[精品]华东师大初中七年级上册数学有理数的乘方及混合运算(提高)巩固练习
- 格式:doc
- 大小:110.00 KB
- 文档页数:4
有理数的混合运算同步练习一 . 相信你的选择,看清楚了再填(每小题3分,共18分) 1. 计算3(25)-⨯=( ) A.1000 B.-1000 C.30 D.-30 2. 计算2223(23)-⨯--⨯=( ) A.0 B.-54 C.-72 D.-18 3. 计算11(5)()555⨯-÷-⨯=( )A.1B.25C.-5D.35 4. 下列式子中正确的是( )A.4232(2)(2)-<-<-B. 342(2)2(2)-<-<-C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<- 5. 422(2)-÷-的结果是( ) A.4 B.-4 C.2 D.-2 6. 如果210,(3)0a b -=+=,那么1b a+的值是( ) A.-2 B.-3 C.-4 D.4二.试一试你的身手,想好了再填(每小题3分,共24分)1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。
2.一个数的101次幂是负数,则这个数是 。
3.7.20.9 5.6 1.7---+= 。
4.232(1)---= 。
5.67()()51313-+--= 。
6.211()1722---+-= 。
7.737()()848-÷-= 。
8.21(50)()510-⨯+= 。
三.挑战你的技能,思考好了再做(共计58分) 1.计算题(每小题4分,共24分)1. 4211(10.5)[2(3)]3---⨯⨯-- 2.4(81)( 2.25)()169-÷+⨯-÷3.215[4(10.2)(2)]5---+-⨯÷-4.666(5)(3)(7)(3)12(3)777-⨯-+-⨯-+⨯-5.235()(4)0.25(5)(4)8-⨯--⨯-⨯- 6.23122(3)(1)6293--⨯-÷-3.已知:,a b 互为相反数,,c d 互为倒数,且23b ≠。
课后训练{2.11 有理数的乘方} 基础巩固1.计算(-1)2 011的结果是( ).A .-1B .1C .-2 011D .2 0112.-(-1)3的值等于( ).A .0B .1C .-1D .23.(1)在34中,指数是__________,底数是__________,幂是__________;(2)在313⎛⎫- ⎪⎝⎭中,指数是__________,底数是__________,幂是__________. 4.根据幂的意义,(-3)4表示__________,-43表示__________.5.计算:(1)(-3)3=__________;(2)-42=__________; (3)412⎛⎫- ⎪⎝⎭=__________; (4)23=__________;(5)32=__________; (6)2132⎛⎫+ ⎪⎝⎭=__________. 6.已知|m -3|+(n +2)2=0,则n m的值为__________.能力提升7.某种细菌在培养过程中,每半小时分裂一次(由一个分裂为两个).若这种细菌由1个分裂为16个,那么这个过程要经过__________小时.8.计算: (1)234-;(2)(-3)2+(-2)3; (3)(-6)2×216⎛⎫- ⎪⎝⎭;(4)-42×212⎛⎫- ⎪⎝⎭. 9.(1)通过计算,比较各组数的大小(用“>”“<”或“=”号连接):①12__________21;②23__________32;③34__________43;④45__________54;⑤56__________65;…(2)对(1)的结果进行归纳比较,猜想n n +1与(n +1)n 的大小(n 为正整数).(3)由上面总结出的规律比较:2 0062 007__________2 0072 006.10.在数学活动中,小明为了求12+212+312+412+…+12n 的值(结果用n 表示),设计如图1所示的几何图形.(1)请你利用这个几何图形求23411112222++++…+12n 的值为__________. (2)请你利用图2,再设计一个能求23411112222++++…+12n 的值的几何图形.参考答案1答案:A2答案:B3答案:(1)4 3 81 (2)313-127-4答案:4个-3相乘3个4相乘的积的相反数5答案:(1)-27 (2)-16 (3)116(4)8 (5)9 (6)4946答案:-8 点拨:|m-3|≥0,(n+2)2≥0,而|m-3|+(n+2)2=0,所以|m-3|=0,(n+2)2=0,即m=3,n=-2,故n m=(-2)3=-8.7答案:2 点拨:半小时分裂一次,所以1小时后分裂为22=4(个),2小时后分裂为24=16(个).8解:(1)94-(2)1 (3)1 (4)-49解:(1)①<②<③>④>⑤>(2)当n=1或2时,n n+1<(n+1)n;当n>2时,n n+1>(n+1)n.(3)>10解:(1)1-12n.(2)如图所示.。
2.13 有理数的混合运算第1课时 有理数混合运算的顺序1. 熟练掌握有理数混合运算的法则.2. 能熟练地进行有理数加、减、乘、除、乘方的混合运算.1. 加法和减法叫做第________级运算;乘法和除法叫做第________级运算;乘方和开方(今后将会学到)叫做第________级运算.2. 有理数混合运算的运算顺序规定如下:(1)先算________,再算________,最后算________; (2)同级运算,按照________的顺序进行;(3)如果有括号,就先算________里的,再算________里的,最后算________里的. 3. 进行分数的乘除运算,一般要把带分数化为________,把除法转化为________. 4. 计算:(-4×2.5)3的结果为( ). A. 1000 B. -1000 C. 30 D. -305. 计算:-2×52-(-2×52)的结果为( ). A. 0 B. -100 C. 100 D. -406. 计算:15×(-5)÷(-15)×5的结果为( ).A. 1B. 25C. -5D. 35 7. 计算:(1)(-21)-(-13)-|+5|+|-9|; (2)(-7)×(-6)-54÷(-6).8.计算:-24÷(-2)2的结果是( ).A. 4B. -4C. 2D. -2 9. 如果||a -1=0,2008(b+3)=1,那么ba-1的值是( ).A. -4B. -5C. -6D. 2 10. 计算:-102+(-10)2-103÷(-10)3=________. 11. 计算:(1)-2-23×⎝⎛⎭⎫123;(2)-22÷⎝⎛⎭⎫-152×||-5×(-0.1)3; (3)32-(-5)2×⎝⎛⎭⎫-252-23; (4)15-2×42+(-2×4)2.12. (1)在玩“24点”游戏时,“3、3、7、7”列式并计算为:7×(3+37)=7×3+3=24 是依据运算律 . (2)小明抽到以下4张牌:请你帮他写出运算结果为24的一个算式: . (3)如果、表示正,、表示负,请你用(2)中的4张牌表示的数写出运算结果为24的一个算式: .13. 如图,在宽为30m ,长为40m 的矩形地面上修建两条都是1m 的道路,余下部分种植花草,那么,种植花草的面积为 m 2.14. (2011•绍兴县)欢欢发烧了,妈妈带她去看医生,结果测量出体温是39.2℃,用了退烧药后,以每15分钟下降0.2℃的速度退烧,则两小时后,欢欢的体温是 ℃.A 、-1.1B 、-1.8C 、-3.2D 、-3.9第2课时 有理数的混合运算1. 进一步掌握有理数的混合运算.2. 在运算过程中,能合理使用运算律简化运算.1. 计算-23-()-23+()+32-()-32-()32的结果是( ). A. 27 B. 9C. -27D. -92. 以下四个有理数运算的式子中:①(2+3)+4=2+(3+4);②(2-3)-4=2-(3-4);③(2×3)×4=2×(3×4);④2÷3÷4=2÷(3÷4).正确的运算式子有( ) A 、1个 B 、2个 C 、3个 D 、4个3. 已知四个式子:(1)|7453|--;(2)|74||53|---;(3)|74|53---;(4))74(53---,它们的值从小到大的顺序是( )A.(4)<(3)<(2)<(1)B.(3)<(4)<(2)<(1) B.(2)<(4)<(3)<(1) D.(3)<(2)<(4)<(1)4. 计算:-32÷(-3)2+3×(-6)=_____________.5. 已知|a +1|+(b -2)2=0,则(a +b )2 008+a 57=________.6. 计算:(1)(-1.5)+414+2.75+⎝⎛⎭⎫-512; (2)4-5×⎝⎛⎭⎫-123; (3)(-10)2÷5×⎝⎛⎭⎫-25; (4)5×(-6)-(-4)2÷(-8).7. 计算:(注意使用简便方法)(1)⎣⎡⎦⎤(+49)-⎝⎛⎭⎫-136÷⎝⎛⎭⎫-172; (2)13×23+0.34×27+13×13+57×0.34;(3)⎝⎛⎭⎫-2467÷6; (4)⎝⎛⎭⎫79-56+736×36-5.45×6+1.45×6.8. 自然数中有许多奇妙而有趣的现象,很多秘密等着我们取探索!比如:对任意一个3的倍数的正整数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数上的数字再立方,求和,多次重复这种操作运算,运算结果最终会得到一个固定不变的数Q ,它会掉入一个数字“陷阱”.永远也别想逃出来,没有一个自然数能逃出它的“魔掌”.那么最终掉入“陷阱”的这个固定不变的数Q 等于 .9. 小丽家要买节能灯,于是到家电商场做调查,得到如下数据:这三种节能灯的照明效果相当.如果仅考虑费用(节能灯费用与耗电费用之和,用电度数=功率(W )×时间(h )÷1000,假设电费为0.60元/度)支出,小丽应选( ) A 、节能灯3 B 、节能灯2 C 、节能灯1 D 、任一种10.如图是一个流程图,图中“结束”处的计算结果是 .11.从集合-3,-2,-1,4,5中取出三个不同的数,可能得到的最大乘积填在□中,可-能得到的最小乘积填在〇中并将下式计算的结果写在等号右边的横线上.-(□)÷〇= .12.如图,是一个数值转换机.若输入数3,则输出数是 .13.14.某企业向银行贷款1000万元,一年后归还银行1065.6多万元,则年利率高于 .2.13 有理数的混合运算第1课时1. 一 二 三2. (1)乘方 乘除 加减 (2)从左至右 (3)小括号 中括号 大括号3. 假分数 乘法4. B5. A6. B7. (1)-4 (2)51 (3)19 (4)-80 8. B 9. A 10. 111. (1)-3 (2)0.5 (3)-3 (4)47 12. 解:(1)分配律;(2)⎪⎭⎫ ⎝⎛-⨯7447;(3)⎪⎭⎫⎝⎛---⨯-4747. 13. 解析:由题意知:种植花草的面积为30×40-1×30-1×40+1×1=1131m 2.14. 解:由题意可得,39.2-2×60÷15×0.2=39.2-120÷15×0.2=39.2-8×0.2=39.2-1.6=37.6. 故答案为:37.6℃. 15.C第2课时1. B2. B3. D4. D5. -196. 07. (1)-18 (2)-15 (3)0 (4)-23 (5)458(6)3115 (7)-8 (8)-288.153 9. B. 解析:节能灯1的总费用为:100×1000÷1000×0.6+1.5=61.5元;节能灯2的总费用为:30×1000÷1000×0.6+14=32元;节能灯3的总费用为:20×5000÷1000×0.6+25=85元.故选B . 10. -32 11. 21-12. 65. 13.314. 解析:因为向银行贷款1000万元,一年后归还银行1065.6多万元,则年利率是(1065.6-1000)÷1000×100%=6.56%,则年利率高于6.56%.。
