人教版初三数学上册切线长定理.2切线长定理
- 格式:docx
- 大小:42.50 KB
- 文档页数:7
第26课切线长定理目标导航课程标准1.了解切线长定义;理解切线的判定和性质;理解三角形的内切圆及内心的定义;2.掌握切线长定理;利用切线长定理解决相关的计算和证明.知识精讲知识点01 切线的判定定理和性质定理1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.要点诠释:切线的判定方法:(1)定义:直线和圆有唯一公共点时,这条直线就是圆的切线;(2)定理:和圆心的距离等于半径的直线是圆的切线;(3)判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.(切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可).2.切线的性质定理:圆的切线垂直于过切点的半径.要点诠释:切线的性质:(1)切线和圆只有一个公共点;(2)切线和圆心的距离等于圆的半径;(3)切线垂直于过切点的半径;(4)经过圆心垂直于切线的直线必过切点;(5)经过切点垂直于切线的直线必过圆心.知识点02 切线长定理1.切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释:切线长定理包含两个结论:线段相等和角相等.3.圆外切四边形的性质:圆外切四边形的两组对边之和相等.知识点02 三角形的内切圆1.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.2.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即1Pr2S (S为三角形的面积,P为三角形的周长,r为内切圆的半径).考法01 切线长定理【典例1】如图,等腰三角形中,,.以为直径作⊙O 交于点,交于点,,垂足为,交的延长线于点.求证:直线是⊙O 的切线.【答案与解析】如图,连结OD 、,则.∴. ∵ ,∴. ∴是的中点. ∵是的中点, ∴. ∵于F . ∴.∴是⊙O 的切线. 【总结升华】连半径,证垂直.【即学即练1】已知:如图,在梯形 ABCD 中,AB ∥DC ,∠B=90°,AD=AB+DC ,AD 是⊙O 的直径.求证:BC 和⊙O 相切.ABC 6AC BC ==8AB =BC AB D AC G DF AC ⊥F CB E EFDFGCO B E ACD 90BDC ∠=︒CD AB ⊥AC BC =AD BD =D AB O BC DO AC ∥EF AC ⊥EF DO ⊥EF 能力拓展【答案】作OE⊥BC,垂足为E,∵ AB∥DC,∠B=90°,∴ OE∥AB∥DC,∵ OA=OD,∴ EB=EC,∴ BC是⊙O的切线.【典例2】已知:如图,AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD,求证:DC是⊙O的切线.【答案与解析】连接OD.∵ OA=OD ,∴∠1=∠2.∵ AD ∥OC , ∴∠1=∠3,∠2=∠4. 因此 ∠3=∠4.又∵ OB=OD ,OC=OC ,∴ △OBC ≌△ODC . ∴∠OBC=∠ODC .∵BC 是⊙O 的切线,∴∠OBC=90°,∴∠ODC=90°, ∴ DC 是⊙O 的切线.【总结升华】因为AB 是直径,BC 切⊙O 于B ,所以BC ⊥AB .要证明DC 是⊙O 的切线,而DC 和⊙O 有公共点D ,所以可连接OD ,只要证明DC ⊥OD .也就是只要证明∠ODC=∠OBC.而这两个角分别是△ODC 和△OBC 的内角,所以只要证△ODC ≌△OBC .这是不难证明的.【即学即练2】已知:∠MAN=30°,O 为边AN 上一点,以O 为圆心、2为半径作⊙O ,交AN 于D 、E 两点,设AD=,⑴如图⑴当取何值时,⊙O 与AM 相切;⑵如图⑵当为何值时,⊙O 与AM 相交于B 、C 两点,且∠BOC=90°.【答案】(1)设AM 与⊙O 相切于点B ,并连接OB ,则OB ⊥AB ;在△AOB 中,∠A=30°, 则AO=2OB=4, 所以AD=AO-OD , 即AD=2.x=AD=2.x xx(2)过O 点作OG⊥AM 于G∵OB=OC=2,∠BOC=90°,∴BC=,∵∠A=30°∴OA=∴x=AD=2考法02 三角形的内切圆【典例3】已知四边形ABCD 中,AB∥CD,⊙O 为内切圆,E 为切点. (Ⅰ)如图1,求∠AOD 的度数;(Ⅱ)如图1,若AO=8cm ,DO=6cm ,求AD 、OE 的长;(Ⅲ)如图2,若F 是AD 的中点,在(Ⅱ)中条件下,求FO 的长.【答案与解析】解:(Ⅰ)∵⊙O 为四边形ABCD 的内切圆, ∴AD、AB 、CD 为⊙O 的切线, ∴OD 平分∠ADC,OA 平分∠BAD, 即∠ODA=∠ADC,∠OAD=∠BAC, ∵AB∥CD,∴∠ADC+∠BAC=180°,∴∠ODA+∠OAD=90°,∴∠AOD=90°;(Ⅱ)在Rt△AOD中,∵AO=8cm,DO=6cm,∴AD==10(cm),∵AD切⊙O于E,∴OE⊥AD,∴OE•AD=OD•OA,∴OE==(cm);(Ⅲ)∵F是AD的中点,∴FO=AD=×10=5(cm).【总结升华】本题考查了三角形的内切圆与内心,也考查了切线长定理.