盾构隧道始发技术简介doc 6页.doc
- 格式:doc
- 大小:25.00 KB
- 文档页数:6
盾构法隧道主要内容一、盾构施工技术的进展历史二、盾构施工技术的国内外进呈现状三、盾构机的种类四、盾构施工的技术特点五、盾构机工作原理五、盾构施工的主要工序六、中国承受盾构修建地铁历史及规划八、工程案例一、盾构施工技术的进展历史1盾构施工法的制造1818 年,Brunel 从一种食船虫在船身上打洞一事受到启发,争论出了盾构工法。
历经艰辛,终在1841 年使泰晤士河底隧道贯穿,该隧道自1825 年开工,历时17 年,可充分说明技术的成功是多么的坎坷!2盾构施工法的进展阶段自1818 年诞生进展到现在已有180 多年的历史,概括而言,有四个阶段:(1)初期盾构:以Brunel 盾构为代表;(2)其次代盾构:以机械式、气压式、TBM 及城市盾构工法为代表;(3)第三代盾构:以闭胸式盾构为代表〔泥水式、土压式〕;(4)第三代盾构:以安全、高速、大深度、大断面、断面多样化、异形化为特色。
二、盾构施工技术的国内外进呈现状1国外盾构施工技术现状以欧洲和日本最为兴旺。
美国:纽约自1900 年起用气压盾构就建筑了数十条水底隧道,目前根本是以盾构施工占90%以上;前苏联:莫斯科自1932 年开头承受盾构法施工地铁等地下工程;德国、法国、英国、加坡等也在广泛承受盾构法施工地下工程。
日本:自1917 年在国铁羽越线折渡隧道〔泻县〕的建设中首次承受盾构工法。
日本从盾构施工法正式开头用于城市隧道建设的1964 年至1984 年约20 年间,工研制盾构机超过5000 台。
目前日本已经成为世界上盾构制造技术以及施工技术的大国,占据世界上仅80%的盾构份额。
1917 年——日本国铁隧道建设中首次承受盾构工法1953 年——日本关门隧道承受盾构工法1957 年——日本地铁承受顶盖式盾构施工,这是城市隧道首次承受盾构1960 年——日本名古屋地铁承受盾构施工1962 年——东京下水道承受圆形盾构。
此后,盾构渐渐用于小断面的市政管道建设1964 年——日本下水道工程,最先承受泥水式盾构1974 年——日本独立争论出土压式盾构1975 年——日本争论出砾石泥水式盾构1981 年——日本争论出加气泡盾构2国内盾构施工技术现状国内最早是在1956 年,阜海州露天煤矿承受直径2.66m 的盾构,在砂土层中成功地开掘了一条流水巷道。
盾构密闭钢套筒始发施工工法盾构密闭钢套筒始发施工工法一、前言盾构密闭钢套筒始发施工工法是一种用于地铁隧道、水利工程等领域的施工方法,通过在施工过程中使用密闭钢套筒,能够提高施工效率和质量。
本文将详细介绍盾构密闭钢套筒始发施工工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析以及工程实例。
二、工法特点盾构密闭钢套筒始发施工工法具有以下几个特点:1. 施工效率高:采用始发施工工法可以提高施工效率,减少施工时间。
2. 提高质量:使用密闭钢套筒能够保证施工过程中的密封性,避免地层塌陷和水漏等问题,提高施工质量。
3. 环保节能:由于施工过程中采用密闭钢套筒,可以减少噪声和振动对周边环境的影响,并降低施工对能源的消耗。
4. 适应性强:盾构密闭钢套筒始发施工工法适用于各类地质条件和复杂环境,在不同的施工项目中都有广泛的应用。
三、适应范围盾构密闭钢套筒始发施工工法适用于以下项目:1. 地铁、轻轨等城市轨道交通隧道工程。
2. 交通隧道、水利隧道等工程。
3. 管线隧道、矿山隧道等项目。
四、工艺原理盾构密闭钢套筒始发施工工法的工艺原理是将密闭钢套筒附着在盾构机前部,并通过推进机械将套筒推入地下。
在施工过程中,选用合适的密闭套筒和盾构机械,采取措施防止地层塌陷和水漏,并及时处理施工中的问题。
这样可以使盾构机的后部充分利用,并提高施工效率。
五、施工工艺1. 施工准备:确定施工方案和施工计划,选用合适的盾构机和密闭钢套筒。
2. 密闭钢套筒的安装:将密闭钢套筒附着在盾构机前部,并与盾构机械相连接。
3. 推进机械的推进:通过盾构机械的推进,将密闭钢套筒推入地下。
4. 处理地层塌陷和水漏:在施工过程中,及时处理地层塌陷和水漏等问题,保证施工的平稳进行。
5. 推进速度控制:控制推进速度,确保施工的安全和质量。
6. 施工完工:施工完成后进行清理和检查,并做好施工记录。
