初三数学几何定理的运用
- 格式:doc
- 大小:42.00 KB
- 文档页数:7
初三数学几何知识点归纳初三数学几何知识点归纳1 同角或等角的余角相等2 过一点有且只有一条直线和已知直线垂直3 过两点有且只有一条直线4 两点之间线段最短5 同角或等角的补角相等6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行初中几何公式:角9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补初中几何公式:三角形15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于18018 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合初中几何公式:等腰三角形30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于6034 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形初中几何公式:四边形48定理四边形的内角和等于36049四边形的外角和等于36050多边形内角和定理 n边形的内角的和等于(n-2)18051推论任意多边的外角和等于36052平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形初中几何公式:菱形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(ab)267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形初中几何公式:正方形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式:等腰梯形74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形初中几何公式:等分78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)2 S=Lh83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(ab)/b=(cd)/d85 (3)等比性质如果a/b=c/d==m/n(b+d++n0),那么(a+c++m)/(b+d++n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的.余切值等于它的余角的正切值初中几何公式:圆101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交 d﹤r②直线L和⊙O相切 d=r③直线L和⊙O相离 d﹥r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离 d﹥R+r ②两圆外切 d=R+r③两圆相交 R-r﹤d﹤R+r(R﹥r)④两圆内切 d=R-r(R﹥r) ⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)180/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360,因此k(n-2)180/n=360化为(n-2)(k-2)=4144弧长计算公式:L=nR/180145扇形面积公式:S扇形=nR/360=LR/2146内公切线长= d-(R-r) 外公切线长= d-(R+r)。
勾股定理及其应用勾股定理是数学中的一条基础定理,也是几何中一个重要的概念。
它被广泛应用于各个领域,比如物理学、工程学和计算机科学等。
本文将对勾股定理的原理进行介绍,并探讨其在实际应用中的具体运用。
一、勾股定理的原理勾股定理是指在直角三角形中,直角边的平方等于其他两条边平方的和。
即若在一个直角三角形中,设直角边分别为a、b,斜边为c,则有a² + b² = c²。
这一定理最早出现在古代中国的数学著作《周髀算经》中,被称为“六百年前的勾股定理”。
而在西方,古希腊数学家毕达哥拉斯被广泛认为是勾股定理的发现者。
