(完整版)趣味数学-幻方
- 格式:ppt
- 大小:4.28 MB
- 文档页数:3
幻方知识点:1、幻方:在一个正方形中,将其分为n n 个(九个、十六个、二十五个、三十六个……)小方格,填上给定的数(九个、十六个、二十五个、三十六)个数字,使每一横行、每一竖行以及每一斜行上的n 个数相加的和都相等。
像这样的正方形,我们把它叫做n 阶幻方。
在幻方中这个相等的和就叫做幻和。
2、三阶幻方:如果一个3×3的方阵中,每一横行、每一竖列及两条对角线上数的和都相等,那么这个方阵称为三阶幻方(又叫九宫格或九宫图),这个相等的和叫做幻和,填在幻方中心位置的数称为中间数或中心数。
3、三阶幻方的性质:(1)幻和=中心数×3;中心数=幻和÷3; (2)幻和=填入的所有数总和÷3; (3)“斜T 法”:在三阶幻方中,四个角上的数,等于它对角上相邻两旁两个数的平均数(例如:i 位置的数=(b 位置的数+d 位置的数)÷2;a 和f 、h 位置也有此规律)。
(4)在三阶幻方中,最大与最小的数不能填在对角线上;(5)一个三阶幻方,经过翻折,或者旋转90°以后,仍为幻方.例题1:下面是幻方吗?是的在括号里打“√”,不是在括号里打“×”。
( )123456789( )191817161514131211【答案】×;√;【分析】要求每行、每列、两条对角线上的和都相等。
例题2:在下图中,填上适当的数,使每行、每列及两条对角线上三个数的和都相等。
【答案】如图所示【分析】我们知道幻和是中心数的三倍,因此6+12=18是中心数的2倍,由此可知,中心数为:18÷2=9,幻和为:9×3=27。
接着一一填出各个空格中的数。
例题3:如图,填上适当的数,使每行、每列及两条对角线上三个数的和都相等。
【答案】如图所示 【分析】先根据斜T 法算出右下角(27+15)÷2=21;中心数=(17+21)÷2=19;幻和=19×3=57。
三年级趣味数学(8)九宫格与阵班级姓名1.在1——9这九个数中,取其中3个不同的数相加,使和为15,你能写出哪些三组数?(例如1,5,9。
1+5+9=15)1+5+9=15 2+4+9=15 3+4+8=15 1+6+8=15 2+5+8=15 3+5+7=15 2+6+7=15 4+5+6=153.探索三阶幻方的特点(1)对角线上三个数之间有什么关系?(2)“十”字形中纵列或横行三个数之间有什么关系? (3)中宫数(最中间的数)与九个数之间有什么关系? (4)研究特殊的等腰三角形数之间的关系。
4.利用掌握三阶幻方的特点制作三阶幻方。
2 9 4 7 5 3 6 1 86 7 2 1 5 9 8 3 48 1 6 3 5 7 4 9 24 3 8 9 5 1 2 7 6 6 1 8 7 5 3 2 9 42 7 6 9 5 1 43 87 22 13 22 16 10 19 4 257 8 12 14 9 4 6 10 1110 21 8 11 13 15 18 5 165.九宫阵(俗称数独)。
将1——9这九个数填入每行、每列、每个九宫格的小方格内。
每个数字在每行、每列、每个九宫格内只能出现一次。
13 15 108 11541057 4 13 981 6 92 3 68 2 95 7 46 47 23 1 982 7 1 68 4 532 5 9 7 3165 7342 48 9 1 73 9 16 8 2 4287 9 81 2 54 96 325 68 5 7 6 41 37 5 9294 8 7 637 1 56 5 3 14 298 5 67 74 1 3 9 8 2 56 52 3147 89。
一些特殊的幻方由我国古代数学瑰宝“洛书”所开创的“幻方”,不仅以其特有的奇妙性质,受到世界各国数学爱好者的青睐,也成为数学文化中一个饶有兴味的课题。
对此,前面在多篇文章中,已经做过一些介绍,这里再撷取几个比较特殊的幻方,供网友们玩赏。
这些幻方的奇妙性质更加扑朔迷离,兴味无穷。
一、间隔幻方1 35 24 54 43 9 62 326 40 19 49 48 14 57 2747 13 58 28 5 39 20 5044 10 61 31 2 36 23 5322 56 3 33 64 30 41 1117 51 8 38 59 25 46 1660 26 45 15 18 52 7 3763 29 42 12 21 55 4 34这个八阶幻方的奇特之处在于:不仅每行、每列、每条对角线上8个数的和相等,都是260。