专题2.6 有理数的混合运算专项训练(40题)【华东师大版】考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,可加强学生对有理数混合运算的理解!1.(2023春·河北唐山·七年级统考期末)计算:(512−59)÷(−536)【答案】1【分析】先将除法变成乘法,再去括号运算即可.【详解】解:(512−59)÷(−536)=(512−59)×(−365) =512×(−365)−59×(−365) =−3+4=1.【点睛】本题主要考查有理数的混合运算,掌握有理数的混合运算的法则是解题的关键.2.(2023春·辽宁大连·七年级统考期末)计算:(−10)+3[(−4)2÷(−8)−(1+32)×2].【答案】−1022【分析】按照先计算乘方,再计算乘除法,最后计算加减法,有括号先计算括号的运算顺序求解即可.【详解】解:原式=−1000+[16÷(−8)−(1+9)×2]=−1000+(−2−10×2)=−1000−2−20=−1022.【点睛】本题主要考查了含乘方的有理数混合计算,熟知相关计算法则是解题的关键.3.(2023春·上海浦东新·六年级上海市民办新竹园中学校考期中)计算:[(−1)2018+(1−12)×13]+(−32+2) 【答案】−556【分析】先计算有理数的乘方,再计算括号内的减法、有理数的乘法,然后计算有理数的减法即可.【详解】解:原式=(1+12×13)+(−9+2)=(1+16)−7 =116−7 =−556【点睛】本题考查了含乘方的有理数混合运算,熟记有理数的运算法则是解题关键.4.(2023春·安徽安庆·七年级统考期末)计算:−16−(0.5−13)÷16×[−2−(−3)3]−|23−32|. 【答案】−27【分析】先计算括号内的,并要先计算乘方,再计算乘除,最后计算加减即可.【详解】解:原式=−1−16×6×[−2−(−27)]−|8−9| =−1−25−1=−27.【点睛】本题考查有理数混合运算,熟练掌握有理数混合运算法则是解题的关键.5.(2023春·河南南阳·七年级统考期中)计算: (12−1)×(13−1)×(13−1)×...×(12022−1) .【答案】−12022【分析】计算出每个括号内的减法运算,观察相邻两个因数的分子分母,第一项的分母可以与第二项的分子约分,第二项的分母可以与第三项的分子约分,以此类推,化简式子计算出最终结果.【详解】解:(12−1)×(13−1)×(14−1)×...×(12022−1),=(−12)×(−23)×(−34)×...×(−20212022),=−12022.【点睛】本题考查了有理数的复杂运算,解决此题的关键是观察式子的一般规律子再利用简便运算计算结果.6.(2023春·河南南阳·七年级统考期中)计算(1)(−15)×(18−13)÷(−124); (2)−12020×[4−(−3)2]+3÷|−34|;【答案】(1)−1(2)9【分析】(1)按照有理数四则混合运算法则计算即可;(2)先算乘方、然后按照有理数四则混合运算法则计算即可.【详解】(1)解:(−15)×(18−13)÷(−124) =−15×(324−824)×(−24) =−15×(−524)×(−24) =−1.(2)解:−12020×[4−(−3)2]+3÷|−34|=−1×(4−9)+3×43=5+4=9.【点睛】本题主要考查了有理数四则混合运算、含乘方有理数四则混合运算等知识点,灵活运用相关运算法则成为解答本题的关键.7.(2023春·黑龙江双鸭山·七年级统考期末)计算:(1)−12×(−16+34−512); (2)−1×[−32×(−23)2−2]×(−32). 【答案】(1)−2(2)−9【分析】(1)利用乘法分配律求解即可;(2)按照有理数的运算顺序,进行计算即可求解.【详解】(1)解:原式=(−12)×(−16)+(−12)×34+(−12)×(−512) =2+(−9)+5=−2;(2)解:原式=−1×(−9×49−2)×(−32)=−1×(−4−2)×(−32)=−1×(−6)×(−3 2 )=−9.【点睛】本题考查了有理数的混合运算,掌握有理数的运算法则是解题的关键.8.(2023春·云南昭通·七年级统考期末)计算:(1)(−21)÷7+3×(−4)−(−12);(2)−12020+(−2)3×(−12)−|−1−5|.【答案】(1)−3(2)−3【分析】(1)先算乘除,再算加减;(2)先乘方,去绝对值,再乘除,最后算加减.【详解】(1)解:(−21)÷7+3×(−4)−(−12)=−3−12+12=−3;(2)−12020+(−2)3×(−12)−|−1−5|=−1−8×(−12)−6=−1+4−6=−3.【点睛】本题考查有理数的运算.熟练掌握有理数的运算法则,以及运算顺序,是解题的关键.9.(2023春·四川凉山·七年级统考期末)计算(1)−14+(1−0.5)×13×[3−(−3)2](2)(−13+15−215)×(−60)【答案】(1)−2(2)16【分析】(1)首先进行有理数的乘方计算,然后计算括号里面的数字,最后进行计算乘法和加法即可;(1)利用乘法分配律进行简便计算即可得出答案.【详解】(1)解:原式=−1+12×13×(−6)=−1−1=−2;(2)解:原式=−13×(−60)+15×(−60)−215×(−60)=20−12+8=16.【点睛】本题主要考查了有理数混合运算,熟练掌握相关运算法则和运算律是解题关键.10.(2023春·上海嘉定·六年级统考期末)计算:(1)3.2−23+35.(2)323×2215+523×1315−2×1315.【答案】(1)4715(2)11【分析】(1)首先把小数化为分数,再进行有理数的加减运算,即可求得结果;(2)利用有理数乘法分配律的逆用,进行运算,即可求得结果.【详解】(1)解:3.2−23+35=165−23+35=4815−1015+915=48−10+915=4715;(2)解:323×2215+523×1315−2×1315=323×2215+(523×1315−2×1315)=323×2215+1315×(523−2)=323×2215+1315×323=323×(2215+1315) =323×3 =11.【点睛】本题考查了有理数的混合运算及运算律,熟练掌握和运用有理数的运算律是解决本题的关键.11.(2023春·七年级课时练习)计算下列各题:(1)3.587-(-5)+(-512)+(+7)-(+314)-(+1.587);(2)(-1)5×{[-423÷(-2)2+(-1.25)×(-0.4)]÷(-19)-32}. 【答案】(1)原式=514;(2)原式=3. 【分析】(1)运用加法的运算律,把小数与小数相加,整数与整数相加,分数与分数相加;(2)把带分数化为假分数,除法转化为乘法,再按有理数的混合运算法则计算.【详解】(1)原式=3.587+5-512+7-314-1.587 =(3.587-1.587)+(5+7)+(-512-314) =2+12-834=514.(2)原式=-1×{[-143÷4+0.5]÷(-19)-9}=-1×[(-23)÷(-19)-9]=-1×(6-9)=-1×(-3)=3.12.(2023春·湖北武汉·七年级统考期末)计算:(1)11+(−7)−12−(−5)(2)−22×5−(−2)3÷4 -22×5-(-2)3÷4【答案】(1)−3;(2)-18【分析】(1)根据有理数的加减运算法则进行计算即可得到答案;(2)先进行乘方运算,再进行有理数乘除运算,最后进行有理数减法运算即可得到答案.【详解】(1)解:11+(−7)−12−(−5)=11−7−12+5=−3;(2)解:−22×5−(−2)3÷4=−4×5−(−8)÷4=−20−(−2)=−18.【点睛】本题考查了有理数的混合运算,乘方运算,熟练掌握相关运算法则是解题关键.13.(2023春·辽宁葫芦岛·七年级统考期末)计算(1)(12−56−712)×(−12)(2)−32÷3+(12−23)×12−(−1)2022【答案】(1)11(2)−6【分析】(1)根据乘法分配律计算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;注意乘法分配律的运用.【详解】(1)(12−56−712)×(−12)=12×(−12)−56×(−12)−712×(−12)=−6+10+7=11(2)−32÷3+(12−23)×12−(−1)2022=−9÷3+12×12−23×12−1=−3+6−8−1=−6【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.14.(2023春·全国·七年级期末)计算:(1)(−34+156−78)×(−24) (2)−23+|5−8|+24÷(−3)【答案】(1)-5(2)-13【详解】试题分析:(1)根据乘法分配律先去括号,然后根据有理数的乘法计算即可;(2)根据乘方、绝对值、和有理数的除法计算即可.试题解析:(1)(1)(−34+156−78)×(−24) =(−34)×(−24)+116×(−24)+(−78)×(−24) =18-44+21=-5 (2)−23+|5−8|+24÷(−3)=-8+3-8=-1315.(2023春·辽宁大连·七年级统考期末)计算:(1)42×(−23)+(−34)÷(−0.25); (2)2×(−3)3−4×(−3)+15.【答案】(1)−25(2)−27【分析】(1)根据有理数四则混合运算法则计算即可.(2)先算乘方,后算乘除,最后算加减.【详解】(1)42×(−23)+(−34)÷(−0.25)=−28+3=−25;(2)2×(−3)3−4×(−3)+15=−54+12+15=−27.【点睛】此题考查了有理数的运算,解题的关键是熟悉有理数四则混合运算法则.16.(2023春·湖南湘潭·七年级校联考期中)计算.(1)(−12.5)×(+317)×(−45)×(−0.1);(2)−12−(23−78+112−56)×(−24);(3)482425÷(−48);(4)7777×13879+29÷(−17777)−3859×7777.【答案】(1)−317(2)−24(3)−1150(4)777700【分析】(1)先根据有理数的乘法法则确定符号,再结合乘法交换律即可计算结果;(2)根据有理数乘方法则,结合乘法分配律即可计算结果;(3)根据有理数乘除运算法则,结合乘法分配律即可计算结果;(4)根据有理数乘除运算法则,逆用乘法分配律即可计算结果.【详解】(1)解:(−12.5)×(+317)×(−45)×(−0.1)=−504×317×45×110=−(504×45×110)×317=−317;(2)解−12−(23−78+112−56)×(−24)=−1−[23×(−24)−78×(−24)+112×(−24)−56×(−24)]=−1−(−16+21−2+20)=−1+16−21+2−20=−24;(3)解:482425÷(−48)=(48+2425)×(−148) =48×(−148)+2425×(−148) =−1−150 =−1150; (4)解:7777×13879+29÷(−17777)−3859×7777=7777×13879+29×(−7777)−3859×7777 =7777×(13879−29−3859) =7777×100=777700.【点睛】本题考查了有理数的混合运算,乘法运算律,熟练掌握相关运算法则是解题关键.17.(2023春·辽宁抚顺·七年级统考期中)计算:(1)(−49)−(+91)−(−5)+(−9);(2)(14+38−712)÷124; (3)(−1)2021×|−112|−(0.5)÷(−13). (4)−23×(−8)−(−12)3×(−16)+49×(−3)2 【答案】(1)-144(2)1(3)0(4)66【分析】(1)统一成省略加号和括号的和的形式,再结合有理数加法法则解答;(2)先转化为乘法,再利用乘法分配律解答;(3)先乘方,再乘除,最后计算加减;(4)先乘方,再乘除,最后计算加减、注意负号的作用;【详解】(1)(−49)−(+91)−(−5)+(−9)=-49+5-91-9=-44-100=-144(2)(14+38−712)÷124 =14×24+38×24−712×24=6+9-14=1 (3)(−1)2021×|−112|−(0.5)÷(−13)=−1×32−12×(−3) =0(4)−23×(−8)−(−12)3×(−16)+49×(−3)2=64+18×(-16)+4 =64-2+4=66【点睛】本题考查含有乘方的有理数的混合运算,是重要考点,掌握相关知识是解题关键.18.(2023春·山东菏泽·七年级统考期中)计算:(1)(1−16+34)×(−48) (2)−14+(−2)÷(−13)−|−9|(3)(−1)2÷12×[6−(−2)3]【答案】(1)−76(2)−4(3)28【分析】(1)利用乘法分配律进行计算即可得到答案;(2)先分别计算出乘方、绝对值、商,最后再加减即可;(3)按照先乘方,再乘除,有括号的先算括号内的顺序进行计算即可得到答案,计算中注意符号.