二、勾股定理的应用1. 几何推理勾股定理在几何中有着广泛的应用。
通过勾股定理,我们可以判断一个三角形是否为直角三角形,以及计算出未知边长的长度。
此外,勾股定理也为我们解决各类直角三角形的问题提供了一种常用的方法。
2. 物理学领域勾股定理在物理学中有着重要的应用。
例如,在力学中,我们可以利用勾股定理来计算物体的位移和速度。
在光学中,勾股定理可用于计算光线的传播距离和角度。
在力学和光学等自然科学中,勾股定理是解决问题的基础。
3. 工程学领域在工程学领域,勾股定理也被广泛应用于测量和设计中。
例如,在建筑工程中,我们利用勾股定理来进行斜边的测量,从而确保建筑物结构的稳定性。
在工程设计中,我们可以利用勾股定理来确定设计方案的可行性。
4. 计算机科学领域在计算机科学中,勾股定理被广泛应用于图像处理和计算机图形学中。
通过勾股定理,我们可以计算图像中的像素距离,从而实现图像的缩放、旋转和变换等操作。
此外,勾股定理还在算法设计和数据结构中扮演着重要的角色,为计算机科学领域提供了一种简便而高效的方法。
结语勾股定理是数学中的一条重要定理,它不仅具有理论意义,还被广泛应用于各个领域。
几何推理、物理学、工程学和计算机科学等领域都离不开勾股定理的运用。
通过深入了解勾股定理的原理,我们可以更好地理解其应用,并在实际问题中灵活运用,从而取得更好的效果。
初中数学教案余弦定理与正弦定理的应用初中数学教案余弦定理与正弦定理的应用一、引言在初中数学学习中,我们经常会遇到利用几何知识解决实际问题的情况。
而余弦定理和正弦定理作为几何知识的重要部分,具有广泛的应用价值。
本教案旨在通过具体的例子,让学生理解并能够熟练应用余弦定理和正弦定理。
二、教学目标1. 掌握余弦定理和正弦定理的概念和公式;2. 理解余弦定理和正弦定理的应用场景;3. 能够灵活运用余弦定理和正弦定理解决实际问题。
三、教学内容1. 余弦定理的应用余弦定理是用来求解三角形边长或角度的定理,其公式为:c^2 = a^2 + b^2 - 2ab*cos∠C示例题目1:已知三角形ABC,边长分别为a=5cm,b=7cm,∠C=60°,求边c的长度。
解答思路:根据余弦定理的公式,将已知的数值代入计算,有:c^2 = 5^2 + 7^2 - 2*5*7*cos60°c^2 = 25 + 49 - 70*cos60°c^2 = 74 - 70*0.5c^2 = 74 - 35c^2 = 39因此,c≈6.24cm示例题目2:已知三角形ABC,边长分别为a=8cm,b=9cm,c=10cm,求∠A的大小。
解答思路:根据余弦定理的公式,将已知的数值代入计算,有:8^2 = 9^2 + 10^2 - 2*9*10*cos∠A64 = 81 + 100 - 180*cos∠A180*cos∠A = 181 - 64cos∠A = 117/180∠A ≈ 51.32°2. 正弦定理的应用正弦定理是用来求解三角形边长或角度的定理,其公式为:a/sin∠A = b/sin∠B = c/sin∠C示例题目3:已知三角形ABC,∠A=45°,∠B=60°,AC=8cm,求边AB与BC的长度。
解答思路:根据正弦定理的公式,将已知的数值代入计算,有:AB/sin45° = 8/sin60°AB = 8*sin45°/sin60°AB ≈ 8*0.7071/0.8660 ≈ 6.928cmBC/sin60° = 8/sin45°AB = 8*sin60°/sin45°AB ≈ 8*0.8660/0.7071 ≈ 9.398cm四、教学方法1. 结合实际生活进行示例分析,增加学生的兴趣;2. 组织学生小组合作,共同解决问题,培养合作意识;3. 引导学生总结规律,归纳定理应用方法。
初三数学解决几何问题的基本方法与技巧在初中数学学习中,几何问题一直是学生们较为头疼的一个部分。
而对于初三学生而言,解决几何问题是他们需要掌握的基本技巧之一。
本文将介绍初三数学解决几何问题的基本方法与技巧,帮助学生们更好地应对几何问题。
一、画图是解决几何问题的关键在解决几何问题时,画图是非常重要的一步。
通过将问题抽象为图形,我们可以更直观地理解并分析问题,为接下来的解答提供便利。
在画图时,我们需要注意以下几点技巧:1. 选择合适的坐标系:根据题目的要求与条件,选择合适的坐标系能够更好地理解问题的几何性质。