如果,把这些数同时按行和列隔一个取一个,竟然可以组成两个四阶幻方:1 24 43 62 35 54 9 3247 58 5 20 13 28 39 5022 3 64 41 56 33 30 1160 45 18 7 26 15 52 37它们每行、每列、每条对角线上4个数的和相等,都是130。
所以,这个幻方叫做“间隔幻方”。
16 41 36 5 27 62 55 1826 63 54 19 13 44 33 81 40 45 12 22 51 58 3123 50 59 30 4 37 48 938 3 10 47 49 24 29 6052 21 32 57 39 2 11 4643 14 7 34 64 25 20 5361 28 17 56 42 15 6 35这个八阶幻方的奇特之处在于:不仅每行、每列、每条对角线上8个数的和相等,都是260,而且每行、每列、每条对角线上8个数的平方和也相等,都是11180,所以,这个幻方叫做“多重幻方”。
三、双料幻方46 81 117 102 15 76 200 20319 60 232 175 54 69 153 78216 161 17 52 171 90 58 75135 114 50 87 184 189 13 68150 261 45 38 91 136 92 27119 104 108 23 174 225 57 30116 25 133 120 51 26 162 20739 34 138 243 100 29 105 152这个八阶幻方的奇特之处在于:不仅每行、每列、每条对角线上8个数的和相等,都是840,而且每行、每列、每条对角线上8个数的积也相等,都是2058068231856000,所以,这个幻方叫做“双料幻方”。
幻方的故事前面,在“《射雕英雄传》里的数学故事”一文中,曾经谈到了“洛书”,它有三行三列,每行、每列、每条对角线上三个数的和都相等。
后来,人们逐步把具有类似性质的数阵扩展到四行四列、五行五列……通称为“纵横图”。
宋代数学家杨辉对纵横图做了深入的研究,取得了辉煌的成就,并且打破常规,把幻方从正方形推广到多边形和圆。
15世纪,西方数学家摩索普拉把我国的纵横图介绍到欧洲,并取名为“魔幻正方形”简称“幻方”。
“幻”含有梦幻、神奇、美妙、理想的意思。
由于幻方有着变幻莫测的性质,所以幻方一词逐渐为大众所接受。
占星家还将其作为护身符,至今仍有许多印度少女把“洛书”佩在胸前。
下面这个幻方被称为“魔鬼幻方”,因为它除了每行、每列、每条对角线上四个数的和相等以外,四个角上,以及任意由四个方格或九个方格组成的正方形四个角上四个数的和竟然也都相等, 真是妙不可言!现存欧洲最古老的幻方,是公元1514年德国画家丢勒在他著名的铜板画《忧郁》上刻的图. 有趣的是,他还把创作年份1514也塞了进去。
下图是印度太苏神庙石碑上的幻方,刻于十一世纪。
这个幻方也是一个魔鬼幻方。
更为奇特的是。
如果把幻方边上的行或列,挪到另一边去,所得到的仍是幻方。
一百年前的1910年,一位叫阿当斯的青年人,对六角幻方产生了浓厚兴趣。
他先去填简单的一层六角幻方(每边两个数),没有成功。
经过研究,这种幻方是不存在的。
于是,阿当斯便将精力集中在两层的六角幻方上(每边3个数)。
他趁着在铁路公司阅览室当职员之便,利用一些空闲时间,去摆弄从1到19这19个数。
冬去春来,度过了漫长的47个年头。
经过了无数次的挫折、失败,使他由一个英俊少年,变成了白发苍苍的老头,但是他仍然不甘心失败,这就是兴趣的魔力。
1957年的一天,病中的阿当斯,在病床上无意中将六角幻方排列成功了。
他惊喜万分,连忙找纸记录下来,了却了他多年的宿愿。
几天后,他病愈出院。
到家后却不幸地发现,他填的宝图不见了。
三年级趣味数学(8)
九宫格与阵
班级姓名
1.在1——9这九个数中,取其中3个不同的数相加,使和为15,你能写出哪些三组数?(例如1,5,9。
1+5+9=15)
2.如右图把一个正方形划分为3行3列9个方格,我们俗称“九宫
格”。
每个方格填一个数,使横行、数列以及对角线上三个数的和相
等。
这样的九宫格成为三阶幻方。
把上面的1——9这九个数填入格子中,使横行、数列以及对角线上
三个数相加的和为15,怎样填呢?
