氘光谱实验
- 格式:ppt
- 大小:2.96 MB
- 文档页数:15
实验氢-氘原子光谱原子光谱的测定与分析,为量子理论的建立提供了坚实的实验基础。
1885年巴尔末(J. J. Balmer )总结出了氢光谱线的经验公式。
1913年玻尔(N. Bohr ),1925年,海森伯(W.Heisenberg )建立起他们的理论都是建筑在原子光谱的测量基础之上的。
现在,无论在工业生产部门还是在科学研究领域,原子光谱的观察、测定和分析都是研究原子结构、物质分析的重要方法之一。
在物理学、化学化工、材料、生命科学领域内有广泛的实际应用。
一 实验目的1.掌握WPG-100型平面光栅摄谱仪的工作原理和使用方法,学习摄谱、识谱和谱线测量等光谱研究的基本技术。
2.通过所测得的氢(氘)原子光谱在可见和近紫外区的波长(误差小于0.5Å),验证巴耳末公式并准确测出氢(氘)的里德伯常数。
3.测量氢、氘同位素位移,求出质子与电子的质量比。
二 实验原理1.原子的激发与辐射原子内部的不同能量状态称为能级。
处于基态的原子可以吸收能量而跃迁到较高的能量状态,这个过程称为原子的激发。
原子也可以从较高的能级退到较低的能级或基态而放出能量,如果放出的能量取辐射形式,那么放出的能量就成为一个光子的能量hv ,这个过程称为原子的辐射。
要使原子发光必须先将它激发,原子激发的方式通常分为碰撞激发和光激发两种。
具有一定能量的电子、原子、分子与某原子相碰撞而使后者激发称为碰撞激发;原子吸收一个光子引起的激发称为光激发,即光的吸收过程。
本实验采用碰撞激发,它又分为热激发和电场引起的碰撞激发两种形式,前者指在高温下各原子有较大的运动速度,相互碰撞而产生激发,本实验的铁光谱就是这种方式产生的。
电场引起的碰撞激发是带电粒子在电场作用下加速运动,与原子发生非弹性碰撞使原子激发,氢(氘)光谱就是采用这种方式产生的。
2.氢原子光谱的实验规律早在原子理论建立以前人们就积累了有关原子光谱的大量实验数据,发现氢原子光谱可用一个普通的公式表示,即⎪⎭⎫ ⎝⎛-=2211~n m R v (1)其中:m 取1、2、3、4、5等正整数,每一个m 值对应一个光谱线系,如当m=2时便得到谱线在可见光和近紫外区的巴耳末线系;n 取m+1、m+2、m+3、…等正整数,每一个n 值对应一条谱线;R 称为里德伯常数。
实验六 原子光谱实验—氢氘光谱的测量一、 实验目的(1)熟悉光栅光谱仪的基本原理,了解它的性能和使用方法。
(2)熟悉测量氢-氘和其他原子光谱的方法。
(3)计算氢和氘原子核的质量比。
(4)了解并观察钠、汞原子的主要光谱线。
二、 实验原理(1) 测量公式的导出:根据玻尔(Bohr )原子理论,一个电子绕正电荷为Ze 、质量为M z 的原子核作圆周运动时,其能量是量子化的,可表示为2Z 22220242n1R hcZ n 1h )4(Z e 2E -=πεμπ-= (6-0) 其中ZZ M m mM +=μ 为核与电子的折合质量,ZZ 32042Z Z 32042Z M m 11R M m 11c h )4(me 2M m M c h )4(me 2R +=+πεπ=+πεπ=∞ 称为里德堡(Rydberg )常数,ε0为真空介电常数,m 为电子质量,h 和c 分别为普朗克常数和真空中的光速,n=1,2,3…,称为能级量子数,而常数1-32042m 10973731ch )4(me 2R =πεπ=∞ 为忽略原子核运动时(即认为原子核质量M Z 趋于无穷)的里德堡常数。
当原子从高能级向低能级跃迁时,便辐射出光子,并满足能量守恒:)m1n 1(hcZ R h 222Z --=ν 其中ν为光子频率,n 为上能级量子数,m 为下能级量子数。
对于氢原子,Z=1,并且对于落在可见区的巴耳末线系m=2(参见图6-0),此时发射出的光谱以波数表示为)n141(R c 1~2H -=ν=λ=ν n= 3,4,5,… (6-1)图6-0 氢原子能级图其中R H 为氢原子的里德堡常数:HH H 3204232042H M m 11R M m mM c h )4(e 2c h )4(e 2R +=+πεπ=πεμπ=∞ (6-2) 同理,对于氢的同位素氘,设核的质量为M D ,其里德堡常数为DD M m 11R R +=∞ (6-3) 将式(6-3)除以式(6-2),有D H HDM m 1M m 1R R ++= 解出M D /M H ,得 )1R R (m M 1R R M M HD H H DH D --= (6-4) 式中M H /m 为氢原子核质量与电子质量之比,采用公认值1836.5。
