式:这个数×(1 + 分率(百分率))= 所求数。
2. 少几分之几(或百分之几)公式:这个数×(1 - 分率(百分率))= 所求数。
(六)已知比一个数多(或少)几分之几(或百分之几)的数是多少,求这个数。
1. 多几分之几(或百分之几)公式:已知数÷(1+分率(百分率))= 这个数。
2. 少几分之几(或百分之几)公式:已知数÷(1 - 分率(百分率))= 这个数。
(七)工程问题。
公式:工作效率×工作时间 = 工作总量;工作总量÷工作时间 = 工作效率;工作总量÷工作效率 = 工作时间。
二、20题带解析。
(一)求一个数是另一个数的几分之几(或百分之几)类型。
1. 题目:五年级有学生40人,六年级有学生50人,五年级学生人数是六年级的几分之几?- 解析:根据公式比较量÷标准量 = 分率,五年级学生人数是比较量,六年级学生人数是标准量。
所以40÷50 = 4/5。
2. 题目:学校植树120棵,成活了100棵,成活的棵数是植树总数的百分之几?- 解析:成活的棵数是比较量,植树总数是标准量。
小学数学分数应用题类型题大全及例题解析研究必备:小学分数应用题大全及例题解析一、基础理论分数应用题是小学数学教学中的重点和难点。
它大体可以分成两种类型:一种是基本数量关系与整数应用题基本相同,只是把整数应用题中的已知数换成分数,解答方法与整数应用题基本相同;另一种是根据分数乘除法的意义而产生的具有独特解法的分数应用题。
分数应用题主要讨论的是以下三者之间的关系:分率、标准量和比较量。
二、分数应用题的分类1、求一个数的几分之几是多少。
这类问题特点是已知一个看作单位“1”的数,求它的几分之几是多少,解这类应用题用乘法。
即反映的是整体与部分之间关系的应用题,基本的数量关系是:整体量×分率=分率的对应的部分量;或已知一个看作单位“1”的数,另一个数占它的几分之几,求另一个数,即反映的是甲乙两数之间关系的应用题,基本的数量关系是:标准量×分率=分率的对应的比较量。
2、求一个数是另一个数的几分之几。
这类问题特点是已知两个数量,比较它们之间的倍数关系,解这类应用题用除法。
基本的数量关系是:比较量÷标准量=分率。
以上是小学分数应用题的基础理论和分类,学生们可以结合例题进行练和掌握。
已知一个数的几分之几是多少,需要求这个数。
解决这类问题需要使用除法。
基本的数量关系是:分率对应的比较量除以分率等于标准量。
1)已知一个数的几分之几是多少,需要求这个数:分率对应的比较量除以几(分率)等于标准量。
2)已知一个数比另一个数多几分之几,需要求这个数:分率对应的比较量除以(几)等于多多少。
3)已知一个数比另一个数多几分之几,需要求这个数:分率对应的比较量除以(1+几)等于标准量。
4)已知一个数比另一个数少几分之几,需要求这个数:分率对应的比较量除以几等于少多少。
5)已知一个数比另一个数少几分之几,需要求这个数:分率对应的比较量除以(1-几)等于标准量。
在解决分数应用题时,正确审题非常重要。
需要能准确分清比较量和标准量,并判断标准量是已知还是未知。
六年级分数应用题常见类型题汇总一. 量率对应(专题精析)解答分数应用题,首先要确定单位“1”.在单位“1”确定以后,一个具体数量总与一个具体分数(分率)相对应,这种对应关系叫“量率对应”,这是解答分数应用题的关键。
求一个数的几分之几是多少时,应用的关系式为:单位“1”χ分率=所对应数量。
即(标准量χ对应分率=对应量)已知一个数的几分之几是多少,求这个数时,应用的关系式为:对应数量÷所对应分率=单位“1”即(对应量÷对应分率=标准量)找对应数量的对应分率一般有两种情况:(“1”-部分量的分率)(部分量的分率-另一部分量的分率)一.“1”-部分量的分率例一:一本故事书共有180页,小明第一天看了全书的61,第二天看了全书的21,还剩多少页未看?(知“1”)画图: 列式:练习一. 1.一个畜牧场卖出肉牛头数的75%,还剩25头。
原有肉牛多少头?(求“1”)2.一本故事书,每天看30页,3天后还剩全书的85没有看,这本故事书共有多少页?班别:________________ 姓名:____________________二.部分量的分率-另一部分量的分率例二. 一本故事书共有180页,小明第一天看了全书的61,第二天看了全书的50%,第一天比第二天少看了多少页?(知“1”)练习二. 1.一条公路200米,第一天修了全长的45%,第二天修了全长的30%,第一天比第二天多修多少米?例三:(求“1”)六年级女生占了全级人数的52,男生比女生多20人,全级有多少人?练习三. 1.一条路,已修了全长的103,再修15千米正好修完全长的一半,这条路全长多少千米?2.一袋水泥,用去了85,剩下的比用去的少10千克,这袋水泥原来重多少千克?分数应用题的一般解题思路:1. 找准“1”。
2.判断是知“1”(用乘法)或求“1” (用除法)3.找到数的对应分率(最好能画图分析)4.检验(应从不同角度进行检验)。
分数应用题类型
分数应用题的类型多种多样,以下是一些常见的类型:
1.已知整体与部分的关系,求部分:这类问题通常涉及到将一个整体分成若干部分,然后求出其中一部分的占比或数量。
例如,“某公司去年总销售额为100万元,其中50%的销售额是通过线上渠道实现的。
请问去年该公司线上销售额是多少?”
2.已知两个或多个部分的数量或占比,求整体:这类问题通常涉及到将若干个部分组合成一个整体,然后求解这个整体的总量或占比。
例如,“小明有2个苹果和3个橘子,请问他一共有多少水果?”
3.已知一个部分的数量或占比,求另一个部分:这类问题通常涉及到两个相关联的部分,其中一个部分的数量或占比已知,求解另一个部分。
例如,“某班级共有50名学生,其中女生占了40%,请问男生有多少人?”
4.已知一个部分的数量或占比,求整体:这类问题通常涉及到将一个部分与一个整体关联起来,然后求解这个整体的数量或占比。
例如,“某公司今年上半年销售额为100万元,其中下半年的销售额是上半年的1.5倍,请问该公司全年销售额是多少?”
5.分数的大小比较:这类问题通常涉及到比较两个或多个分数的值的大小。
例如,“比较1/2和2/3的大小。
”
以上只是分数应用题的一部分类型,实际上还有很多其他类型。
在解决分数应用题时,关键是找准分数的单位“1”,并将其与其他相关信息联系起来,从而找到解决问题的方法。