具有脉冲的BAM型Cohen-Grossberg时滞神经网络
- 格式:pdf
- 大小:228.77 KB
- 文档页数:6
带反应扩散项的神经网络模型动力学研究由于神经网络在诸多实际应用领域有着巨大潜力,很多学者都致力于神经网络的理论研究,并取得了许多很好的成果.本文主要涉及三类带反应扩散项的神经网络模型的动力学研究.其中包括:一类具有反应扩散项的时滞脉冲Cohen-Grossberg神经网络的指数稳定性;一类具有反应扩散项和离散时滞的非自治Cohen-Grossberg神经网络解的有界性和正不变集,及其全局指数稳定性;一类具有反应扩散项的脉冲模糊细胞神经网络的指数稳定性及其正不变集和吸引集.本文的主要内容可以概述如下:1.首先在第一节第一部分介绍了神经网络的产生,发展和意义.随后的第二部分介绍了各种类型的神经网络模型及其部分研究成果,主要是Cohen-Grossberg神经网络以及模糊细胞神经网络.第三部分介绍了带反应扩散项的神经网络模型的部分研究成果.最后给出了本文的组织结构.2.在第二节中,我们讨论了一类具有反应扩散项和无穷分布时滞的脉冲Cohen-Grossberg神经网络,在系统存在平衡点的假设下,利用不等式技巧和构造Lyapunov泛函方法,证明了其平衡点的唯一性,并给出了平衡点全局指数稳定的充分性条件.最后给出一个例子来显示所得结论的有效性.本节中,我们所研究模型的脉冲为一般形式,而不是线性形式脉冲.3.在第三节中,主要讨论一类具有反应扩散项的非自治Cohen-Grossberg神经网络.在这一部分中,我们首先利用M-矩阵和常数变易法讨论了系统解的有界性和正不变集,然后通过构造Lyapunov泛函,证明了系统的全局指数稳定性.最后给出两个例子来验证结果.4.在第四节中,主要针对一类具有反应扩散项的脉冲模糊细胞神经网络的动力学性质进行了分析讨论.在存在唯一平衡点的假设下,利用推广了的Halanay不等式,得到了平衡点全局指数稳定的充分性条件,以及该神经网络的全局吸引集和正不变集.最后给出一个例子来说明结果的有效性.【关键词相关文档搜索】:运筹学与控制论; 神经网络; 反应扩散; 时滞;脉冲; 全局指数稳定性【作者相关信息搜索】:新疆大学;运筹学与控制论;蒋海军;李晓波;。
时滞忆阻Cohen-Grossberg神经网络周期解的存在性王有刚;武怀勤【摘要】研究了一类具有时变时滞的忆阻Cohen-Grossberg神经网络的周期动力行为.借助M-矩阵理论,微分包含理论和Mawhin-like收敛定理,证明了网络系统周期解的存在性.最后,用一个数值算例验证了本文结论的正确性和可行性,并通过图形模拟直观地描述了周期解和平衡点的存在性.%The objective of this paper is to investigate the periodic dynamical behaviors for a class of Memristive Cohen-Grossberg neural networks with time-varying delays. By employing M-matrix theory, differential inclusions theory and the Mawhin-like coin-cidence theorem in set-valued analysis, the existence of the periodic solution for the network system was proved. Finally, an illustra-tive example was given to demonstrate the validity of the theoretical results and the existence of periodic solution and equilibrium point was described visually by graphical simulation.【期刊名称】《西华大学学报(自然科学版)》【年(卷),期】2017(036)005【总页数】10页(P22-30,35)【关键词】忆阻;Cohen-Grossberg神经网络;周期解;时变时滞【作者】王有刚;武怀勤【作者单位】吕梁学院数学系,山西吕梁 033001;燕山大学理学院,河北秦皇岛066004【正文语种】中文【中图分类】TP1831971年, 华裔科学家蔡少棠(Leon O. Chua)从理论推断在电阻、电容和电感器之外,应该还有一种组件,代表着电荷与磁通量之间的关系。