一、实验目的1. 通过氢氘谱实验,了解氢和氘原子的光谱特性,掌握光谱分析的基本方法。
2. 测量氢和氘原子的巴耳末系发射光谱的波长,计算里德伯常数。
3. 掌握WGD-8A型组合式多功能光栅光谱仪的使用方法。
二、实验原理氢原子光谱是量子力学发展的重要基础,通过研究氢原子的光谱,可以了解原子的能级结构和跃迁规律。
巴耳末系是氢原子光谱中可见光区域的谱线系,其波长满足公式:\[ \frac{1}{\lambda} = R_H \left( \frac{1}{2^2} - \frac{1}{n^2} \right) \]其中,\(\lambda\) 为光波长,\(R_H\) 为里德伯常数,\(n\) 为整数(\(n = 3, 4, 5, \ldots\))。
氘原子是氢的同位素,其原子核质量略大于氢原子核。
因此,氘原子的光谱与氢原子光谱有一定的相似性,但里德伯常数略有差异。
三、实验仪器1. 氢氘灯2. WGD-8A型组合式多功能光栅光谱仪3. 狭缝4. 光栅5. 摄谱仪6. 滤光片7. 望远镜8. 光电倍增管四、实验步骤1. 将氢氘灯安装于光谱仪的光源位置,调整狭缝宽度,使光通过狭缝。
2. 将光栅光谱仪的入射狭缝与狭缝对齐,调整光栅角度,使光谱仪的出射狭缝与光栅垂直。
3. 将滤光片插入光谱仪的光路中,选取适当的波长范围。
4. 将望远镜对准光谱仪的出射狭缝,调整望远镜的焦距,使光谱清晰。
5. 使用光电倍增管记录光谱数据,测量氢和氘原子的巴耳末系发射光谱的波长。
6. 根据测量结果,计算氢和氘原子的里德伯常数。
五、实验结果1. 氢原子的巴耳末系发射光谱波长:- \( \lambda_1 = 656.3 \, \text{nm} \)- \( \lambda_2 = 486.1 \, \text{nm} \)- \( \lambda_3 = 434.0 \, \text{nm} \)- \( \lambda_4 = 410.1 \, \text{nm} \)2. 氘原子的巴耳末系发射光谱波长:- \( \lambda_1 = 656.5 \, \text{nm} \)- \( \lambda_2 = 486.2 \, \text{nm} \)- \( \lambda_3 = 434.1 \, \text{nm} \)- \( \lambda_4 = 410.2 \, \text{nm} \)3. 氢原子的里德伯常数:\( R_H = 1.097 \times 10^7 \, \text{m}^{-1} \)4. 氘原子的里德伯常数:\( R_D = 1.097 \times 10^7 \, \text{m}^{-1} \)六、误差分析1. 光栅光谱仪的分辨率有限,导致测量结果存在一定的误差。
实验五 氢、氘原子光谱实验一、实验目的1.学习使用WGD-8A 型组合式多功能光栅光谱仪测谱的方法。
2.测定氢原子巴尔末系前几条谱线的波长,验证巴尔末公式。
3.测定氢同位素氘谱线位移,计算氢、氘雷德堡常数,计算电子与质子的质量比,计算氢、氘的核质量比。
二、实验原理1672年牛顿证明了白光是由各种色光复合而成的,因而色光在性质上比白光更简单。
1800年赫谢尔发现了红外辐射,1801年李特和沃拉斯顿发现了紫外辐射,1815年夫朗和费发现了太阳光谱中的锐黑线。
随着人们对各种光谱现象的深入研究,逐渐加深了对物质结构的认识,从而进入了原子的世界。
从这个意义上说,现代的量子力学是在光谱学的摇篮里长大的。
值得一提的是,氢光谱的研究成果在原子结构理论的产生过程中起过巨大的作用。
氢原子的光谱是最简单的光谱,它有相互独立的光谱系,其中只有一个线系在可见光区,即巴尔末(Johann Balmer 瑞士的中学教师)线系,其中比较明亮的谱线有四条如图1: 各谱线波长如下;H α ~656.28 nm H β ~486.13 nm H γ ~434.05 nm H δ ~410.18 nm这些谱线的波长的倒数很有规律n=3、4、5,…υ~ 称为波数,R 是雷德堡常数。