2. 使用适当的标记:通过标记线段、角度等几何元素,能够更清晰地表达问题中的条件与要求。
3. 勾勒主要形状:将问题所给的图形重点勾勒出来,有助于我们更好地理解问题并进行分析。
二、掌握常见几何定理解决几何问题需要熟练掌握一些常见的几何定理,下面是一些常见的几何定理与技巧:1. 直角三角形与勾股定理:通过勾股定理,可以计算直角三角形中缺失的边长,帮助我们求解问题。
2. 平行线定理与转角定理:在解决平行线问题时,我们需要掌握平行线定理与转角定理,辅助我们分析线段之间的关系。
3. 相似三角形:通过相似三角形的性质,我们可以利用已知条件求解未知的边长比例或角度大小。
4. 圆的性质:掌握圆的切线、弦、弧等性质,可以帮助我们理解并解决与圆相关的几何问题。
三、运用代数方法解决几何问题在解决几何问题时,我们有时可以运用代数方法辅助求解。
例如,通过引入未知量并建立方程,我们可以将几何问题转化为代数问题,并通过代数运算解决。
在运用代数方法时,需要注意以下几点:1. 合理引入未知量:在建立方程时,引入合适的未知量能够使问题得到更好的解决。
2. 建立等式方程:根据问题所给的条件,建立等式方程,然后解方程,找到未知量的值。
3. 检验结果:在得到代数解后,回到几何问题中检验结果的合理性,确保解答正确。
四、多做练习提高解决几何问题的能力最后,多做练习是提高解决几何问题的能力的重要途径。
初中数学垂径定理的应用有哪些
垂径定理是初中数学中一个重要的定理,它有着广泛的应用。
下面我将介绍垂径定理的几个常见应用。
1. 判断垂直关系:
垂径定理可以用于判断两条线段或弦之间是否垂直。
当一条线段垂直于圆的直径,并且与直径的两个端点相交时,根据垂径定理,与这条线段所得的弦所连接的两个交点连线一定垂直于这条直径。
因此,我们可以通过观察线段和弦的几何关系,利用垂径定理判断它们是否垂直。
2. 求解问题:
垂径定理可以帮助我们求解与垂直关系相关的问题。
例如,已知一条线段垂直于圆的直径,并且与直径的两个端点相交,我们可以利用垂径定理得到与这条线段所得的弦垂直的弦。
这样,我们可以利用已知的线段和求得的弦,进一步解决几何问题,如计算长度、角度等。
3. 证明几何定理:
垂径定理也可以作为证明其他几何定理的基础。
例如,当我们需要证明某个弦与圆的直径垂直时,可以先证明这条弦与圆的直径的一个端点连线是垂直的,然后应用垂径定理得出结论。
垂径定理的应用可以简化证明过程,使证明更加简洁和直观。
4. 解决实际问题:
垂径定理的应用不仅局限于理论推导,还可以帮助我们解决实际问题。
例如,在建筑设计中,我们需要确定某个角度的垂线位置,可以利用垂径定理判断垂线与圆的直径的关系。
在地理测量中,我们需要确定某个位置的垂直高度,也可以运用垂径定理来计算。
以上是垂径定理的几个常见应用。
垂径定理通过垂直关系的判断和问题的求解,帮助我们理解和应用几何知识,解决实际问题。
希望以上内容能够满足你对垂径定理应用的了解。
初中数学作为学生学习的基础课程之一,其中的几何模型在数学解题中占据着重要的地位。
掌握几何模型的解题技巧不仅可以帮助学生更好地理解数学知识,还可以提高他们的解题效率。
本文将介绍初中数学几何模型的60种解题技巧,希望能为学生们的学习提供帮助。
1. 角度概念的运用:在几何模型的解题过程中,学生可以通过具体的角度概念来解答问题,例如利用垂直角、平行线、内角和为180度等概念来解题。
2. 图形相似的判断:判断两个图形是否相似是解题的基础,学生可以利用边长比例、角度比例等方法来确定图形的相似性。
3. 平行线相关性质的应用:平行线的性质在几何模型的解题中经常会出现,学生可以通过平行线与角度的关系来解答问题。
4. 圆的相关性质的利用:圆的性质在几何模型中也是常见的,学生需要掌握圆的直径、半径、圆心角等概念,以便解题。
5. 三角形的分类和性质的运用:学生需要掌握等边三角形、等腰三角形、直角三角形等不同类型三角形的性质,并根据题目的要求来进行合理的运用。
6. 应用解题:在学习几何模型的解题过程中,学生需要结合实际的应用场景,将抽象的几何原理与具体的问题相结合来解答问题。
7. 连线问题的求解:对于一些多边形的连线问题,学生可以通过几何模型的知识来进行合理的求解。
8. 几何图形的对称性:对称图形在几何模型中也是常见的,学生可以通过对称性来解答与对称图形相关的问题。
