趣味数学-幻方
- 格式:ppt
- 大小:4.28 MB
- 文档页数:48
幻方的起源你知道吗?趣味数学幻方(magicsquare)起源于《易》,古称九宫(龟文),乃是我国最先发现的一个著名组合算题。
《易》算之于九宫,识之以天象,在古代天文、历法、农牧生产与社会生活中具有广泛的应用价值。
易十数为体,八九为用,八九不离十。
《易》九宫算动态组合模型(包括河图、洛书、八卦)是幻方的通解与最简模型。
幻方是一个高深莫测的数学迷宫和高智力游戏,它的重重大门闪似乎由一串串非常复、精密而又变化多端的连圜锁“参伍错综”地锁着的,人们走进去也许并不难,但是要走出来谈何容易。
现代幻方组合理论及技术水平虽然达到了相当的高度,但我始终不敢轻言谁已经揭示了幻方谜底。
幻方是一个丰蕴的知识宝库。
幻方九宫算模型的精髓在于:变、变、变。
正可谓“横看成岭侧成峰”。
《系辞》曰:“神无方而《易》无体”,这意思是说:九宫算神奇的数理变化不囿于一招一法,其几何形体亦无常于一制一式,因此研究幻方应尽可能采取多种多样的方法。
发现新方法是很重要的,但各种方法的具体操作与用法创新、绝技的应用等,有时比方法本身更为重要。
不同方法以及方法的不同用法,各种方法合理的交互应用等,必然会产生幻方新的结构与造型。
n阶幻方的全部解各有一个幻方群,1至n2自然数列的n2个数在整个幻方群中的变位关系,阶次越大变化就越复杂,它们将遵守精密逻辑、模糊逻辑或非逻辑等等不同规则。
《易》九宫学博大精深。
汉徐岳在《数术记遗》中已从算学角度称洛书为九宫,南北朝甄鸾注:“九宫者,即二四为肩,六八为足,左三右七,戴九lu一,五居中央。
”唐王希《太乙金镜式经》曰:“九宫之义,法以灵龟------此不易之道也”等等。
但幻方九宫算的开拓者首当宋大数学家杨辉,他不仅发现了洛书(三阶幻方)的构图口诀,而且还填出了四阶至十阶多幅幻方以及幻圆、幻环等图形。
同时,宋丁易东、明程大位、清张潮与方中通等人,也对幻方组合技术做出过重要贡献。
幻方九宫算是东方大易文化的瑰宝。
自汉唐以来统一的中国繁荣富强,在拓疆、移民、传教、航海与丝路开通等对外经贸与文化交流过程中,幻方古算题飘洋过海,东传日本,西播欧美。
幻方定义和规律幻方,作为一种具有神秘色彩的数学游戏,一直以来都吸引着人们的注意。
它的定义和规律引发了许多学者的思考和研究。
在这篇文章中,我们将深入探讨幻方的定义和规律,揭示其中的奥秘。
我们需要了解什么是幻方。
幻方是由一组整数构成的方阵,其中每一行、每一列和对角线上的数字之和都相等。
也就是说,幻方是一个特殊的方阵,在数值上呈现出一种平衡和对称的特性。
幻方的规律是如何产生的呢?首先,我们需要明确一个概念——幻方的阶数。
幻方的阶数表示方阵的行数和列数,通常用n表示。
根据幻方的定义,我们知道每一行、每一列和对角线上的数字之和都相等,所以我们可以推断出幻方的和是多少,即n乘以每个数的平均值。
以3阶幻方为例,我们可以通过数学推导得到。
假设幻方的和为S,根据定义,每一行、每一列和对角线上的数字之和都等于S。
那么,我们可以得到以下等式:3S = n * (n^2 + 1) / 2。
通过解方程,我们可以求解出S的值。
幻方的规律还表现在数字的排列上。
对于奇阶幻方来说,数字的排列是相对简单的,可以利用一种叫做"奇序法"的方法来构造。
奇序法的基本思想是,将数字按照一定的规则填充到方阵中。
具体的规则是,从第一行的中间列开始,依次填充数字,每次向右上方移动一格。
当超出方阵边界时,需要按照特定的规则进行处理。
通过这种方法,我们可以构造出任意奇阶幻方。
对于偶阶幻方来说,数字的排列就更加复杂了。
由于偶数无法平分为两个相等的整数,所以无法使用奇序法来构造。
但是,通过一些特殊的技巧和方法,我们仍然可以构造出偶阶幻方。