以后又继续发现了氢的一系列线系:赖曼(Lgman )系 远紫外 n=2、3、4…帕邢(Paschen )系 近红外 n=4、5、6…布拉开(Brackett )系 红外 n=5、6、7…普芳德(Pfund )系 红外 n=6、7、8…)121(~122nR -==υλ)111(~22nR -=υ)131(~22n R -=υ)141(~22n R -=υ)151(~22nR -=υ这些已知的氢原子光谱,可以用一个普遍的公式表示,就是广义巴尔未公式: m 、n = 1、2、3…n >m(1)现在,在普通的实验室里人们观察到的谱线可达到相应于m=6,n=7的水平,在射电天文望远镜的观测中已经接收到相应于m =158, n=159的1651兆赫谱线。
氢(氘)原子光谱实验报告1、实验目的1.熟悉实实验仪器的用法。
2.求里德伯常数。
2、实验原理原子光谱是线光谱,光谱的排列的规律不同,反映出原子结构的不同,研究原子结构的基本方法之一是进行光谱分析。
3、实验内容1.用汞灯对光栅光谱仪进行定标,保存谱线。
2.测量氢(氘)光谱的谱线,通过“寻峰”求出巴耳末系前 3~4 条谱线的波长。
保存谱图,计算各谱线的里德伯常数RH(RD),然后求平均值。
3.计算普适里德伯常数 R∞,并与推荐值比较,求相对误差。
4、实验数据记录与分析对氢原子光谱进行测量,测得的图像如下图对曲线进行寻峰,读出波长如下表谱线HδHγHβHα光谱波长/nm 410.4 434.6 486.5 656.8 谱线相对能量47.1 457.3 566.1 812.2利用波长的修正值计算真空中氢原子的波长:谱线HδHγHβHα光谱波长/nm 410.4 434.6 486.5 656.8 △ι(nm) 0.116 0.121 0.136 0.181 真空中谱波长410.5 434.7 486.6 657.0 /nm可以计算出里德伯常数谱线HδHγHβHα410.5 434.7 486.6 657.0 真空中谱波长/nmn 6 5 4 6 里德伯常数1.096 1.095 1.096 1.096/107m-1经过计算得R=1.00054*1.096*107m-1=1.096* 107m-1而R推荐值是R∞=10973731.568549(83)/m,故相对误差为=(1.097-1.096)/1.097=0.06%4.实验结果讨论与心得1实验中由于氢光源的寿命有限,注意在不用时关闭灯源。
2实验过程中突然谱线很乱,怎么调节都调节不行,可能原因是灯源出现问题,换一个氢灯,实验恢复正常。
3实验中噪音可能对实验产生一定的误差。
4.任何实测谱线都有一定的宽度,主要是由以下原因造成的:1) 由海森伯不确定原理,∆E∆t>h,由于测量时间是有限的,故测得的能级有一定展宽。
实验四 氢(氘)原子光谱原子光谱的观测,为量子理论的建立提供了坚实的实验基础。
光谱线的超精细结构曾被认为是不同的同位素发射的谱线。
但现在认为,超精细结构是单一的同位素的光谱线由原子核的自旋而引起的复杂结构,而不同的同位素的光谱差别则称为“同位素移位”。
氢原子同位素移位是可以准确算出的。
1932年尤里(H.C.Urey )等人用3m 凹面衍射光栅拍摄巴耳末(J.J.Balmer )线系的光谱,发现在αH 、βH 、γH 和δH 的短波一侧均有一条弱的伴线,测量这些伴线的波长并在实验误差范围内与计算结果比较,从而证实了重氢H 2(氘)的存在。
一、实验目的 (1) 通过测量氢和氘谱线的波长,计算氢与氘的原子核的质量比H D M M /以及里德伯(J.R.Rydberg )常量)(D H R R 。
(2)加深对氢光谱规律和同位素位移的认识,理解精确测量的重要意义。
(3)掌握WGD-8A 组合式光栅光谱仪的原理和使用方法,并学会用光谱进行分析。
二、 实验原理原子光谱是线光谱,光谱排列的规律不同,反映出原子结构的不同,研究原子结构的基本方法之一是进行光谱分析。
氢原子光谱由许多谱线组成,在可见光区的谱线系是巴耳末系,其代表线为αH 、βH 、γH 、δH …,这些谱线的间隔和强度都向着短波方向递减,并满足下列规律:422-=n n B λ (1) 式中n nm B ,56.364=为正整数。
当6,5,4,3=n 时,上式分别给出αH 、βH 、γH 、δH 各谱线波长,(1)式是瑞士物理学家巴耳末根据实验结果首先总结出来的,故称为巴耳末公式。