9. 正多边形的性质:正多边形的性质是几何模型解题中的重要内容,学生需要掌握正多边形的内角和为180度、外角的性质等知识。
10. 形状的变换:在几何模型的解题中,学生需要掌握形状的平移、旋转、翻转等变换操作,以便解答形状变换后的问题。
11. 圆的面积和周长的求解:学生需要掌握圆的面积和周长的相关公式,并结合题目要求来进行求解。
12. 三角形的面积和周长的求解:学生需要掌握不同类型三角形的面积和周长的求解方法,并灵活运用到不同的题目中。
13. 平行四边形的面积和周长的求解:平行四边形的面积和周长的求解也是初中数学几何模型解题的重要内容,学生需要掌握相关公式及其应用。
2023中考数学几何专题:勾股定理的应用(解析版)1. 放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为( )A .600米 B. 800米 C. 1000米 D. 不能确定【解析】速度一定且相同,路程比=时间比.再用勾股定理,直线距离应该是25分钟的路程.选C.【答案】C2. 一架25分米长的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7分米.如果梯子的顶端沿墙下滑4分米,那么梯足将滑动( )A. 9分米B. 15分米C. 5分米D. 8分米 【解析】在初始和结束两个状态下,选定直角三角形,应用勾股定理. 初始时,经计算,可知,梯顶距墙底端24分米.结束时,经计算,可知,梯足距离墙底端15分米.选D. 【答案】D3. 如图,点P 是AOB ∠的角平分线上一点,过点P 作//PC OA 交OB 于点C .若60,4AOB OC ∠==,则点P 到OA 的距离PD 等于__________.【解析】过P 点作PE OB ⊥,并交OB 于点E .∵60,AOB OP ∠=是AOB ∠的角平分线, ∴630BOP ∠==. 又∵//PC OA ,∴60PCB AOB ∠=∠=.∴30OPC BOP BPC ∠==∠=∠.∴14,22PC OC EC PC ====.∴PB =.【答案】4. 将一根长为24cm 的筷子,置于底面直径为5cm ,高为12cm 的圆柱形水杯中,设筷子露在杯子外边的长度为cm h ,则h 的取值范围为PODC B A EP ODC BA【答案】2.3cm5. 如图,是一块直角三角形的土地,现在要在这块地上挖一个正方形蓄水池AEDF ,已知剩余的两直角三角形(阴影部分)的斜边长分别为20cm 和30cm ,则剩余的两个直角三角形(阴影部分)的面积和...为 2cm .【解析】cm AE x =,cm BE a =,cm CF b =,在Rt BDE ∆中,22230900a x +== ① 在Rt CDF ∆中,22220400b x +== ②在Rt ABC ∆中,()()222502500a x b x +++==,即2222222500a ax x b bx x +++++= ③③-①-②得,221200ax bx +=,3002ax bx+=最简单的方法为两个小的直角三角形旋转合并成一个大的直角三角形(正方形的边重合)故130203002⨯⨯=.【答案】3006. 如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草.【解析】直接应用勾股定理可知,少走了5m.又知2步为1米,所以少走了10步. 【答案】107. 蚂蚁沿图中的折线从A 点爬到D 点,一共爬了多少厘米?(小方格的边长为1厘米)【解析】把折线从A 到D,分三段计算.第1段长为5,第2段长为13,第3段长为10,进行加法计算,所以蚂蚁一共爬了28cm .【答案】28cm8. 在Rt ABC ∆中,90C ∠=︒,若54a b c +==,,则ABC S ∆= . 【解析】 在Rt ABC ∆中,由勾股定理得,222a b c +=. 又有()2222a b a b ab +=++, 所以 ()222a b c ab +-=所以1924ABC S ab ∆==.【答案】94ABC S ∆=9. 如图,Rt ABC ∆中,90CAB ∠=︒,AB AC =,E 、F 为BC 上的点,且45EAF ∠=︒,求证:222EF BE FC =+.