其中最著名的就是四阶幻方,也被称为"洛伊斯四阶幻方"。
洛伊斯四阶幻方是由德国数学家洛伊斯于1848年发现的,它的构造方法相当巧妙。
除了基本的规律之外,幻方还有一些更加深奥的特性。
例如,幻方的对角线之和等于方阵中所有数字之和的一半。
这是一种非常有趣的性质,也是幻方研究中的一个重要发现。
幻方知识点总结一、幻方的定义。
幻方是一种将数字安排在正方形格子中,使每行、每列和对角线上的数字之和都相等的数学结构。
例如,一个简单的三阶幻方(3×3的方格):begin{array}{ccc}hline8 1 6 hline3 5 7 hline4 9 2 hlineend{array}这里每行、每列和两条对角线上的数字之和都是15。
二、幻方的阶数。
1. 阶数的概念。
- 幻方的阶数是指幻方的行数(或列数),用n表示。
常见的有三阶幻方(n = 3)、四阶幻方(n=4)等。
2. 不同阶数幻方的特点。
- 三阶幻方。
- 是最基本、最常见的幻方。
它的数字组合相对固定,中心数字具有特殊性质。
在三阶幻方中,中心数字是这9个数字的平均数。
例如在上面的三阶幻方中,数字是1 - 9,它们的平均数是5,正好是中心数字。
- 四阶幻方。
- 构造相对复杂一些。
四阶幻方的幻和(每行、每列、对角线数字之和)计算为:(1 + 2+3+·s+16)÷4=(16×(16 + 1)÷2)÷4= 34。
三、幻方的构造方法。
1. 奇数阶幻方(以三阶幻方为例)——罗伯法。
- 把1(或最小的数)放在第一行正中。
- 按以下规律排列剩下的数:- 每一个数放在前一个数的右上一格。
- 如果这个数所要放的格已经超出了最顶行,那么就把它放在底行,仍然要放在右一列。
- 如果这个数所要放的格已经超出了最右列,那么就把它放在最左列,仍然要放在上一行。
- 如果这个数所要放的格已经填好了其他的数,或者同时超出了顶行和右列,那么就把这个数放在前一个数的下一行同一列的格内。
2. 偶数阶幻方(以四阶幻方为例)——对称交换法。
- 先将1 - 16按顺序填入4×4的方格中。
- 然后将对角线上的数字(从左上角到右下角和从右上角到左下角)进行对称交换。
例如,交换1和16,4和13,6和11,7和10,就可以得到一个四阶幻方。
幻方的规律和求法幻方的规律和求法:幻方可是个神奇的存在呀!简单来说,就是在一个正方形格子里,填上一些数字,让每行、每列以及对角线上的数字之和都相等。
我们可以把幻方想象成一个数字的大舞台,每个数字都像是一位演员,它们要在这个舞台上找到自己的位置,共同演绎出神奇的规律。
那些格子就像是演员们的站位,必须恰到好处,才能呈现出完美的表演。
比如说三阶幻方,就像是一个小型的数字音乐会,九个数字要在九个位置上完美配合,奏响和谐的数字乐章。
那幻方是怎么做到让每行、每列和对角线的数字和都相等的呢?这就像是一场精心编排的舞蹈,每个数字都要准确无误地迈出自己的舞步。
以三阶幻方为例,中间的数字就像是领舞的主角,它的位置至关重要。
其他数字则像是伴舞,围绕着中间数字旋转跳跃。
它们之间有着一种微妙的平衡和协调,就像一个默契十足的舞蹈团队。
我们来看看具体的规律。
首先,幻方中每行、每列和对角线上的数字之和是一个固定值,这个值是所有数字总和的三分之一。
比如三阶幻方,1 到9 这九个数字的总和是 45,那么每行、每列和对角线的和就是 15。
这就好像是一场比赛,每个队伍的目标总分是确定的,数字们要努力去达到这个目标。
其次,中间位置的数字有着特殊的地位,它往往是一个关键的平衡点。
而且,相对的两个数字之和通常等于另外两个相对数字之和,就像两队选手在进行拔河比赛,力量要保持平衡。
为了让大家更好地理解,我们来看一个具体的三阶幻方例子:4 9 23 5 78 1 6在这里,每行、每列和对角线的和都是 15。