3.探索三阶幻方的特点
(1)对角线上三个数之间有什么关系?
(2)“十”字形中纵列或横行三个数之间有什么关系?(3)中宫数(最中间的数)与九个数之间有什么关系?(4)研究特殊的等腰三角形数之间的关系。
4.利用掌握三阶幻方的特点制作三阶幻方。
5.九宫阵(俗称数独)。
将1——9这九个数填入每行、每列、每个九宫格的小方格内。
每个数字在每行、每列、每个九宫格内只能出现一次。
这里再给网友介绍一个特殊幻方。
下面这个幻方叫“富兰克林幻方”,是由美国一位幻方爱好者富兰克林制作的。
他曾经说过:“在我年轻的日子里,我一有空暇,总是以制作幻方自娱。
”“富兰克林幻方”不仅具有一般幻方的性质,每行、每列、每条对角线上8个数的和都是260,而且还有一些奇异的特性:1、每半行的和都是130。
如,52+61+4+13=130,20+29+36+45=130;2、每半列的和都是130。
如,52+14+53+11=130,55+9+50+16=130;3、由粗线分成的4个正方形中,角上4个数加上中心4个数和都是260。
如,52+13+54+11+3+62+5+60=260;4、由粗线分成的4个正方形中,角上4个数的和、中心4个数和都是130。
如,52+13+54+11=130,3+62+5+60=130;5、由任意4个小方格组成的正方形中,4个数的和都是130。
如52+61+14+3=130,3+62+60+5=130,54+43+10+23=130;6、“人”字形斜线上8个数的和都是260。
如,11+60+62+13+20+35+37+22=260;7、接成的“人”字形斜线上8个数的和都是260。
如,52+1+2+56+41+31+32+45=260。
14+61+64+15+18+33+36+19=260,53+3+4+49+48+29+30+44=260。
此外,幻方中的数看似杂乱无章,其实,如果把这些数从1到64依次用直线连接起来,如下图:还是很有规律的,呈现出一种复杂的对称关系,也实属意外。
一个幻方里,竟然蕴含了这么多美妙之处,想当初,富兰克林先生一定为此耗费了不少心血。
我国是幻方的发祥地,富兰克林先生如此热爱中华文化,让我们向这位外国友人致敬!。
幻方的故事前面,在“《射雕英雄传》里的数学故事”一文中,曾经谈到了“洛书”,它有三行三列,每行、每列、每条对角线上三个数的和都相等。
后来,人们逐步把具有类似性质的数阵扩展到四行四列、五行五列……通称为“纵横图”。
宋代数学家杨辉对纵横图做了深入的研究,取得了辉煌的成就,并且打破常规,把幻方从正方形推广到多边形和圆。
15世纪,西方数学家摩索普拉把我国的纵横图介绍到欧洲,并取名为“魔幻正方形”简称“幻方”。
“幻”含有梦幻、神奇、美妙、理想的意思。
由于幻方有着变幻莫测的性质,所以幻方一词逐渐为大众所接受。
占星家还将其作为护身符,至今仍有许多印度少女把“洛书”佩在胸前。