【解析】过点A 作线段AD ,使CAF BAD ∠=∠,且AD AF =.在ACF ∆和ABD ∆中, AC AB CAF BAD AF AD =⎧⎪∠=∠⎨⎪=⎩∴ACF ABD ∆∆≌ ∴CF BD =,DBA FCA ∠=∠90DBE DBA ABE FCA ABE ∠=∠+∠=∠+∠=︒ 在ADE ∆和AFE ∆中, 45AE AE EAF EAD AD AF =⎧⎪∠=∠=︒⎨⎪=⎩∴ADE AFE ∆∆≌ ∴ED EF =在Rt BDE ∆中,222DE BD BE =+,∴222EF BE FC =+.【答案】见解析F E C B ADF E CB ACBAD10. 如图,已知Rt △ABC 的周长为26+,其中斜边2AB =,求这个三角形的面积.【解析】在Rt △ABC 中,根据勾股定理,得2222a b +=,即2()24a b ab +-=。
初三数学相似三角形的判定定理相似三角形是数学中的一种重要概念,它们具有相似的形状但大小不同。
在初三数学学习中,我们经常会遇到相似三角形的题目,因此掌握相似三角形的判定定理对于解决问题非常关键。
下面我们将通过生动、全面、有指导意义的文章来介绍初三数学中相似三角形的判定定理。
首先,我们来谈谈相似三角形的定义。
当两个三角形的对应角度相等,并且对应边的比值相等时,我们称这两个三角形为相似三角形。
相似三角形之间的对应关系非常重要,它使我们能够通过已知信息推导出未知信息,从而解决一些复杂的几何问题。
因此,掌握相似三角形的判定定理对于初三数学的学习至关重要。
在判定相似三角形时,我们可以运用以下定理:1. AA判定定理:如果两个三角形的两个角分别相等,并且所对应的边的比值相等,那么这两个三角形是相似的。
这个定理非常直观易懂,通过观察角的大小和边的比值,我们可以迅速判断出两个三角形是否相似。
2. SAS判定定理:如果两个三角形的一个角相等,并且两边的比值相等,那么这两个三角形是相似的。
这个定理也比较简单,我们只需要关注一个角和两边的对应关系即可。
3. SSS判定定理:如果两个三角形的三条边的比值都相等,那么这两个三角形是相似的。
这个定理是最简单的一种判定方式,我们只需要观察三条边的比值即可确定相似性。
通过以上三个重要的判定定理,我们可以准确地判断相似三角形,从而在解决几何问题时提供指导。
在实际运用中,我们常常需要结合具体情况进行分析,综合运用上述定理才能得出准确的结论。
相似三角形的性质对于解决很多几何问题都有重要的指导意义。
除了判定定理外,相似三角形还有一些重要的性质,如对应角相等、对应边成比例等。
通过利用这些性质,我们可以解决诸如求边长、求面积、求角度等各种问题。
总之,相似三角形是初三数学中非常重要的概念,掌握相似三角形的判定定理具有非常大的指导意义。
通过灵活运用AA、SAS和SSS三种判定定理,我们可以准确地判断两个三角形是否相似,从而解决各种几何问题。
初中数学:勾股定理的妙用勾股定理,作为数学中的经典定理之一,被广泛运用于各种数学问题的解决中。
在初中数学教学中,勾股定理的应用也是一个重要的内容,通过勾股定理的妙用,可以帮助学生更好地理解和掌握这一定理,提高数学解题的能力。
本文将从几个具体的例子出发,探讨勾股定理在初中数学中的妙用。
一、勾股定理的基本原理在介绍勾股定理的妙用之前,首先简要回顾一下勾股定理的基本原理。
勾股定理是指直角三角形中,直角边的平方等于两条直角边分别平方和的和。
即对于直角三角形ABC,设直角边为AB、AC,斜边为BC,则有AB²+AC²=BC²。
这一定理是数学中的重要定理之一,也是初中数学中的基础内容。
二、勾股定理在三角形面积计算中的应用首先,我们来看勾股定理在三角形面积计算中的应用。
对于一个直角三角形,已知两条直角边的长度分别为a和b,斜边的长度为c,根据勾股定理可得a²+b²=c²。
那么这个三角形的面积可以通过以下公式计算:S=1/2*a*b。
这里的S表示三角形的面积,a和b分别表示两条直角边的长度。
通过勾股定理,我们可以快速计算出直角三角形的面积,为解决实际问题提供了便利。
三、勾股定理在解决勾股数问题中的应用勾股数是指满足勾股定理条件的三个正整数,即a²+b²=c²。
在初中数学中,学生常常会遇到求解勾股数的问题。
通过勾股定理,我们可以找到很多满足条件的勾股数。