【详解】(1)(1−16+34)×(−48)=1×(−48)−16×(−48)+34×(−48)=−48+8−36=−76(2)−14+(−2)÷(−13)−|−9|=−1+(−2)×(−3)−9=−1+6−9=−4(3)(−1)2÷12×[6−(−2)3]=1×2×[6−(−8)]=1×2×14= 28【点睛】本题考查有理数的计算,熟练掌握有理数的计算法则和计算顺序,是解题的关键.19.(2023春·山东德州·七年级校联考期中)计算(1)(−0.5)−(−314)+2.75−(+712);(2)(−49)÷75×57÷(−25)(3)−22÷43−[22−(1−12×13)]×12;【答案】(1)−2(2)1(3)−41【分析】(1)根据有理数加减运算法则直接计算即可得到答案;(2)根据有理数乘除运算法则直接计算即可得到答案;(3)先算乘方运算,再按照运算顺序及相关运算法则计算即可得到答案.【详解】(1)解:(−0.5)−(−314)+2.75−(+712)=(−12)−(−314)+234−(+712) =(−12)+314+234−712=(−12−712)+(314+234)=−8+6(2)解:(−49)÷75×57÷(−25)=(−49)×57×57÷(−25)=(−25)÷(−25)=1;(3)解:−22÷43−[22−(1−12×13)]×12=−4÷43−[4−(1−12×13)]×12=−4×34−[4−(1−16)]×12=−3−(4−56)×12=−3−(246−56)×12=−3−196×12=−3−38=−41.【点睛】本题考查有理数混合运算,涉及乘方运算、有理数加减乘除运算,熟练掌握相关运算法则及运算顺序是解决问题的关键.20.(2023春·甘肃酒泉·七年级统考期中)计算(1)(−7)+(+15)−(−25)(2)7.54+(−5.72)−(−12.46)−4.28(3)−24×(−56+38−112)(4)−13×3+6×(−13)(5)−22+3×(−1)4−(−4)×5(6)(−3)÷34×43×(−15)【答案】(1)33(2)10(3)13(5)19(6)80【分析】(1)根据有理数加减运算法则即可解答;(2)先去括号,然后再利用加法结合律即可解答;(3)直接运用乘法分配律计算即可;(4)根据有理数四则混合运算法则计算即可;(5)先算乘方、然后根据有理数四则混合运算法则计算即可;(6)根据有理数乘除混合运算法则计算即可.【详解】(1)解:(−7)+(+15)−(−25)=−7+15+25=33.(2)解:7.54+(−5.72)−(−12.46)−4.28=7.54+(−5.72)+12.46−4.28=(7.54+12.46)+[(−5.72)−4.28]=20−10=10.(3)解:−24×(−56+38−112)=−56×(−24)+38×(−24)−112×(−24)=20−9+2=13.(4)解:−13×3+6×(−13)=−1−2=−3.(5)解:−22+3×(−1)4−(−4)×5=−4+3×1+20=−4+3+20(6)解:(−3)÷34×43×(−15)=(−3)×43×43×(−15)=(−4)×43×(−15)=−163×(−15)=80.【点睛】本题主要考查了有理数加减运算、有理数乘除运算、有理数乘方运算、有理数运算律等知识点,灵活应用相关运算法则成为解答本题的关键.21.(2023春·重庆万州·七年级重庆市万州新田中学校考期中)计算:(1)8+(−10)+(−2)−(−5)(2)(−0.5+13+16)÷124(3)53÷[4×(−34)2−1](4)−14−(−3)3÷[(12−23)−|0.52−13|]【答案】(1)1(2)0(3)43(4)−109【分析】(1)先将减法化成加法,再按加法法则计算即可;(2)先将除法转化成乘法,然后运用乘法分配律计算即可,最后计算加法;(3)按有理数混合运算顺序:从高级到低计算,有括号先计算括号即可;(4)按有理数混合运算顺序:从高级到低计算,有括号先计算括号即可;【详解】(1)解:原式=8+(−10)+(−2)+5=(8+5)+[(−10)+(−2)]=13−12=1;(2)解:原式=(−12+13+16)×24=−12×24+13×24+16×24=−12+8+4=0;(3)解:原式=53÷[4×916−1]=53÷[94−1]=53÷54=43;(4)解:原式=−1+27÷[−16−|14−13|]=−1+27÷[−16−112]=−1+27÷(−312)=−1−108=−109.【点睛】本题考查有理数的混合运算,绝对值,熟练掌握有理数混合运算法则是解题的关键.22.(2023春·河南南阳·七年级统考期中)计算:(1)−32−(+11)+(−9)−(−16);(2)(−45911)÷|−9|(用简便方法计算);(3)(−3)2−(112)3×29−6÷|−23|3;(4)(−12+34)×(−2)3+(−4)2÷2×12.【答案】(1)−36(2)−5111(3)−12(4)2【分析】(1)减法转化为加法,再进一步计算即可;(2)原式变形为(−45−911)×19,再进一步计算即可; (3)先计算乘方、除法转化为乘法,再计算乘法,最后计算减法即可;(4)先计算乘方,再计算乘除,最后计算加法即可.【详解】(1)原式=−32−11−9+16,=−52+16,=−36;(2)原式=(−45−911)×19, =−45×19−911×19,=−5−111,=−5111;(3)原式=9−278×29−6×278, =9−34−814,=−12;(4)原式=14×(−8)+16÷2×12, =−2+8×12, =−2+4,=2;【点睛】本题主要考查含乘方的有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.23.(2023春·河南驻马店·七年级统考期中)计算:(1)(1112−76+34−1324)×(−48);(2)−9+5×|−3|−(−2)2÷4;(3)−18+(−4)2÷14−(1−32)×(13−0.5). 【答案】(1)2(2)5(3)6123【分析】(1)根据乘法分配律计算即可;(2)先算乘方,再算乘除法,最后算加减即可;(3)先算乘方和括号内的式子,然后再计算括号外的乘除法,最后算加减法即可.【详解】(1)(1112−76+34−1324)×(−48)=1112×(−48)−76×(−48)+34×(−48)−1324×(−48) =−44+56+(−36)+26=2(2)−9+5×|−3|−(−2)2÷4=−9+5×3−4÷4=−9+15−1=5(3)−18+(−4)2÷14−(1−32)×(13−0.5)=−1+64−(−8)×(−16) =−1+64−43=6123【点睛】本题主要考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.24.(2023春·福建漳州·七年级校考期中)计算:(1)−41−28+(−19)+(−22)(2)(−20)×(−115)+4÷(−23) (3)(12+56−712)×(−24) (4)−32−24÷(−4)×12+(−1)2022【答案】(1)−110(2)18(3)−18(4)−5【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式从先乘除后加减计算即可求出值;(3)原式利用乘法分配律计算即可求出值;(4)原式先计算乘方,然后乘除法,最后减法即可求出值.【详解】(1)解:−41−28+(−19)+(−22)=(−41−19)+(−28−22)=−60+(−50)=−110;(2)解:(−20)×(−115)+4÷(−23) =(−20)×(−65)+4×(−32) =24−6=18;(3)解:(12+56−712)×(−24)=12×(−24)+56×(−24)−712×(−24) =−12−20+14=−32+14=−18;(4)解:−32−24÷(−4)×12+(−1)2022=−9+6×12+1 =−8+3=−5.【点睛】此题考查了有理数的混合运算,以及乘法分配律,熟练掌握运算法则及运算律是解本题的关键.25.(2023春·湖北襄阳·七年级统考期末)计算:(1)(−7)−(+5)+(−4)−(−10)(2)115×(13−12)×311÷54(3)(−10)4+[(−4)2−(3+32)×2].【答案】(1)−6;(2)−225; (3)9992.【分析】(1)根据有理数的加减混合运算进行计算即可得到答案;(2)先计算括号内,再进行有理数乘除计算即可得到答案;(3)先计算乘方和括号内,再去括号进行加减计算即可得到答案.【详解】(1)解:(−7)−(+5)+(−4)−(−10)=−7−5−4+10=−6;(2)解:115×(13−12)×311÷54=115×(−16)×311×45=−115×16×311×45 =−225; (3)解:(−10)4+[(−4)2−(3+32)×2]=10000+(16−12×2)=10000+16−24=9992.【点睛】本题考查了有理数的四则运算,乘方运算,熟练掌握相关运算法则是解题关键.26.(2023春·海南海口·七年级统考期末)计算(1)5×(−3)+(−12)×(−34)−52(2)(−48)×(56−1+712−18)(3)[(−1)2023+(−3)2×(13−12)]×310÷(−0.12)【答案】(1)−8.5(2)−14(3)75【详解】(1)解:5×(−3)+(−12)×(−34)−52=−15+9−52=−8.5;(2)(−48)×(56−1+712−18)=56×(−48)−1×(−48)+712×(−48)−18×(−48) =−40+48−28+6=−14;(3)[(−1)2023+(−3)2×(13−12)]×310÷(−0.12) =[−1+9×(−16)]×310÷(−0.01) =(−1−32)×310÷(−0.01) =(−52)×310÷(−0.01) =75.【点睛】此题考查了有理数的混合运算,正确掌握有理数的乘方运算法则,乘法分配律,及四则混合运算的计算法则是解题的关键.27.(2023春·河北唐山·七年级统考期中)计算:(1)35−3.7−(−25)−1.3(2)(−34+712−58)÷(−124) (3)−32+1÷4×14−|−114|×(−0.5)2 【答案】(1)−4(2)19(3)−914【分析】(1)减法转化为加法,再利用加法交换律和结合律计算即可;(2)将除法转化为乘法,再利用乘法分配律计算即可;(3)根据有理数的混合运算顺序和运算法则计算即可.【详解】(1)解:35−3.7−(−25)−1.3 =35−3.7+25−1.3 =(35+25)+(−3.7−1.3) =1+(−5)=−4;(2)(−34+712−58)÷(−124)=(−34+712−58)×(−24) =−34×(−24)+712×(−24)−58×(−24) =18−14+15=19;(3)−32+1÷4×14−|−114|×(−0.5)2 =−9+1×14×14−54×14=−9+116−516 =−9+(116−516) =−9+(−14) =−914.【点睛】本题考查有理数的混合运算.解题的关键是掌握有理数混合运算顺序和运算法则.28.(2023春·山东滨州·七年级统考期末)计算:(1)(134−78−712)÷(−78);(2)−1100÷(−12)3−17×[2−(−4)2].【答案】(1)−13(2)10【分析】(1)根据除以一个数等于乘以这个数的倒数和乘法分配律计算即可.(2)先算乘方,再算括号里面的,再计算乘除,最后算加减.【详解】(1)解:原式=(74−78−712)×(−87) =74×(−87)−78×(−87)−712×(−87) =−2+1+23=−13 (2)解:原式=(−1)÷(−18)−17×(2−16) =8−17×(−14) =8+2=10【点睛】本题考查了含乘方的有理数混合运算,熟练掌握运算法则是解题的关键.29.(2023春·山东临沂·七年级统考期末)计算:(1)23−|−5|−(−2)÷12;(2)−14−(1−0.5)×13×[2−(−3)2]. 