4 和 6、9 和 1、2 和 8 等相对数字之和都是 10,是不是很神奇呢?幻方在生活中也有不少应用呢!比如在建筑设计中,一些古老的建筑可能会运用幻方的原理来布局,以求达到某种平衡和和谐。
在数学研究中,幻方更是一个重要的领域,数学家们不断探索着更复杂、更奇妙的幻方。
总之,幻方就像是一个隐藏在数字世界里的神秘宝藏,等待着我们去探索和发现。
它的规律既神奇又有趣,让我们感受到了数字的魅力和魔力。
数学幻方的规律和方法
嘿,你知道啥是数学幻方不?那可是超神奇的存在!想象一下,一个神秘的数字方阵,充满了规律和惊喜。
咱先说说步骤哈。
首先,你得确定幻方的阶数,这就像盖房子得先知道要盖几层一样。
然后呢,从第一行中间那个位置开始填数,这就好比找到了宝藏的入口。
接着按照特定的方向一步步填下去,可刺激啦!注意事项也不少呢。
填数的时候可不能马虎,得时刻盯着,不然一不小心就填错了。
这就像走钢丝,得小心翼翼的。
那幻方的过程安全不?稳定不?放心吧!只要你按照步骤来,就像走在平坦的大路上,稳稳当当的。
幻方的应用场景那可多了去了。
在数学竞赛中,它就像一把秘密武器,能让你脱颖而出。
在游戏设计里,幻方可以创造出各种有趣的关卡,难道不是超棒吗?它的优势也很明显呀。
一方面,可以锻炼你的逻辑思维能力,让你的大脑像超级计算机一样厉害。
另一方面,它充满了趣味性,不像做那些枯燥的数学题。
举个实际案例吧。
有个小朋友参加数学竞赛,遇到了幻方的题目。
他之前学过幻方的规律和方法,所以轻松就解决了问题,最后得了大奖。
这效果,杠杠的!
总之,数学幻方超有趣、超有用。
它是打开数学神秘大门的一把钥匙,
能让你在数学的世界里尽情遨游。
三年级奥数--数阵图与幻方知识框架一、数阵图定义及分类:定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.数阵:是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手:第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.三、幻方起源:幻方也叫纵横图,也就是把数字纵横排列成正方形,因此纵横图又叫幻方.幻方起源于我国,古人还为它编撰了一些神话.传说在大禹治水的年代,陕西的洛水经常大肆泛滥,无论怎样祭祀河神都无济于事,每年人们摆好祭品之后,河中都会爬出一只大乌龟,乌龟壳有九大块,横着数是3行,竖着数是3列,每块乌龟壳上都有几个点点,正好凑成1至9的数字,可是谁也弄不清这些小点点是什么意思.一次,大乌龟又从河里爬上来,一个看热闹的小孩惊叫起来:“瞧多有趣啊,这些点点不论横着加、竖着加还是斜着加,结果都等于十五!”于是人们赶紧把十五份祭品献给河神,说来也怪,河水果然从此不再泛滥了.这个神奇的图案叫做“幻方”,由于它有3行3列,所以叫做“三阶幻方”,这个相等的和叫做“幻和”.“洛书”就是幻和为15的三阶幻方.如下图:987654321我国北周时期的数学家甄鸾在《算数记遗》里有一段注解:“九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央.”这段文字说明了九个数字的排列情况,可见幻方在我国历史悠久.三阶幻方又叫做九宫图,九宫图的幻方民间歌谣是这样的:“四海三山八仙洞,九龙五子一枝连;二七六郎赏月半,周围十五月团圆.”幻方的种类还很多,这节课我们将学习认识了解它们.四、幻方定义:幻方是指横行、竖列、对角线上数的和都相等的数的方阵,具有这一性质的33⨯的数阵称作三阶幻方,44⨯的数阵称作四阶幻方,55⨯的称作五阶幻方……如图为三阶幻方、四阶幻方的标准式样,98765432113414151612978105113216。