例如,3、4、5就是一个勾股数,因为3²+4²=5²。
通过列举和验证,学生可以更好地理解勾股定理,并锻炼他们的逻辑推理能力。
四、勾股定理在解决实际问题中的应用除了在三角形面积计算和勾股数问题中的应用,勾股定理还可以帮助我们解决一些实际问题。
例如,在测量中,我们可以利用勾股定理来计算无法直接测量的距离。
通过设置一个直角三角形,利用已知的两条边长和勾股定理,可以计算出无法直接测量的距离。
初中数学弦割定理的应用有哪些弦割定理是初中数学中一个重要的定理,它有许多应用。
下面我将详细介绍弦割定理在初中数学中的几个常见应用:1. 弦的长度计算:弦割定理可以帮助我们计算弦的长度。
当已知割线和弦的长度时,可以利用弦割定理求解其他未知的割线和弦的长度。
具体计算方法如下:-已知弦AB和割线CD的长度,求割线CE和弦DE的长度。
根据弦割定理可得:AB × CE = CD × DE,利用已知的弦和割线的长度进行代入计算即可。
2. 判断割线的位置关系:弦割定理可以帮助我们判断割线和弦的位置关系。
当两条割线相交于圆内部的一点时,根据弦割定理可得:两条割线所截取的弦的乘积等于这两条割线所分割的弦的乘积。
根据这个性质,可以判断割线所截取的弦是等长的还是不等长的,从而判断割线的位置关系。
3. 证明几何定理:弦割定理可以用于证明其他几何定理。
例如,利用弦割定理可以证明圆的内切四边形的性质,即内切四边形的对角线互相垂直。
具体证明方法如下:-设圆内切四边形ABCD的对角线AC和BD相交于点E,连接AE和BE。
-根据弦割定理可得:AB × EC = BC × AD,同时也可得:AB × ED = AD × BC。
-将上述两个等式相减可得:AB × EC - AB × ED = AD × BC - AD × BC。
-化简后得:AB(EC - ED) = AD(BC - BC)。
-由于BC - BC = 0,所以得到:AB(EC - ED) = 0。
-由于AB ≠ 0,所以得到:EC - ED = 0,即EC = ED。
-根据几何定理可知,如果一个四边形的对角线互相垂直,则这个四边形为内切四边形。
弦割定理在初中数学中有广泛的应用,可以帮助我们解决与圆相关的问题,计算弦的长度,判断割线的位置关系,以及证明其他几何定理。
在运用弦割定理时,需要注意定理的性质和运用几何知识进行推理和分析。
初三数学几何定理的运用摘要:教师在教学时经常需要面对不同的学生,如何根据不同的情况采取相应的措施显得非常必要。
一些学生到了初三仍对几何证明题书写感到困难,思考时没有明确的目的。
本文针对这些情况,充分重视了“定理教学”,采取了先集中讲授再平时渗透的方法,提出了从定理的基本要求出发,通过建立表象、组合定理、联想定理等教学对策,从而使学生具备“用定理”的意识。
关键词:建立表象、组合定理、联想定理教师在教途上并不是一帆风顺的,尤其在农村中学,有时由于教学上的需要,往往到了初三,也会出现面对陌生学生的情况。
笔者今年就遇到了尴尬:几何证明题学生会证的,却不会书写或书写不完整;知道步骤的原因和结论,但讲不出定理的内容;更多的学生面对几何题在证明时凭感觉。
面对着时间紧、任务重,怎么办呢?经过一番苦思冥想,针对学生基础差、底子薄,决定狠抓“定理教学”。
通过一段时间的复习,学生普遍反映在证题和书写时有了“依靠”,也发现了定理的价值,基本树立了“用定理”的意识。
那么,学生在证题时到底是由哪些原因造成思维受阻,产生解题的困惑呢?我们把它归纳为以下几点:⑴不理解定理是进行推理的依据。
其实如果我们把一道完整的几何证明题的过程进行分解,发现它的骨干是由一个一个定理组成的。
而学生书写的不完整、不严密,就因为缺乏对定理必要的理解,不会用符号语言表达,从而不能严谨推理,造成几何定理无法具体运用到习题中去。
⑵找不到运用定理所需的条件,或者在几何图形中找不出定理所对应的基本图形。
具体表现在不熟悉图形和定理之间的联系,思考时把定理和图形分割开来。
对于定理或图形的变式不理解,图形稍作改变(或不是标准形),学生就难以思考。
⑶推理过程因果关系模糊不清。
针对以上的原因,我们在教学中采取了一些自救对策。
一、教学环节对几何定理的教学,我们在集中讲授时分5个环节。