【答案】(1)22(2)16【分析】(1)根据绝对值性质,有理数四则混合运算法则直接运算即可得到答案;(2)先算乘方,再算乘除,最后算加减即可得到答案;【详解】(1)解:原式=23−5−(−4)=18+4=22;(2)解:原式=−1−12×13×(2−9)=−1−16×(−7) =−1+76=16.【点睛】本题考查含乘方有理数混合运算,解题的关键是注意符号选取及去绝对值.30.(2023春·云南昆明·七年级校考期中)计算:(1)13+(−56)+47+(−34)(2)(16−314+23)×(−42)(3)2×(−5)+22−3÷12(4)−22+|6−10|−3×(−1)2023【答案】(1)−30(2)−26(3)−12(4)3【分析】(1)根据有理数的加减法即可得到答案;(2)根据乘法分配和有理数的加减法即可得到答案;(3)根据幂的乘方、有理数的乘除法和有理数的加减法即可得到答案;(4)根据幂的乘方、有理数的乘除法和有理数的加减法即可得到答案;【详解】(1)解:原式=13+47+(−56)+(−34)=60+(−90)=−30;(2)解:原式=16×(−42)−314×(−42)+23×(−42)=−7−(−9)+(−28)=−35+9=−26;(3)解:原式=−10+4−6=−12;(4)解:原式=−4+4−3×(−1) =−4+4+3=3.【点睛】本题主要考查有理数的混合运算,掌握有理数的运算性质是解题的关键.31.(2023·山东潍坊·七年级统考期中)计算下列各题:(1)(﹣12)﹣(﹣65)+(﹣8)﹣710(2)(﹣34+712﹣59)÷(﹣136)(3)﹣3×22﹣(﹣3×2)3(4)﹣32+16÷(﹣2)×12﹣(﹣1)2017(5)(﹣14﹣56+89)×62+(﹣2)2×(﹣14)(6)14÷73+0.25×815﹣27×14+715×0.25 (7)(﹣32)2×23÷|﹣3|+(﹣0.25)÷(12)6(8)(﹣2)3﹣35[3×(﹣23)2﹣14]+8[(12)3﹣(﹣12)2﹣1].【答案】(1)﹣1912(2)26(3)204(4)﹣12(5)﹣63(6)214(7)﹣1512(8)﹣1715 【详解】试题分析:(1)直接利用有理数加减运算法则计算得出答案;(2)利用乘法分配律,用括号里的每一项分别乘以﹣36,再进行加减运算即可;(3)直接利用有理数混合运算法则计算得出答案;(4)直接利用有理数混合运算法则计算得出答案;(5)利用乘法分配律,用括号里的每一项分别乘以36,再进行混合运算即可;(6)直接利用有理数混合运算法则计算得出答案;(7)直接利用有理数混合运算法则计算得出答案;(8)直接利用有理数混合运算法则计算括号里面,进而得出答案.试题解析:(1)(﹣12)﹣(﹣)+(﹣8)﹣=﹣12+﹣8﹣=﹣20+=﹣19;(2)(﹣+﹣)÷(﹣)=﹣×(﹣36)+×(﹣36)﹣×(﹣36)=27﹣21+20=26;(3)﹣3×22﹣(﹣3×2)3=﹣3×4+216=204;(4)﹣32+16÷(﹣2)×﹣(﹣1)2017=﹣9﹣4+1=﹣12;(5)(﹣﹣+)×62+(﹣2)2×(﹣14)=﹣×36﹣×36+×36﹣4×14=﹣9﹣30+32﹣56=﹣63;(6)14÷+0.25×﹣×14+×0.25=6+0.25×(+)﹣4=2+=2;(7)(﹣)2×÷|﹣3|+(﹣0.25)÷()6=××﹣×64=﹣16=﹣15;(8)(﹣2)3﹣[3×(﹣)2﹣14]+8[()3﹣(﹣)2﹣1] =﹣8﹣×(﹣1)+8×(﹣﹣1)=﹣8﹣+1﹣2﹣8=﹣17.点睛:此题主要考查了有理数的混合运算,关键是掌握有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.32.(2023·山东济宁·七年级校考期中)计算下列各题(1)−5.53+4.26+(−8.47)−(−2.38)(2)−0.125×(−47)×8×(−7)(3)(1112−76+34−1324)×(−48)(4)−12018+12+(−12)×[−2−(−3)]【答案】(1)-7.36;(2)-4;(3)2;(4)-1.【分析】分别根据有理数的加、减、乘、除法进行计算,有乘方的先算乘方,再算乘除,最后算加减法.【详解】(1)−5.53+4.26+(−8.47)−(−2.38)=−5.53+4.26−8.47+2.38=−5.53−8.47+4.26+2.38=−14+6.64=−7.36;(2)−0.125×(−47)×8×(−7)=−18×47×8×7=-4;(3)(1112−76+34−1324)×(−48)=1112×(−48)−76×(−48)+34×(−48)−1324×(−48)=−44+56−36+26=2;(4)−12018+12+(−12)×[−2−(−3)]=−1+12+(−12)×(−2+3)=−1+12−12=-1.【点睛】此题考查有理数的加、减、乘、除、乘方运算,掌握正确的计算顺序是解题的关键.33.(2023春·山东聊城·七年级统考期中)计算(1)−449−(+556)+(−559)−(−56) (2)2×(−137)−234×13+(−137)×5+14×(−13)(3)16÷(−2)3−(−12)3×(−4)+2.5(4)(−1)2019+|−22+4|−(12−14+18)×(−24)【答案】(1)−15,(2)-49,(3)0,(4)8【分析】(1)利用减法法则把加减法统一成加法,相加即可得到结果;(2)运用加法交换律和结合律,把含有相同因数的两个式子相加;再用乘法分配律的逆运算,进行简便运算即可;(3)先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)按照乘方、绝对值、乘法分配律进行运算即可.【详解】(1)−449−(+556)+(−559)−(−56) =−449−556−559+56 =(−449−559)+(−556+56) =−10−5=−15(2)2×(−137)−234×13+(−137)×5+14×(−13)=[2 ×(−137)+(−137)×5]+[− 234×13+14×(−13 )] =(−137)×(5+2)+13×(−234−14)=-10-39=-49(3)16÷(−2)3−(−12)3×(−4)+2.5=16÷(−8)−(−18)×(−4)+2.5=−2−12+2.5 =0(4)(−1)2019+|−22+4|−(12−14+18)×(−24) =−1+0−[12×(−24)−14×(−24)+18×(−24)]=−1+12−6+3=8【点睛】此题考查了有理数的混合运算,熟练掌握运算法则及恰当的运用运算律是解本题的关键.34.(2023春·七年级课时练习)计算:(1)(−323)−(−2.4)+(−13)−(+425) (2)[−23+(−35)]+[1+(−23)×(−35)] (3)(−1)4−{35−[(13)2+0.4×(−112)÷(−2)2]} (4)[(223+334)(223−334)+(223−334)2]÷(334−223)【答案】(1)−6(2)215(3)1336(4)−513【分析】(1)先算同分母分数,再计算加减法;(2)先算乘法,再去括号,再算同分母分数,再计算加减法;(3)先算乘方,再算乘除,最后算加减;如果有括号,要先做括号内的运算;(4)根据乘法分配律简便计算.【详解】(1)解:(−323)−(−2.4)+(−13)−(+425)原式=(−323)+2.4−13−4.4=(−323−13)+(2.4−4.4)=−4−2=−6(2)解:[−23+(−35)]+[1+(−23)×(−35)]原式=−23−35+(1+25)=−23−35+1+25=(−23+1)+(−35+25)=13−15=215(3)解:(−1)4−{35−[(13)2+0.4×(−112)÷(−2)2]}原式=1−{35−[19+25×(−32)÷4]}=1−[35−(19−320)]=1−(35−19+320)=1−[(35+320)−19]=1−(34−19)=1−34+19=14+19=1336(4)解:[(223+334)(223−334)+(223−334)2]÷(334−223)原式=(223+334+223−334)(223−334)÷(334−223)=513×(223−334)÷(334−223)=513×(−1)=−513【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,简化运算过程.35.(2023春·七年级课时练习)计算(1)−33−(12+56−712)×(−24)(2)−212+12÷(−2)×|−83|【答案】(1)-15(2)−316【详解】试题分析:根据有理数的混合运算的法则和运算律计算即可,解题时注意运算符号,避免出错. 试题解析:(1)−33−(12+56−712)×(−24)=-33-12×(−24)-56×(−24)+712×(−24)=-33+12+20-14=-15(2)−212+12÷(−2)×|−83|=−212+12×(−12)×|−83| =−212--23 =-31636.(2023春·七年级课时练习)计算(1)−225−(+3411)+(−35)−(−1311) (2)(-81) ÷214×(−49)÷8+(−2)÷14÷(−12)【答案】(1)−5111(2)18【详解】试题分析:根据有理数的混合运算的法则和运算律计算即可,解题时注意运算符号,避免出错. 试题解析:(1)−225−(+3411)+(−35)−(−1311)=−225−3411−35+1311 =-3-2111=-5111(2)(-81) ÷214×(−49)÷8+(−2)÷14÷(−12)=-81×49×(−49)×18+2×4×2 =2+16=1837.(2023春·七年级课时练习)计算:(1)(−2878+1479)÷7;(2)(−1313)÷5−123÷5+13×15; (3)112×[3×(−23)−1]−13×(−8)−8;(4)−|−13|−|−34×23|−|12−13|;(5)(213−312+718)÷(−116)+(−116)÷(213−312+718).【答案】(1)-2172;(2)−25;(3)−596;(4)-1;(5)136. 【分析】(1)利用有理数的混合运算法则和乘法分配律、结合律计算即可完成;(2)根据有理数混合运算法则,结合乘法分配律计算即可得答案;(3)根据有理数混合运算法则计算即可得答案;(4)根据有理数混合运算法则计算即可得答案;(5)先根据有理数混合运算法则,结合乘法分配率求出第一个加数的值,进而根据第二个加数是第一个加数的倒数即可求出第二个加数的值,最后计算加法即可得答案.【详解】(1)(-2878+1479)÷7=(-28-78+14+79)×17=−28×17−78×17+14×17+79×17=-4-18+2+19 =-2172.(2)(-1313)÷5-123÷5+13×15=(-1313)×15-123×15+13×15=(-13-13-1-23+13)×15=-2×15 =-25.(3)112×[3×(-23)-1]-13×(-8)-8=32×(-2-1)+83-8=-92+83-8=-596.(4)-|-13|-|-34×23|-|12-13|=-13-12-(12-13)=-13-12-12+13=-1.(5)(213-312+718)÷(-116)+(-116)÷(213-312+718) ∵(213-312+718)÷(-116) =(73-72+718)×(-67)=73×(-67)-72×(-67)+718×(-67)=-2+3-13=23,∵(-116)÷(213-312+718)=32, ∵原式=23+32=136. 【点睛】本题考查有理数的混合运算和运算律的运用,熟练掌握有理数的运算法则以及运算律是解题关键.38.(2023春·七年级课时练习)计算:(1)-(-2.5)+(+2.2)-3.1+(-0.5)-(+1.1)(2) −0.5−314+(−2.75)+712(3) (−34−56+78)×(−24)(4)(−8)×(−1137)+(−7)×(−1137)+(−15)×1137 (5)(-1)9×(-3)3-30(6)-︱-3︱×(-4)-6÷(-13)2【答案】(1)0;(2)1;(3)17;(4)0;(5)-3;(6)-42【分析】(1)先去括号,再根据有理数的加减混合运算法则计算;(2)将分数化为小数及去括号,再根据加减法计算法则计算;(3)利用乘法分配律计算;(4)利用乘法分配律计算法则计算;(5)先计算乘方,再计算乘法,最后计算减法;(6)先同时化简绝对值及乘方,再计算乘法和除法,最后计算减法.