下面这个幻方被称为“魔鬼幻方”,因为它除了每行、每列、每条对角线上四个数的和相等以外,四个角上,以及任意由四个方格或九个方格组成的正方形四个角上四个数的和竟然也都相等, 真是妙不可言!现存欧洲最古老的幻方,是公元1514年德国画家丢勒在他著名的铜板画《忧郁》上刻的图. 有趣的是,他还把创作年份1514也塞了进去。
下图是印度太苏神庙石碑上的幻方,刻于十一世纪。
这个幻方也是一个魔鬼幻方。
更为奇特的是。
如果把幻方边上的行或列,挪到另一边去,所得到的仍是幻方。
一百年前的1910年,一位叫阿当斯的青年人,对六角幻方产生了浓厚兴趣。
他先去填简单的一层六角幻方(每边两个数),没有成功。
经过研究,这种幻方是不存在的。
于是,阿当斯便将精力集中在两层的六角幻方上(每边3个数)。
他趁着在铁路公司阅览室当职员之便,利用一些空闲时间,去摆弄从1到19这19个数。
冬去春来,度过了漫长的47个年头。
经过了无数次的挫折、失败,使他由一个英俊少年,变成了白发苍苍的老头,但是他仍然不甘心失败,这就是兴趣的魔力。
1957年的一天,病中的阿当斯,在病床上无意中将六角幻方排列成功了。
他惊喜万分,连忙找纸记录下来,了却了他多年的宿愿。
几天后,他病愈出院。
到家后却不幸地发现,他填的宝图不见了。
趣味数学游戏——幻方当你还是个小学生的时候,也许就玩过这样一种数学益智游戏,就是把1、2、3、4、5、6、7、8、9这九个数字,分别填在3×3的方格里,使之横、竖、对角线的数字相加都等于15(如下图),这样的“填数”的问题,在数学语言里就叫“幻方”。
而填在3×3方格里的,就叫3阶幻方。
3阶幻方是最简单的幻方。
历代数学家们,都喜欢研究幻方,现在的幻方种类很多,有平面幻方,还有立体幻方、高次幻方等,平面幻方又分三角幻方,六角幻方(蜂窝幻方)等。
这里要重点介绍的,还是平面正方形幻方,3阶正方形幻方的等值是15,,这个等值是不可改变的,即是说你永远都无法设计出等值是14或者16的3阶幻方,对于4阶、5阶幻方乃至n阶幻方都一样,其等值都是唯一的、确定的。
其中4阶幻方的等值是34,5阶幻方的等值是65,对于任意n阶幻方,其等值为(n3+n)÷2。
其实,任意阶幻方构造法,任意维幻方构造法,任意次幻方构造法,数学家们都早已找到,不存在最大阶幻方的世界纪录之类的说法。
对平面幻方的构造,分为三种情况:N为奇数、N为4的倍数、N为其它偶数(4n+2的形式)1、N 为奇数时,最简单(1)将1放在第一行中间一列;(2)从2开始直到n×n止各数依次按下列规则存放:按45°方向行走,如向右上,每一个数存放的行比前一个数的行数减1,列数加1(3)如果行列范围超出矩阵范围,则回绕。
例如1在第1行,则2应放在最下一行,列数同样加1;(4) 如果按上面规则确定的位置上已有数,或上一个数是第1行第n列时,则把下一个数放在上一个数的下面。
2、N为4的倍数时采用对称元素交换法。
首先把数1到n×n按从上至下,从左到右顺序填入矩阵然后将方阵的所有4×4子方阵中的两对角线上位置的数关于方阵中心作对称交换,即a(i,j)与a(n-1-i,n-1-j)交换,所有其它位置上的数不变。