考法03 与相切有关的计算与证明【典例4】已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为3,∠EAC=60°,求AD的长.【答案与解析】证明:(1)如图1,连接FO,∵F为BC的中点,AO=CO,∴OF∥AB,∵AC是⊙O的直径,∴CE⊥AE,∵OF∥AB,∴OF⊥CE,∴OF所在直线垂直平分CE,∴FC=FE,OE=OC,∴∠FEC=∠FCE,∠0EC=∠0CE,∵∠ACB=90°,即:∠0CE+∠FCE=90°,∴∠0EC+∠FEC=90°,即:∠FEO=90°,∴FE为⊙O的切线;(2)如图2,∵⊙O的半径为3,∴AO=CO=EO=3,∵∠EAC=60°,OA=OE,∴∠EOA=60°,∴∠COD=∠EOA=60°,∵在Rt△OCD中,∠COD=60°,OC=3,∴CD=,∵在Rt△ACD中,∠ACD=90°,CD=,AC=6,∴AD=.【总结升华】本题是一道综合性很强的习题,考查了切线的判定和性质,三角形的中位线的性质,勾股定理,线段垂直平分线的性质等,熟练掌握定理是解题的关键.分层提分题组A 基础过关练1.下列说法中,不正确的是( )A.三角形的内心是三角形三条内角平分线的交点B.锐角三角形、直角三角形、钝角三角形的内心都在三角形内部C.垂直于半径的直线是圆的切线D.三角形的内心到三角形的三边的距离相等【答案】C【分析】根据三角形的内心的性质得出A、B、D正确;根据切线的判定定理得出C不正确;即可得出结果.【详解】由三角形的内心是三角形三条内角平分线的交点,故可知A正确;由三角形内心的概念,可知锐角三角形、直角三角形、钝角三角形的内心都在三角形内部,故可知B正确;经过半径外端并且垂直于这条半径的直线是圆的切线,故可知C不正确;由三角形的内心是三角形三条内角平分线的交点,可知三角形的内心到三角形的三边的距离相等,故可知D 正确.故选C.【点睛】本题考查了三角形的内心与性质、切线的判定定理;熟练掌握三角形的内心性质与切线的判定定理是解决问题的关键.2.△ABC的三边长分别为a、b、c,它的内切圆的半径为r,则△ABC的面积为()A.12(a+b+c)r B.2(a+b+c)C.13(a+b+c)r D.(a+b+c)r【答案】A【分析】首先根据题意画出图,观察发现三角形ABC的内切圆半径,恰好是三角形ABC内三个三角形的高,因而可以通过面积S△ABC=S△AOB+S△BOC+S△AOC来计算.【详解】如图,可得S△ABC=S△AOB+S△BOC+S△AOC=12ABr+12BCr+12ACr=12(AB+BC+AC)r =12(a+b+c)r ,故选A.【点睛】本题考查三角形的内切圆与内心.解决本题的关键是将求△ABC转化为求S△AOB、S△BOC、S△AOC.3.如图,点P在△O外,PA、PB分别与△O相切于A、B两点,△P=50°,则△AOB等于()A .150°B .130°C .155°D .135°【答案】B 【详解】试题分析:根据切线的性质可得:△OAP=△OBP=90°,根据四边形的内角和定理可得:△AOB+△P+△OAP+△OBP=360°,则△AOB=360°-90°-90°-50°=130°. 考点:切线的性质、四边形的内角和4.如图所示,△O 的外切梯形ABCD 中,如果AD△BC ,那么△DOC 的度数为( )A .70°B .90°C .60°D .45°【答案】B 【分析】由于AD 、DC 、CB 都是△O 的切线,根据切线长定理知:△ADO=△CDO ,△DCO=△BCO ;而AD△BC ,则2△ODC 和2△OCD 互补,由此可求得△DOC 的度数. 【详解】△DA 、CD 、CB 都与△O 相切, △△ADO=△ODC ,△OCD=△OCB ; △AD△BC ,△△ADC+△BCD=180°;△△ODC+△OCD=90°,即△DOC=90°; 故选B . 【点睛】此题主要考查的是切线长定理及平行线的性质,准确的确定角的关系是解题关键.5.如图,PA 是O ⊙的切线,切点为A ,,则O ⊙的半径为A .1B.3C.2D.4 【答案】C【解析】解:连接AO ,则△OAP=90°,又因为△APO=30°,所以AO=1/2PO ,设AO=x ,则PO=2X ,根据勾股定理,(2X)² -X² =(23)² 解得x=2,即半径为2,故选C 。
24.2 切线长定理
[活动3]应用新知 加深理解
例1如图:过O O 直径AB 端点分别作
AE 、BF 切O O 于 A 、B, EF 切O 0于 G 求证:OEL OF
师生共同归纳基本图形 和定理拓展作用
教师关注:
(1) 学生能否敢于发表自 己的见解
(2) 学生能否证明结论并 且准确叙述进一步明确 定理的作
用
(3) 学生是否有反思自己 思维过程或他人解决问 题思路的
习惯
问题与情境
师生行为
设计意图
教师提出问题
学生思考并解决问题,回 答思路
教师选取几名学生证明 过程投影并订正
学生解决问题的过程 中应用定理加深对定 理作用的体会并树立 解决问题的信心,订 正几名学生证明过程 能反馈学生掌握知识 情况及对其他学生的 示范。
2.已知:PA PB 分别切O 0于A 、B , CD 切O O 于 E,PO=13,AO=5,贝U
△ PCD 周长为 ____________
通过归纳基本图形和 定理的拓展作用做到 对定理的进一步理解 和更好的应用。