【详解】(1)-(-2.5)+(+2.2)-3.1+(-0.5)-(+1.1)=2.5+2.2-3.1-0.5-1.1=0;(2) −0.5−314+(−2.75)+712=-0.5-3.25-2.75+7.5=7-6=1;(3) (−34−56+78)×(−24)=−34×(−24)−56×(−24)+78×(−24)=18+20-21=17;(4)(−8)×(−1137)+(−7)×(−1137)+(−15)×1137=[(−8)+(−7)+15]×1137=0;(5)(-1)9×(-3)3-30=-1×(-27)-30=27-30=-3;(6)-︱-3︱×(-4)-6÷(-13)2 =−3×(−4)−6÷19=12-54=-42.【点睛】此题考查计算,掌握有理数的加法法则、减法法则、乘方法则、混合计算法则,正确计算是解题的关键.39.(2023春·七年级课时练习)计算:6.91÷3+13×9100−0.3·18711+83100−9.42÷137311−7.12+41750. 【答案】4【分析】根据题意将小数和分数互相转化,将分数除法转变为分数乘法,然后根据分数的乘法运算法则和乘法分配律计算即可.【详解】原式=(6.91+0.09−1)×1318711+8.03−9.42×(37311−7.12+4.34) =220511−1.39×(41011−2.78) =220511−1.39×[(20511−1.39)×2] =2×2=4故答案为4.【点睛】本题考查了含小数的分数乘除混合运算,关键是掌握分数除法的运算法则,并且要将小数转化为分数或分数转化为小数.40.(2023春·全国·七年级期末)(1)计算:133+233+232+23; (2)计算:1310+2310+⋯+234+233+232+23; (3)计算:23n +⋯+234+233+232+23.【答案】(1)1;(2)1;(3)1−13n【分析】(1)根据同分母的分数相加,分母不变分子相加得出结论;(2)利用(1)中规律相加即可;(3)根据(1)规律加13n ,再减13n,然后作和即可.【详解】解:(1)133+233+232+23=333+232+23=132+232+23=332+23=13+23=1;(2)1310+2310+⋯+234+233+232+23=3310+239+...+234+233+232+23=139+239+...+234+233+232+23……=132+232+23 =332+23 =13+23=1;(3)23n +⋯+234+233+232+23=13n+23n+⋯+234+233+232+23−13n=13n−1+23n−1+...+234+233+232+23−13n……=132+232+23−13n =332+23−13n =13+23−13n=1−13n.【点睛】本题考查数字变化类,关键是找到式子中的规律进行求和.。
课后训练{2.13 有理数的混合运算}基础巩固1.对于8+(-3)2×(-2)的叙述,正确的是( ).A .只含有加法运算和乘法运算B .先算加法,再算乘方,最后算乘法C .先算乘方,再算加法,最后算乘法D .先算乘方,再算乘法,最后算加法2.与式子5368⎛⎫-+ ⎪⎝⎭×(-24)的运算结果相等的是( ). A .56×(-24)+38×(-24) B .56-×(-24)+38×(-24) C .56-×(-24)-38×(-24) D .56×24+38×24 3.如图,是一个数值转换机.若输入数-3,则输出数是__________.4.判断下列各题的运算顺序,并计算.(1)-14-13×[2-(-3)2]; (2)312⎛⎫ ⎪⎝⎭+[-(-7)+(-1)3]×23; (3)21124812⎡⎤⎛⎫-⨯ ⎪⎢⎥⎝⎭⎣⎦. 5.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值为5,试求x 2-(a +b +c ×d )x+(a +b )1 998+(-c ×d )1 999的值.能力提升6.计算:(1)-9×(-2)-15÷(-3)-(-1)×111326⎛⎫-÷ ⎪⎝⎭; (2)-9×2÷9449⨯÷(-16); (3)-9×229÷12-23. 7.有一批食品罐头,标准质量为每听450 g .现抽取20听样品进行检测,将超过标准8.计算:-1-31(3)30.41(2)2⎧⎫⎡⎤⎛⎫--+⨯-÷-⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭. 9.如果定义一种新的运算为a *b =1a b a b +-⨯,试计算111**258⎛⎫ ⎪⎝⎭.参考答案1答案:D2答案:B3答案:65 点拨:(-3)2-1=8,82+1=65.4解:(1)先算乘方和括号里面的,再算乘,最后算加减.原式=-1-13×(2-9)=-1-13×(-7) =-1+73=43; (2)先算乘方和括号里面的,再算乘,最后算加. 原式=18+[7+(-1)]×23=18+6×23=18+4=148; (3)先算中括号里面的,再算乘方. 原式=2112424812⎛⎫⨯-⨯ ⎪⎝⎭=(3-2)2=12=1.5解:∵a ,b 互为相反数,∴a +b =0.∴(a +b )1 998=0.∵c ,d 互为倒数,∴c ×d =1.∴-c ×d =-1,(-c ×d )1 999=(-1)1 999=-1.∵|x |=5,∴x =5,或x =-5.∴x 2=25.当x =5时,x 2-(a +b +c ×d )x +(a +b )1 998+(-c ×d )1 999=25-(0+1)×5+0+(-1)=25-5+0-1=19;当x =-5时,x 2-(a +b +c ×d )x +(a +b )1 998+(-c ×d )1 999=25-(0+1)×(-5)+0+(-1)=25+5+0-1=29.6解:(1)原式=18+5+1166⎛⎫-÷⎪⎝⎭ =23-1=22; (2)原式=18÷94×49÷16 =18×49×49÷16=29; (3)原式=-9×49×2-8=-8-8=-16. 7解:[(-10)×1+(-5)×2+5×7+10×5+15×1]÷20=4(g),450+4=454(g). 答:这批样品的平均质量是454 g.8解:311(3)30.41(2)2⎧⎫⎡⎤⎛⎫----+⨯-÷-⎨⎬ ⎪⎢⎥⎝⎭⎣⎦⎩⎭=-1-{-27-[3+(-0.6)]÷(-2)}=-1-[-27-2.4÷(-2)]=-1-[-27-(-1.2)]=-1-(-25.8)=-1+25.8=24.8.9解:因为1171172510*11925912510+===-⨯,所以11171*** 25898⎛⎫=⎪⎝⎭=7165 98721716519872+==-⨯.。
《有理数》全章复习与巩固(提高)知识讲解【学习目标】1.理解正负数的意义,掌握有理数的概念.2.理解并会用有理数的加、减、乘、除和乘方五种运算法则进行有理数的混合运算. 3.学会借助数轴来理解绝对值、有理数比较大小等相关知识.4. 理解科学记数法及近似数的相关概念并能灵活应用;5. 体会数学知识中体现的一些数学思想.【知识网络】【要点梳理】要点一、有理数的相关概念1.有理数的分类:(1)按定义分类:(2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;2.数轴:规定了原点、正方向和单位长度的直线. 要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如π.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“-”号即可.(3)多重符号的化简:数字前面“-”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负. 4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a 的绝对值记作a .(2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离. 要点二、有理数的运算 1 .法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.(2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0.(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a÷b=a·1b(b≠0) . (5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0.(6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36. (3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: 2(3)9-=, 3(3)27-=-.2.运算律:(1)交换律: ① 加法交换律:a+b=b+a ; ②乘法交换律:ab=ba ; (2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab )c=a(bc) (3)分配律:a(b+c)=ab+ac 要点三、有理数的大小比较比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法.要点四、科学记数法、近似数及精确度1.科学记数法:把一个大于10的数表示成10na ⨯的形式(其中110a ≤<,n 是正整数),此种记法叫做科学记数法.例如:200 000=5210 .2.近似数:接近准确数而不等于准确数的数,叫做这个精确数的近似数或近似值.如长江的长约为6300㎞,这里的6300㎞就是近似数.要点诠释:一般采用四舍五入法取近似数,只要看要保留位数的下一位是舍还是入.3.精确度:一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确到的这一位也叫做这个近似数的精确度. 要点诠释:(1)精确度是指近似数与准确数的接近程度.(2)精确度有两种形式:①精确到哪一位.②保留几个有效数字.这两种的形式的意义不一样,一般来说精确到哪一位可以表示误差绝对值的大小,例如精确到0.1米,说明结果与实际数相差不超过0.05米,而有效数字往往用来比较几个近似数哪个更精确些. 【典型例题】类型一、有理数相关概念1.已知x 与y 互为相反数,m 与n 互为倒数,|x+y |+(a-1)2=0,求a 2-(x+y+mn)a+(x+y)2009+(-mn)2010的值.【思路点拨】(1)若有理数x 与y 互为相反数,则x+y =0,反过来也成立. (2)若有理数m 与n 互为倒数,则mn =1,反过来也成立. 【答案与解析】解:因为x 与y 互为相反数,m 与n 互为倒数,(a-1)2≥0, 所以x+y =0,mn =1,a =1,所以a 2-(x+y+mn)a+(x+y)2009+(-mn)2010=a 2-(0+1)a+02009+(-1)2010=a 2-a+1.∵a=1,∴原式=12-1+1=1【总结升华】要全面正确地理解倒数,绝对值,相反数等概念. 举一反三:【高清课堂:有理数的复习与提高 357129 复习例题2】【变式1】选择题 (1)已知四种说法:①|a|=a 时,a>0;|a|=-a 时, a<0. ②|a|就是a 与-a 中较大的数. ③|a|就是数轴上a 到原点的距离. ④对于任意有理数,-|a|≤a≤|a|. 其中说法正确的个数是( ) A .1 B .2 C .3 D .4 (2)有四个说法:①有最小的有理数 ②有绝对值最小的有理数 ③有最小的正有理数 ④没有最大的负有理数 上述说法正确的是( )A .①② B.③④ C.②④ D.①② (3)已知(-ab)3>0,则( )A .ab<0B .ab>0C .a>0且b<0D .a<0且b<0 (4)若|x-1|+|y+3|+|z-5|=0,则(x+1)(y-3)(z+5)的值是( ) A .120 B .-15 C .0 D .-120 (5)下列各对算式中,结果相等的是( )A .-a 6与(-a)6B .-a 3与|-a|3C .[(-a)2]3与(-a 3)2D .