若用波数λν/1~=表示谱线,则(1-1)式改写为:⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=22221211214~n R n B H ν(2)式中B R H /4=为里德伯常量,n 取整数。
根据玻尔(Bohr N .)理论对氢原子和类氢原子的里得伯常量计算(诸圣麟,1979),有:Mm R R e /1+=∞ (3) 式中e m 为电子质量,M 为原子核质量。
氢(氘)原子光谱光谱线系的规律与原子结构有内在的联系,因此,原子光谱是研究原子结构的一种重要方法。
1885年巴尔末总结了人们对氢光谱的测量结果,发现了氢光谱的规律,提出了著名的巴尔末公式,氢光谱规律的发现为玻尔理论的建立提供了坚实的实验基础。
1932年尤里根据里德伯常数随原子核质量不同而变化的规律,对重氢赖曼线系进行摄谱分析,发现氢的同位素——氘的存在。
通过巴尔末公式求得的里德伯常数是物理学中少数几个最精确的常数之一,成为检验原理论可靠性的标准和测量其它基本物理常数的依据。
【实验目的】1. 熟悉光栅光谱仪的性能与用法。
2. 用光栅光谱仪测量氢(氘)原子光谱巴尔末县系的波长,求里德伯常数。
【实验原理】原子光谱是线光谱,光谱排列的规律不同,反映出原子结构的不同,研究原子结构的基本方法之一是进行光谱分析。
氢(氘)原子光谱是最简单、最典型的原子光谱。
瑞士物理学家巴尔末根据实验结果给出氢原子光谱在可见光区域的经验公式为:422:-=n n B Hλ式中H λ为氢原子谱线在真空中的波长,nm B 56.364=, 5,4,3=n 。
若用波数λν1~=表示谱线,则(?-1)式可改写为: ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=222222121121441~n R n B n n B H ν 式中H R 为里德伯常数。
根据波尔理论,可得出氢和类氢原子的里德伯常数为:()()Mm 1R M m 1mc h 4z e 2ch 4z e 2R 32044320442z +=+⋅==∞πεππεμπ 其中:M 为原子核质量,m 为电子质量,e 为电子电荷,C 为光速,h 为普朗克常数,0ε为真空介电常数,z 为原子序数。
当∞→M 时,可得里德伯常数为:()ch z me R 32044242πεπ=∞里德伯常数∞R 是重要的基本物理常数之一,对它的精密测量在科学上有重要意义,它的公认值为:1m 568549.10973731R -∞=。
氢与氘原子光谱实验报告一、实验背景和目的原子光谱是研究原子结构的重要工具,而氢与氘原子光谱实验则是探究氢和氘这两种轻元素原子结构及光谱特性的重要手段。
本实验旨在通过观察氢与氘原子光谱,学习原子光谱的基本原理,理解原子能级的跃迁原理,并比较不同原子光谱的差异。
二、实验原理与方法原子光谱的产生原理是基于原子能级的跃迁。
当原子受到外部能量激发时,原子中的电子会从低能级跃迁到高能级,当电子从高能级返回到低能级时,会释放出一定波长的光。
通过测定这些光的波长,我们可以确定原子的能级结构。
本实验采用激光激发原子光谱法。
具体方法是将氢或氘原子置于一个电场中,通过激光束照射,当激光能量与原子能级差相匹配时,原子会被激发并放射出光子。
通过测量这些光子的波长,我们可以得到原子的光谱。
三、操作过程准备实验器材:氢或氘原子、激光器、单色仪、光电倍增管、电源等。
将氢或氘原子置于电场中,调整激光器的波长,使激光能量与原子能级差相匹配。
打开激光器,照射氢或氘原子,并调整激光器的功率,使原子产生明显的光谱。
通过单色仪测量光子的波长,并记录数据。
重复步骤2-4多次,以获取足够的数据进行分析。
四、实验数据与分析通过实验,我们得到了氢与氘原子光谱的数据。
通过对比氢与氘原子的光谱,我们可以发现它们在波长和强度上存在差异。
这表明不同元素的原子具有不同的能级结构和光谱特性。
通过分析数据,我们可以使用Rydberg公式等理论公式来计算原子的能级和光谱波长。
通过比较理论计算与实验数据的差异,我们可以评估实验的准确性。
同时,我们还可以讨论影响实验结果的可能参数,例如激光功率、电场强度等。
五、误差来源和计算在本实验中,可能存在以下误差来源:激光器波长稳定性:如果激光器波长不稳定,将导致激发的原子数目减少,影响实验结果。
可以通过采用稳频激光器来减小此误差。
电场强度:电场强度不均匀可能导致原子激发效率不一致,影响光谱强度。
可以通过优化电场分布来减小此误差。