第1、2 环节是理解定理的基本要求;第3 环节是基本推理模式,第4 环节是定理在推理过程中的呈现方式,提出了“模式+定理”的书写方法;第5 环节是定理在解题分析时的导向作用,提出了“图形+定理”的思考方法。
程序图设计如下:基本要求→重新建立表象→推理模式→ 组合定理→ 联想定理二、操作分析和说明⒈定理的基本要求我们认为,能正确书写证明过程的前提是学会对几何定理的书写,因为几何定理的符号语言是证明过程中的基本单位。
因而在教学中我们采取了“一划二画三写”的步骤,让学生尽快熟悉每一个定理的基本要求,并重新整理了初中阶段的定理(见附页,此只列出与本文有关的定理),集中展示给学生。
例如定理43:直角三角形被斜边上的高线分成的两个直角三角形和原三角形相似。
一划:就是找出定理的题设和结论,题设用直线,结论用波浪线,要求在划时突出定理的本质部分。
如:“直角三角形”和“高线”、“相似”。
二画:就是依据定理的内容,能画出所对应的基本图形。
如:三写:就是在分清题设和结论的基础上,能用符号语言表达,允许采用等同条件。
如:∵△ABC是Rt△,CD⊥AB于D(条件也可写成:∠ACB=90°,∠CDB=90°等) ∴△ACD∽△BCD∽△ABC 。
学生在书写时果然出现了一些问题:①不理解每个定理的条件和结论。
学生在书写时往往漏掉条件(如定理19漏掉垂直,定理46漏掉高、中线等);对条件太简单的不会写(如定理3);或者把条件当成结论(如定理12把三线都当成结论)。
②还表现在思维偏差。
我们的要求是会用定理,而有些学生把定理重新证明一遍(如定理5、6);或者在一个定理中出现∵××,又∵××,∴××的错误。
③更多的是没有抓住本质。
具体表现在把非本质的条件当成本质条件(如定理7出现∵∠1 和∠2是同位角,∴AB∥CD);条件重复(如定理49,结论∠APO=∠BPO已经包括过圆心O,学生在条件中还加以说明);图形过于特殊(如把定理1的图画成射影定理的基本图形);文字过多(一些定理译不出符号语言,用文字代替)等。
⒉重新建立表象从具体到抽象,由感性到理性已成为广大数学教师传授知识的重要原则。
“表象”就是人们对过去感知过的客观世界中的对象或对象在头脑中留下来的可以再现出来的形象,具有一定的鲜明性、具体性、概括性和抽象性。
由于几何的每一个定理都对应着一个图形,这给我们在教学中提供了一定的便利。
我们要求学生对定理的表象不能只停留在实体的形象上,而是让学生有意识的记图形,想图形,以形成和唤起表象。
我们认为,这对于理解、巩固和记忆几何定理起着重大的作用。
教给学生想形象的基本方法后,我们接下去的步骤是用实例引导学生,下面是一段经整理后的课堂教学主要内容:⑴问:听了老师的介绍后,你怎样回忆垂径定理的形象?答:垂径定理我在想的时候,脑子里留下“两条等弧、两条相等的线段、一个直角”在一闪一闪的,以后看到弧相等或其他两个条件之一,脑子里就会浮现出垂径定理。
目的:建立单个定理的表象,要求能想到非标准图形。
继续问:看到弧相等,你们只想到了垂径定理,其他的定理就没有想起来吗?答:想到了圆心角相等、圆周角相等、弦相等……甚至有学生想到了两条平行弦……目的:通过表象,进行联想,使学生理解定理间的联系。
⑵问:从定理21开始,你能找出和它有联系的定理吗?答:有定理22(擦短使平行直线变成线段),定理25(特殊化成菱形),定理27……目的:一般化或特殊化或图形的平移、旋转等变化,加深定理间的联系。
⑶下面的步骤,我们让学生自主思考。
学生在不断尝试的过程中,通过比较、分析、判断,进一步熟悉定理的三种语言、定理之间的联系和区别。
从学生思考的角度看,他们主要是在寻找基本图形,由于定理之间有一定的联系,在一个基本图形中往往存在着另一个残缺的基本图形,所以学生大多通过连线、延长、作圆、平移、旋转等手段,也有通过特殊化、找同结论等途径把不同的定理联系起来。
下面摘录的是学生自主思考后,得到的富有创意性的结论。
①定理16(延长中线成矩形)→ 定理24(作矩形的外接圆)→ 定理34。
②定理51(一线过圆心,且两线垂直)→ 定理36(一线平移成切线)→ 定理47、48(绕切点旋转)→ 定理50。
③如下图,把EF 向下平移(或绕A点旋转),使定理37和50联系起来(有同结论∠α=∠D):⒊推理模式从学生各方面的反馈情况看,多数学生觉得几何抽象还在于几何推理形式多样、过程复杂而又摸不定,往往听课时知道该如何写,而自己书写时又漏掉某些步骤。