(ab)3与ab 3【答案】(1)C ;(2)C ;(3)A ;(4)D ;(5)C【变式2】(2015•呼伦贝尔)中国的陆地面积约为9 600 000km 2,把9 600 000用科学记数法表示为 .【答案】9.6×106.2.(2016•江西校级模拟)如果m ,n 互为相反数,那么|m+n ﹣2016|=________. 【思路点拨】先用相反数的意义确定出m+n=0,从而求出|m+n ﹣2016|. 【答案】2016.【解析】解:∵m ,n 互为相反数, ∴m+n=0,∴|m+n ﹣2016|=|﹣2016|=2016; 故答案为2016.【总结升华】此题是绝对值题,主要考查了绝对值的意义,相反数的性质,熟知相反数的意义是解本题的关键.类型二、有理数的运算【高清课堂:有理数专题复习 357133 有理数的混合运算】3.(1)211143623324⎛⎫⎛⎫⎛⎫⎛⎫-----+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)5153()( 1.5)()1244-÷⨯-÷-()()23541(3)24121522⎛⎫-÷-⨯-⨯-+ ⎪⎝⎭(4)137775111 2.534812863⎡⎤⎛⎫⎛⎫⎛⎫+--÷--÷⨯- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(5)()1003221511221132⎛⎫----÷- ⎪⎝⎭+--⨯【答案与解析】解:(1)原式21111143622332412=-++-= (2)原式543421215239=-⨯⨯⨯=-(3)原式3132(4)12(1516)104=-÷-⨯-⨯-+=-(4)原式12561[1(2)1]()233253=+-++-⨯⨯-=(5)1125112()41192---÷-=+--⨯原式 3.9=- 【总结升华】有理数的混合运算有很多技巧,如:正、负数分别相加;分数中,同分母或分母有倍数关系的分数结合相加;除法转化为乘法、正向应用乘法分配律:a(b+c)=ab+ac ;逆向应用分配律:ab+ac =a(b+c)等. 举一反三: 【变式】(1)225117832[()10.25]199[()2]7148923-÷⨯-⨯-⨯--(2)23155115(1)()()(2)()299229-⨯---⨯-+-⨯【答案】解:(1)225117832[()10.25]199[()2]7148923-÷⨯-⨯-⨯--251471834()199(2)492584929=⨯⨯-⨯-⨯- 118343()199(2)449292=-⨯-⨯-⨯20(3)3=--2033=-+123=(2)23155115(1)()()(2)()299229-⨯---⨯-+-⨯955515()()()()499289=⨯---⨯-+-⨯5951()()942817224=-⨯++=-4. 先观察下列各式:11111434⎛⎫=- ⎪⨯⎝⎭;111147347⎛⎫=- ⎪⨯⎝⎭; 11117103710⎛⎫=- ⎪⨯⎝⎭;…;1111(3)33n n n n ⎛⎫=- ⎪++⎝⎭,根据以上观察,计算: 1111447710+++⨯⨯⨯ (120052008)+⨯的值. 【答案与解析】 解:原式111111111111343473710320052008⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭… 111111111344771020052008⎛⎫=-+-+-+⋅⋅⋅+- ⎪⎝⎭1113200812007320086692008⎛⎫=- ⎪⎝⎭=⨯=【总结升华】根据题中提供的拆项方法把每一项拆成11133n n ⎛⎫- ⎪+⎝⎭的形式,然后再进行计算.举一反三:【高清课堂:有理数的复习与提高 例2】 【变式】用简单方法计算:120180148124181++++ 【答案】解:原式=1111111111115(...)244668810101222446101224++++=-+-++-=⨯⨯⨯⨯⨯ 类型三、数学思想在本章中的应用5.(2014•香洲区校级二模)(1)阅读下面材料:点A ,B 在数轴上分别表示实数a ,b ,A ,B 两点之间的距离表示为|AB|. 当A ,B 两点中有一点在原点时,不妨设点A 在原点,如图(1),|AB|=|OB|=|b|=|a ﹣b|; 当A ,B 两点都不在原点时, ①如图(2),点A ,B 都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b ﹣a=|a ﹣b|; ②如图(3),点A ,B 都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b ﹣(﹣a )=|a ﹣b|; ③如图(4),点A ,B 在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b )=|a ﹣b|; 综上,数轴上A ,B 两点之间的距离|AB|=|a ﹣b|. (2)回答下列问题:①数轴上表示2和5的两点之间的距离是 ,数轴上表示﹣2和﹣5的两点之间的距离是 ,数轴上表示1和﹣3的两点之间的距离是 ;②数轴上表示x 和﹣1的两点A 和B 之间的距离是 ,如果|AB|=2,那么x 为 ; ③当代数式|x+1|+|x ﹣2|取最小值时,相应的x 的取值范围是 . ④解方程|x+1|+|x ﹣2|=5.【答案与解析】解:①数轴上表示2和5的两点之间的距离是|2﹣5|=3;数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3; 数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4.②数轴上表示x 和﹣1的两点A 和B 之间的距离是|x ﹣(﹣1)|=|x+1|,如果|AB|=2,那么x 为1或﹣3.③当代数式|x+1|十|x ﹣2|取最小值时,∴x+1≥0,x﹣2≤0,∴﹣1≤x≤2.④当x≤﹣1时,﹣x﹣1﹣x+2=5,解得x=﹣2;当﹣1<x≤2时,3≠5,不成立;当x>2时,x+1+x﹣2=5,解得x=3.故答案为:3,3,4,|x+1|,1或﹣3,﹣1≤x≤2.【总结升华】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,体现了数形结合的优点.类型四、规律探索6.下面两个多位数1248624…,6248624…都是按照如下方法得到的:将第1位数字乘以2,若积为一位数,将其写在第2位;若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( ).A.495 B.497 C.501 D.503【思路点拨】多位数1248624…是怎么来的?当第1个数字是1时,将第1位数字乘以2得2,将2写在第2位上,再将第2位数字2乘以2得4,将其写在第3位上,将第3位数字4乘以2的8,将8写在第4位上,将第4位数字8乘以2得16,将16的个位数字6写在第5位上,将第5位数字6乘以2得12,将12的个位数字2写在第6位上,再将第6位数字2乘以2得4,将其写在第7位上,以此类推.根据此方法可得到第一位是3的多位数后再求和.【答案】A【解析】按照法则可以看出此数为362 486 248…,后面6248循环,所以前100位的所有数字之和是3+(6+2+4+8)×24+6+2+4=495,所以选A.【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并表示出来.举一反三:【变式】世界上著名的莱布尼茨三角形如图所示,则排在第10行从左边数第3个位置上的数是().A.1132B.1360C.1495D.1660【答案】B 提示:观察发现:分子总是1,第n 行的第一个数的分母就是n ,第二个数的分母是第一个数的(n-1)倍,第三个数的分母是第二个数的分母的(1)2n -倍.根据图表的规律,则第10行从左边数第3个位置上的数是111094360=⨯⨯.。
【巩固练习】一、选择题1.计算106×(102)3÷104之值为( ).A .108B .109C .1010D .10122.(2015•永州)在数轴上表示数﹣1和2014的两点分别为A 和B ,则A 和B 两点间的距离为( ) A .2013 B . 2014 C . 2015 D . 2016 3.下列语句中,正确的个数是( ).①一个数与它的相反数的商为-1;②两个有理数之和大于其中任意一个加数;③若两数之和为正数,则这两个数一定都是正数;④若0m n <<,则mn n m <-. A .0 B .1 C .2 D .34.已知||5m =|,||2n =,||m n n m -=-,则m n +的值是( ). A .-7 B .-3 C .-7或-3 D .±7或±35.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm ”、“15cm ”分别对应数轴上的 3.6x -和,则( ).A .910x <<B .1011x <<C .1112x <<D .1213x << 6. 如图:数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、 D 对应的数分别是整数a,b,c,d ,且b-2a=9,那么数轴的原点对应点是 ( ). A .A 点 B .B 点 C .C 点 D .D 点7.有理数a,b,c 的大小关系如图:则下列式子中一定成立的是( ).A .0a b c ++> B .a b c +<C .a c a c -=+D .b c c a ->-8.记12n n S a a a =+++…,令12nn S S S T n+++=…,称n T 为1a ,2a ,…,n a 这列数的“理想数”.已知1a ,2a ,…,500a 的“理想数”为2004,那么8,1a ,2a ,…,500a 的“理想数”为( ).A .2004B .2006C .2008D .2010 二、填空题 9.(2015•烟台)如图,数轴上点A 、B 所表示的两个数的和的绝对值是 .10.2011年成市承接产业转移示范区建设成效明显,第一季度完成固定资产投资238亿元,用科学记数法可记作________元.11.一种零件的尺寸在图纸上是0.050.027+-(单位:mm ),表示这种零件加工要求最大不超过________,最小不小于________. 12.(2016•巴中)|﹣0.3|的相反数等于 .13.如图,有理数,a b 对应数轴上两点A ,B ,判断下列各式的符号:a b +________0;a b -________0;()()________a b a b +-0;2(1)ab ab +________0.14.已知,,a b c 满足()()()0,0a b b c c a a b c +++=<,则代数式a b ca b c++的值是 .15.某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为-39℃,则此处的高度是 千米.16.观察下列算式:23451=+⨯ ,24462=+⨯,25473=+⨯,24846⨯+=,请你在观察规律之后并用你得到的规律填空:250___________=+⨯. 三、 解答题 17.(2016春•新泰市校级月考)计算: (1)24+(﹣22)﹣(+10)+(﹣13) (2)(﹣1.5)+4+2.75+(﹣5)(3)(﹣8)+(﹣7.5)+(﹣21)+(+3) (4)(﹣24)×(﹣++)18.(2015•顺义区一模)居民用电计费实行“一户一表”政策,以年为周期执行阶梯电价,即:一户居民全年不超过2880度的电量,执行第一档电价标准为0.48元/度;全年用电量在2880度到4800度之间(含4800),超过2880度的部分,执行第二档电价标准为0.53元/度;全年用电量超过4800度,超过4800度的部分,执行第三档电价标准为0.78元/度.小敏家2014年用电量为3000度,则2014年小敏家电费为多少元?19.已知三个互不相等的有理数,即可以表示为1,a+b ,a 的形式,又可表示为0,b a,b 的形式,且x 的绝对值为2,求200820092()()()a b ab a b ab x ++-+-+的值. 20.一粒米微不足道,平时总会在饭桌上毫不经意地掉下几粒,甚至有些挑食的同学会把整碗米饭倒掉.针对这种浪费粮食现象,老师组织同学们进行了实际测算,称得500粒大米约重10克.现在请你来计算 (1)一粒大米重约多少克?(2)按我国现有人口13亿,每年365天,每人每天三餐计算,若每人每餐节约一粒大米,一年大约能节约大米多少千克?(用科学记数法表示)(3)假若我们把一年节约的大米卖成钱,按2元∕千克计算,可卖得人民币多少元?(用科学记数法表示)(4)对于因贫困而失学的儿童,学费按每人每年500元计算,卖得的钱可供多少名失学儿童上一年学?(5)经过以上计算,你有何感想和建议? 【答案与解析】 一、选择题 1.【答案】 A【解析】126234664124841010(10)1010101010101010⨯÷=⨯÷=÷==. 2.【答案】C.【解析】|﹣1﹣2014|=2015,故A ,B 两点间的距离为2015,故选:C . 3.【答案】 B【解析】只有④正确,其他均错. 4.【答案】C【解析】n m ≥,2,5n m =±=-,所以7m n +=-或3-.5.【答案】C【解析】( 3.6)15,11.4x x --== 6.【答案】C【解析】由图可知:4b a -=,又29b a -=,所以5a =-. 7.【答案】C【解析】由图可知:0a b c <<<,且c a c a -=-表示数轴上数a 对应点与数c 对应点之间的距离,此距离恰好等于数a 对应点到原点的距离与数c 对应点到远点的距离之和,所以选项C 正确. 8.【答案】C 【解析】∵ 1a ,2a ,…,500a 的“理想数”为2004,∴125002004500S S S +++=,∴ 125002004500S S S +++=⨯.8,1a ,2a ,…,500a 中,18S '=;218S S '=+;328S S '=+;…,5005008S S '=+ ∴ 8,1a ,2a ,…,500a 的理想数为:12350012500501888888501501501S S S S S S S T +++++++++⨯++++==850120045002008501⨯+⨯== 二、填空题9.【答案】1. 【解析】从数轴上可知:表示点A 的数为﹣3,表示点B 的数是2,则﹣3+2=﹣1,|﹣1|=1. 10.【答案】102.3810⨯ 11.【答案】 7.05mm, 6.98mm【解析】7+0.05=7.05mm, 7-0.02=6.98mm. 12.【答案】-0.3【解析】解:∵|﹣0.3|=0.3, 0.3的相反数是﹣0.3,∴|﹣0.3|的相反数等于﹣0.3. 故答案为:﹣0.3. 13.【答案】>, >, >, <【解析】由图可得:1,10a b >-<<,特殊值法或直接推理可得:0,0,ab a b <+>20,10a b ab ->+>.14.【答案】1【解析】()()()0,a b b c c a +++=又0abc <可得:三数必一负两正,不防设:0,0,0a b a c >=-<>,代入原式计算即可.15.【答案】 10【解析】21-(-39)÷6×1=10(千米). 16.【答案】 24852450⨯+=【解析】观察可得规律为:2(4)4(2)n n n ⨯++=+. 三、解答题 17.【解析】 解:(1)24+(﹣22)﹣(+10)+(﹣13) =24﹣22﹣10﹣13 =2﹣23 =﹣21;(2)(﹣1.5)+4+2.75+(﹣5) =﹣1.5﹣5.5+4.25+2.75 =﹣7+7 =0;(3)(﹣8)+(﹣7.5)+(﹣21)+(+3) =﹣8﹣21﹣7.5+3.5 =﹣30﹣4 =﹣34;(4)(﹣24)×(﹣++)=﹣24×(﹣)﹣24×﹣24×=16﹣18﹣2 =﹣4.18.【解析】解:根据题意得:2880×0.48+(3000﹣2880)×0.53=1446(元), 则2014年小敏家电费为1446元. 19.【解析】解:由1,a+b ,a 与0,ba,b 相同, 由ba得:分母有0a ≠,所以0a b +=, 又由三数互不相等,所以1b =,ba a=,化简得:1a =-,1b =,0a b +=,1ab =-,∴ 200820092()()()01142a b ab a b ab x ++-+-+=--+=. 20.【解析】解:(1)10÷500≈0.02(克) 答:一粒大米重约0.02克.(2)0.02×1×3×365×1300000000÷1000=2.847×107(千克)答:一年大约能节约大米2.847×107千克.(3)2×2.847×107=5.694×107(元)答:可卖得人民币5.694×107元.(4)5.694×107÷500=1.1388×105答:可供11388名失学儿童上一年学.(5)一粒米虽然微不足道,但是我们一年节约下来的钱数大的惊人.所以提倡节约,杜绝浪费,我们要行动起来.。
【巩固练习】一、选择题1.(2016•益阳)的相反数是( )A .2016B .﹣2016C .D . 2.(2015•吉林)若等式0□1=﹣1成立,则□内的运算符号为( )A .+B . ﹣C . ×D . ÷3. 在-(-2),-|-7|,-|+1|,|-)511(-|32+,中,负数的个数是 ( ) A .1个 B .2个 C .3个 D .4个4.据有关资料显示,2011年遵义市全年财政总收入202亿元,将202亿用科学记数法可表示( )A .2.02×210人B .202×810人C .2.02×910人D .2.02×1010人5.若-1<a<0,则a ,2a ,a 1从小到大排列正确的是( )A .a 2<a<a 1B .a <a 1< a 2C .a 1<a< a 2D .a < a 2 <a16.在数轴上距2.5有3.5个单位长度的点所表示的数是( )A .6B .-6C .-1D .-1或67.a,b 两数在数轴上的位置如图,则下列正确的是( )A . a+b>0B . ab>0C .ba >0 D .a-b>0 8.已知有理数a ,b 在数轴上对应的两点分别是A ,B .请你将具体数值代入a ,b ,充分实验验证:对于任意有理数a ,b ,计算A , B 两点之间的距离正确的公式一定是( )A .a b -B .||||a b +C .||||a b -D .||a b -二、 填空题9.(2015•东阳市模拟)一运动员某次跳水的最高点离跳板2m ,记作+2m ,则水面离跳板3m 可以记作 m .10.水池中的水位在某天八个不同时刻测得记录为:(规定向上为正,向下为负,单位:厘米)+3,0,-1,+5,-4,+2,-3,-2,那么这里0的含义是___________.11.德国科学家贝塞尔推算出天鹅座第61颗暗星距离地球102 000 000 000 000千米,用科学记数法表示出暗星到地球的距离为___ _____千米,精确到千亿位为 千米.12.7=x ,则______=x ; 7=-x ,则______=x .13.已知实数a , 在数轴上如下图所示,则|1|-a = .14.若|a-2|+|b+3|=0,则3a+2b= .15.()221---= .16.(2016春•江苏校级期末)观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…你从中发现底数为3的幂的个位数有什么规律吗?根据你发现的规律回答:32016的个位数字是 .三、 解答题17.计算:(1)222172(3)(6)3⎛⎫-+⨯-+-÷- ⎪⎝⎭(2)4211(10.5)[2(3)]3---⨯⨯-- (3)21-49.5+10.2-2-3.5+19(4)323233351914321251943252⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯--⨯⨯-+⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 18.(2015春•万州区期末)某服装店以每件82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为19.某地的气象观测资料表明,高度每增加1km ,气温大约下降6℃,若该地地面温度为18℃,高空某处气温为-48℃,求此处的高度.20.先观察下列各式: 11111434⎛⎫=- ⎪⨯⎝⎭;111147347⎛⎫=- ⎪⨯⎝⎭;11117103710⎛⎫=- ⎪⨯⎝⎭;…;1111(3)33n n n n ⎛⎫=- ⎪++⎝⎭,根据以上观察,计算:1111447710+++⨯⨯⨯ (120052008)+⨯的值. 【答案与解析】一、选择题1.【答案】C【解析】解:∵﹣与只有符号不同, ∴﹣的相反数是.故选:C .2.【答案】B.3.【答案】C【解析】负数有三个,分别是:-|-7|,-|+1|,)511(-+4.【答案】A5.【答案】C【解析】由-1<a<0可知2a 为正数,而其它两数均为负数,且| a |<a 1,所以a >a 1,所以a1<a< a 2. 6.【答案】D【解析】2.5+3.5=6, 2.5-3.5=-17.【答案】D【解析】由图可知,a 、b 异号,且b 的绝对值较大.8.【答案】D【解析】按正负对a ,b 分类讨论. 二、填空题9.【答案】:﹣3.【解析】运动员某次跳水的最高点离跳板2m ,记作+2m ,则水面离跳板3m 可以记﹣3米.10.【答案】水位无变化11.【答案】1.02×1014,1.020×101412.【答案】7,7±±13.【答案】1-a【解析】由图可知:a-1<0,所以 │a-1│=-(a-1)=1- a.14.【答案】0【解析】∵|a-2|+|b+3|=0,∴a-2=0,b+3=0,即a=2,b=-3.∴3a+2b=6-6=0;15.【答案】-5【解析】()221415---=--=- .16.【答案】1【解析】解:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,……,∵2016÷4=504,∴32016的个位数字与第4个数的个数数相同,是1.故答案为:1. 三、解答题17.【解析】解: (1) 原式14929(6)9=-+⨯+-÷4918(6)949185485=-++-⨯=-+-=-(2) 原式111111511[2(9)]11112232366⎛⎫=---⨯⨯--=--⨯⨯=--=- ⎪⎝⎭ (3)原式=[(21+19)+10.2]+[(-49.5-3.5)-2]=50.2-55=-4.8(4) 原式=32233519422519435⎡⎤⎛⎫⎛⎫⎛⎫-⨯--⨯+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦27943191627008251943258⎛⎫=-⨯-⨯+=-⨯= ⎪⎝⎭ 18.【解析】解:7×(100+5)+6×(100+1)+7×100+8×(100﹣2)+2×(100﹣5)=735+606+700+784+190=3015,30×82=2460(元),3015﹣2460=555(元),答:共赚了555元.19.【解析】解:18(48)116km --= 则此高空比地面高11km ,又地面高度应为0,所以此高空处的高度为11 km .20.【解析】解:原式111111111111343473710320052008⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭… 111111111344771020052008⎛⎫=-+-+-+⋅⋅⋅+- ⎪⎝⎭1112007669132008320082008⎛⎫=-=⨯= ⎪⎝⎭。