怎样将形式多样的推理过程让学生看得清而又摸得着呢?为此,我们在二步推理的基础上,经过归纳整理,总结了三种基本推理模式。
具体教学分三个步骤实施:⑴精心设计三个简单的例题,让学生归纳出三种基本推理模式。
①条件→ 结论→ 新结论(结论推新结论式)②新结论(多个结论推新结论式)③新结论(结论和条件推新结论式)⑵通过已详细书写证明过程的题目让学生识别不同的推理模式。
⑶通过具体习题,学生有意识、有预见性地练习书写。
这一环节我们的目的是让学生先理解证明题的大致框架,在具体书写时有一定的模式,有效地克服了学生书写的盲目性。
但教学表明学生仍然出现不必要的跳步,这是什么原因呢?我们把它归结为对推理的因果关系不明确、定理是推理的依据和单位不明白。
因而我们根据需要,又设计了以下一个环节。
⒋组合定理基本推理模式中的骨干部分还是定理的符号语言。
因而在这一环节,我们让学生在证明的过程中找出单个定理的因果关系、多个定理的组合方式,然后由几个定理组合后构造图形,进一步强化学生“用定理”的意识。
下面通过一例来说明这一步骤的实施。
例1:已知如图,四边形ABCD外接⊙O的半径为5,对角线AC 与BD 相交于E,且AB =AE·AC,BD=8。
求△BAD的面积。
(2001年嘉兴市质量评估卷六)证明:连结OB,连结OA交BD于F。
学生从每一个推测符号中找出所对应的定理和隐含的主要定理:比例基本性质→S/AS/ 证相似→相似三角形性质→垂径定理→勾股定理→三角形面积公式由于学生自己主动找定理,因而印象深刻。
在证明过程中确实是由一个一个定理连结起来的,也让学生体会到把定理(不排除概念、公式等)镶嵌在基本模式中,就能形成严密的推理过程。
此时,可顺势布置以下的任务:给出勾股定理,你能再结合一个或多个定理,构造图形,并编出证明题或计算题吗?实践表明:经过“模式+定理”书写方法的熏陶后,学生基本具备了完整书写的意识。
⒌联想定理分析图形是证明的基础,几何问题给出的图形有时是某些基本图形的残缺形式,通过作辅助线构造出定理的基本图形,为运用定理解决问题创造条件。
图形固然可以引发联想(这也是教师分析几何证明题、学生证题的基本方法之一),但对于识图或想象力较差的学生来说,就比较困难,他们往往存有疑问:到底怎样才能分解出基本图形呢?在复杂的图形中怎样找到所需要的基本图形呢?因而我们从另一侧面,即证明题的“已知、求证”上给学生以支招,即由命题的题设、结论联想某些定理,以配合图形想象。
例:如图,⊙O1和⊙O2相交于B、C两点,AB是⊙O1 的直径,AB、AC的延长线分别交⊙O2于D、E,过B作⊙O1的切线交AE于F。
求证:BF∥DE。
讨论此题时,启发学生由题设中的“AB是⊙O的直径”联想定理“直径所对的圆周角是90°”,因而连结BC;“过B作⊙O的切线交AE于F”联想定理“切线的性质”,得出∠ABF=90°。
从而构造出基本图形②③。
由命题的结论“BF∥DE”联想起“同位角相等,两直线平行”定理,构造出基本图形④。
将上述基本图形②③④的性质结合在一起,学生就易于思考了。
这一环节我们的引导语有:“由已知中的哪一个条件,你能联想起什么定理?”、“条件组合后能构成哪个定理?”、“有无对应的基本图形?”、“能否构造出基本图形?”等。
目的是让学生树立起“图形+定理”的思考方法,把以前的无意识思考变成有目的、有意识的思考。
三、几点认识复习的效果最终要体现在学生身上,只有通过学生的自身实践和领悟才是最佳复习途径,因此在复习时,我们始终坚持主体性原则。
在组织复习的各个环节中,充分调动学生学习的主动性和积极性:提出问题让学生想,设计问题让学生做,方法和规律让学生体会,创造性的解答共同完善。
“没有反思,学生的理解就不可能从一个水平升华到更高的水平”(弗赖登塔尔)。
我们认为传授方法或解答后让学生进行反思、领悟是很好的方法,所以我们在教学时总留出足够的时间来让学生进行反思,使学生尽快形成一种解题思路、书写方法。
集中讲授能使学生对几何定理的应用有一定的认识,但如果不加以巩固,也会造成遗忘。
因而我们也坚持了渗透性原则,在平时的解题分析中时常有意识地引导、反复渗透。
参考资料:①高三数学第二轮复习的理论和实践孟祥东等《中学数学教与学》2001、3②全国初中数学教育第十届年会论文集P380 、P470附录:初中数学几何定理集锦(摘录)1。