【巩固练习】一、选择题1.(2015春•濮阳校级期中)下列说法正确的是( )A .23表示2×3B . ﹣32与(﹣3)2互为相反数C .(﹣4)2中﹣4是底数,2是幂D . a 3=(﹣a )32. 已知(-ab)·(-ab)·(-ab)>0,则( ).( )(A)ab <0 (B)ab >0 (C)a >0,b <0 (D)a <0,b <03.设234a =-⨯,2(34)b =-⨯,2(34)c =-⨯,则a 、b 、c 的大小关系为( ).A .a <c <bB .c <a <bC .c <b <aD .a <b <c4.(2016•朝阳区校级模拟)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为220的末位数字是( )A .2B .4C .6D .85.现规定一种新的运算“*”,a*b =a b ,如3*2=32=9,则1*32等于( ). A .18 B .8 C .16 D .326.计算2223113(2)32⎛⎫⎛⎫-⨯---÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ). A .-33 B .-31 C .31 D .33二、填空题7.(2015•杭州模拟)计算:﹣22﹣(﹣2)2= .8.对于大于或等于2的自然数n 的平方进行如下“分裂”,分裂成n 个连续奇数的和,则自然数82的分裂数中最大的数是 .9. 若33x x =-,则x 是 ;若22x x =-,则x 是 ;10.若281x =,则x = ;若3125x =-,则x = .11.若()2120a b ++-=,则()22003a b a ++= .12.(2016春•张掖校级月考)如图是一个计算程序,若输入的值为﹣1,则输出的结果应为 .13.如果有理数m 、n 满足0m ≠,且20m n +=,则2n m ⎛⎫-= ⎪⎝⎭ . 14. 瑞士中学教师巴尔米成功地从光谱数据9162536,,,,5122132中得到巴尔米公式,从而打开了光谱奥妙的大门,请你按这种规律写出第7个数据是 ,第n 个数据是 .三、解答题15. 计算: (1)19812(16)44⎛⎫-÷--÷- ⎪⎝⎭ (2)5115124(3)3521⎛⎫--+÷-⨯- ⎪⎝⎭(3)233131(2)2422⎛⎫⎛⎫-⨯+-÷- ⎪ ⎪⎝⎭⎝⎭(4)-9+5×(-6)-(-4)2÷(-8) (5)25221(1)31(2)33⎡⎤⎛⎫---⨯--÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦16.用简便方法计算: (1)3173156060605212777⎛⎫⎛⎫--⨯⨯-⨯+⨯ ⎪ ⎪⎝⎭⎝⎭; (2)22111311115342163⎡⎤⎛⎫⎛⎫⎛⎫⨯---⨯⨯-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦.17.(2014秋•吉林校级期末)1米长的小棒,第1次截去一半,第2次截去剩下的一半,如此截下去,第7次后剩下的小棒有多长?【答案与解析】一、选择题1.【答案】B .【解析】A 、23表示2×2×2,故本选项错误;B 、﹣32=﹣9,(﹣3)2=9,﹣9与9互为相反数,故本选项正确;C 、(﹣4)2中﹣4是底数,2是指数,故本选项错误;D 、a 3=﹣(﹣a )3,故本选项错误.2.【答案】A【解析】(-ab)·(-ab)·(-ab)>0,则-ab >0,所以ab <0. 选A3.【答案】 B【解析】a =-3×42=-48,b =(-3×4)2=144,c =-(3×4)2=-144.故c <a <b .4.【答案】C【解析】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,……∴220的末位数字是6.故选C .5.【答案】A 【解析】3111*3228⎛⎫== ⎪⎝⎭. 6.【答案】C【解析】原式=119(8)1843194-⨯--÷=-+⨯=. 二、填空题7.【答案】﹣8.【解析】﹣22﹣(﹣2)2=﹣4﹣4=﹣8.8.【答案】15【解析】每组数中,左边的幂的底数a 与最下方的数n 的关系是:21n a =-.9.【答案】非正数;0;10.【答案】-9,9;-5【解析】平方为某正数的数有两个,而立方为某数的数只有一个.11.【答案】0【解析】绝对值与平方均具有非负性,10,20a b +=-=,所以1,2a b =-=,代入计算即可.12.【答案】7.【解析】解:依题意,输出结果为:[(﹣1)2﹣2]×(﹣3)+4=[1﹣2]×(﹣3)+4=﹣1×(﹣3)+4=3+4=7.故答案为:7.13.【答案】14-. 【解析】由m+2n=0 得:m=-2n ,所以22211()224n n m n ⎛⎫⎛⎫-=-=--=- ⎪ ⎪-⎝⎭⎝⎭14.【答案】2281(2),77(2)4n n ++- 【解析】分子是一个完全平方数,且分母都比分子小4.三、解答题15.【解析】(1)1949199812(16)8136364494166464⎛⎫-÷--÷-=-⨯-⨯=--=- ⎪⎝⎭ (2)51151211511124(3)1212335213532133⎛⎫--+÷-⨯-=--+⨯⨯=--+=- ⎪⎝⎭(3)23313199199(2)28()883642244844⎛⎫⎛⎫-⨯+-÷-=-⨯+÷-=-⨯-⨯=- ⎪ ⎪⎝⎭⎝⎭ (4)-9+5×(-6)-(-4)2÷(-8)=-9-30+2=-37;(5)2522144152(1)31(2)1(3)13393433⎡⎤⎛⎫---⨯--÷-=---⨯-⨯=-+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 16.【解析】(1)原式317315605212777⎛⎫⎛⎫=--⨯⨯-+ ⎪ ⎪⎝⎭⎝⎭31760606015212⎛⎫=⨯-⨯-⨯⨯ ⎪⎝⎭ 36303529=--=-;(2)原式22433316342163⎡⎤⎛⎫⎛⎫⎛⎫=⨯--⨯⨯-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ 43393163444163⎛⎫⎛⎫=⨯⨯-⨯⨯- ⎪ ⎪⎝⎭⎝⎭ 3931644163⎛⎫⎛⎫=-⨯⨯- ⎪ ⎪⎝⎭⎝⎭3169316434163⎛⎫⎛⎫=⨯--⨯⨯- ⎪ ⎪⎝⎭⎝⎭ 934144=-+=-. 17.【解析】 解:根据题意得:()7×1=(米),则第7次截后剩下的小棒长米.。
【巩固练习】
一、选择题
1.(2015春•濮阳校级期中)下列说法正确的是( )
A .23表示2×3
B . ﹣32与(﹣3)2互为相反数
C .(﹣4)2中﹣4是底数,2是幂
D . a 3=(﹣a )3
2. 已知(-ab)·(-ab)·(-ab)>0,则( ).( )
(A)ab <0 (B)ab >0 (C)a >0,b <0 (D)a <0,b <0
3.设234a =-⨯,2(34)b =-⨯,2(34)c =-⨯,则a 、b 、c 的大小关系为( ).
A .a <c <b
B .c <a <b
C .c <b <a
D .a <b <c
4.(2016•朝阳区校级模拟)观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,
28=256,…根据上述算式中的规律,你认为220的末位数字是( )
A .2
B .4
C .6
D .8
5.现规定一种新的运算“*”,a*b =a b ,如3*2=32=9,则
1*32等于( ). A .18 B .8 C .16 D .32
6.计算22
23113(2)32⎛⎫⎛⎫-⨯---÷- ⎪ ⎪⎝⎭⎝⎭
的结果是( ). A .-33 B .-31 C .31 D .33
二、填空题
7.(2015•杭州模拟)计算:﹣22﹣(﹣2)2= .
8.对于大于或等于2的自然数n 的平方进行如下“分裂”,分裂成n 个连续奇数的和,则自
然数82的分裂数中最大的数是 .
9. 若33x x =-,则x 是 ;若22x x =-,则x 是 ;
10.若281x =,则x = ;若3125x =-,则x = .
11.若()2120a b ++-=,则()22003a b a ++= .
12.(2016春•张掖校级月考)如图是一个计算程序,若输入的值为﹣1,则输出的结果应为 .
13.如果有理数m 、n 满足0m ≠,且20m n +=,则2n m ⎛⎫-= ⎪⎝⎭ . 14. 瑞士中学教师巴尔米成功地从光谱数据9162536,,,,5122132中得到巴尔米公式,从而打开了光谱奥妙的大门,请你按这种规律写出第7个数据是 ,第n 个数据是 .
三、解答题
15. 计算: (1)19812(16)44⎛⎫-÷--÷- ⎪⎝⎭ (2)5115124(3)3521⎛⎫--+÷-⨯- ⎪⎝⎭
(3)233131(2)2422⎛⎫⎛⎫-⨯+-÷- ⎪ ⎪⎝⎭⎝⎭
(4)-9+5×(-6)-(-4)2÷(-8) (5)25221(1)31(2)33⎡⎤⎛⎫---⨯--÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦
16.用简便方法计算: (1)3173156060605212777⎛⎫⎛⎫--⨯⨯-⨯+⨯ ⎪ ⎪⎝⎭⎝
⎭; (2)22111311115342163⎡⎤⎛⎫⎛⎫⎛⎫⨯---⨯⨯-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
⎢⎥⎣⎦.
17.(2014秋•吉林校级期末)1米长的小棒,第1次截去一半,第2次截去剩下的一半,如此截下去,第7次后剩下的小棒有多长?
【答案与解析】
一、选择题
1.【答案】B .
【解析】A 、23表示2×2×2,故本选项错误;
B 、﹣32=﹣9,(﹣3)2=9,﹣9与9互为相反数,故本选项正确;
C 、(﹣4)2中﹣4是底数,2是指数,故本选项错误;
D 、a 3=﹣(﹣a )3,故本选项错误.
2.【答案】A
【解析】(-ab)·(-ab)·(-ab)>0,则-ab >0,所以ab <0. 选A
3.【答案】 B
【解析】a =-3×42=-48,b =(-3×4)2=144,c =-(3×4)2=-144.故c <a <b .
4.【答案】C
【解析】解:∵21=2,22=4,23=8,24=16,
25=32,26=64,27=128,28
=256,……
∴220的末位数字是6.
故选C .
5.【答案】A 【解析】3111*3228
⎛⎫== ⎪⎝⎭. 6.【答案】C
【解析】原式=119(8)1843194
-⨯--÷=-+⨯=. 二、填空题
7.【答案】﹣8.
【解析】﹣22﹣(﹣2)2=﹣4﹣4=﹣8.
8.【答案】15
【解析】每组数中,左边的幂的底数a 与最下方的数n 的关系是:21n a =-.
9.【答案】非正数;0;
10.【答案】-9,9;-5
【解析】平方为某正数的数有两个,而立方为某数的数只有一个.
11.【答案】0
【解析】绝对值与平方均具有非负性,10,20a b +=-=,所以1,2a b =-=,代入计算即可.
12.【答案】7.
【解析】解:依题意,输出结果为:
[(﹣1)2﹣2]×(﹣3)+4
=[1﹣2]×(﹣3)+4
=﹣1×(﹣3)+4
=3+4
=7.
故答案为:7.
13.【答案】14
-. 【解析】由m+2n=0 得:m=-2n ,所以22211()224n n m n ⎛⎫⎛⎫-=-=--=- ⎪ ⎪-⎝⎭⎝⎭
14.【答案】2
281(2),77(2)4
n n ++- 【解析】分子是一个完全平方数,且分母都比分子小4.
三、解答题
15.【解析】
(1)1949199812(16)8136364494166464
⎛⎫-÷--÷-=-⨯-⨯=--=- ⎪⎝⎭ (2)51
151211511124(3)1212335213532133⎛⎫--+÷-⨯-=--+⨯⨯=--+=- ⎪⎝⎭
(3)233
13199199(2)28()883642244844⎛⎫⎛⎫-⨯+-÷-=-⨯+÷-=-⨯-⨯=- ⎪ ⎪⎝⎭⎝⎭ (4)-9+5×(-6)-(-4)2
÷(-8)=-9-30+2=-37;
(5)2522144152(1)31(2)1(3)13393433⎡⎤⎛⎫---⨯--÷-=---⨯-⨯=-+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ 16.【解析】(1)原式317315605212777⎛⎫⎛⎫=--⨯⨯-+ ⎪ ⎪⎝⎭⎝⎭
3
1760606015
212⎛⎫=⨯-⨯-⨯⨯ ⎪⎝⎭ 36303529=--=-;
(2)原式22433316342163⎡⎤⎛⎫⎛⎫⎛⎫=⨯--⨯⨯-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
⎢⎥⎣⎦ 43393163444163⎛⎫⎛⎫=⨯⨯-⨯⨯- ⎪ ⎪⎝
⎭⎝⎭ 3931644163⎛⎫⎛⎫=-⨯⨯- ⎪ ⎪⎝⎭⎝⎭
3169316434163⎛⎫⎛⎫=
⨯--⨯⨯- ⎪ ⎪⎝⎭⎝⎭ 934144
=-+
=-. 17.【解析】 解:根据题意得:()7×1=(米),
则第7次截后剩下的小棒长
米.。