六、劳动组织在盾构密闭钢套筒始发施工工法中,需要组织工程师、技术人员和工人等人力资源。
盾构隧道工程技术-doc盾构隧道工程技术-doc第一节盾构施工概况一.盾构法基本概念盾构法是在地面下暗挖隧道的一种施工方法。
当代城市建筑、公用设施和各种交通日益繁杂,市区明挖隧道施工,对城市生活的干扰问题日趋严重,特别在市区中心遇到隧道埋深较大,地质复杂的情况,若用明挖法建造隧道则很难实现。
在这种条件下采用盾构法对城市地下铁道、上下水道、电力通讯、市政公用设施等各种隧道建设具有明显优点。
此外,在建造穿越水域、沼泽地和山地的公路和铁路隧道或水工隧道中,盾构法也往往因它在特定条件下的经济合理性及技术方面的优势而得到采用。
盾构法施工的概貌如图1所示。
构成盾构法施工的主要内容是:先在隧道某段的一端建造竖井或基坑,以供盾构安装就位。
盾构从竖井或基坑的墙壁开孔处出发,在地层中沿着设计轴线,向另一竖井或基坑的设计孔洞推进。
盾构推进中所受到的地层阻力,通过盾构千斤顶传至盾构尾部已拼装的预制隧道衬砌结构,再传到竖井或基坑的后靠壁上,盾构是这种施工方法中最主要的独特的施工机具。
它是一个能支承地层压力而又能在地层中推进的圆形或矩形或马蹄形等特殊形状的钢筒结构,在钢筒的前面设置各种类型的支撑和开挖土体的装置,在钢筒中段周圈内面安装顶进所需的千斤顶,钢筒尾部是具有一定空间的壳体,在盾尾内可以拼装一至二环预制的隧道衬砌环。
盾构每推进一环距离,就在盾尾支护下拼装一环衬砌,并及时向紧靠盾尾后面的开挖坑道周边与衬砌环外周之间的空隙中压注足够的浆体,以防止隧道及地面下沉。
在盾构推进过程中不断从开挖面排出适量的土方。
使用盾构法,往往需要根据穿越土层的工程地质水文地质特点辅以其他施工技术措施。
主要有:1.疏干掘进土层中地下水的措施;2.稳定地层、防止隧道及地面沉陷的土壤加固措施;3.隧道衬砌的防水堵漏技术;4.配合施工的监测技术;5.气压施工中的劳动防护措施;6.开挖土方的运输及处理方法等。
图1 盾构施工概貌1-盾构;2-盾构千斤顶;3-盾构正面网格;4-出土转盘;5-出土皮带运输机;6-管片拼装机;7-管片;8-压浆泵;9-压浆孔;10-出土机;11-由管片组成的隧道衬砌结构;12-在盾尾空隙的压浆;13-后盾管片;14-竖井。
盾构始发接收技术一、盾构始发技术盾构始发是指利用反力架和负环管片,将始发基座上的盾构,由始发竖井站推入地层,开始沿设计线路掘进的一系列作业。
盾构始发在施工中占有相当重要的位置。
1)盾构始发方式盾构始发方式根据盾构主机、后配套及相关附属设施是否一次性放置于地下,分为整体始发和分体始发;根据临时拼装的负环管片是否采用半环方式,分为整环始发和半环始发;根据盾构始发的线路不同,又可分为直线始发和曲线始发。
(1)整体始发与分体始发①整体始发。
整体始发是指将盾构主机和全部台车安装在始发井下,盾构始发掘进时带动全部台车一起前进的施工技术。
当具备整机始发条件时,尽量采用整体始发,以便充分发挥盾构施工安全、快速、高效的优势。
目前盾构施工中,采用的整体始发主要有利用车站整体始发和利用“始发竖井+反向隧道+出土井”的整体始发两种方式(图6.13)。
图6.13 盾构始发井+反向隧道+出土井整体始发方式示意图利用“始发竖井+反向隧道+出土井”的整体始发方式只需增加一个出土竖井的投资,在出土井施工场地许可的情况下,可以在始发井和出土井同时施工的情况下,从两个工作面相向施工70 m左右的反向隧道,能大大节约工期。
因此,在车站条件不具备盾构机整体始发时,可优先考虑“始发竖井+反向隧道+出土井”的整体始发方式。
②分体始发。
盾构按常规整体始发需要80 m长的始发竖井或车站空间。
如此长的竖井不但造价昂贵,而且在繁华的城市中很少具备这样条件的场地。
车站也有可能因场地拆迁或总工期控制等因素一时不能提供盾构整体始发空间,这时就需要采用分体式始发。
分体始发是将盾构主机与全部或部分台车之间采用加长管线连接,盾构主机与全部或部分台车分开前行,待初始掘进完成后再将盾构主机与全部台车在隧道内安装连接进行正常掘进(图6.14)。
盾构分体式始发时,盾构主机与地面台车之间采用的电缆、油管等管线需加长连接,在盾构掘进80 m 左右后拆除负环,将后配套台车吊入始发井内,并拆除台车与盾构主机相接的加长管线,对台车与盾构主机重新进行连接,然后按正常掘进模式掘进。
一、盾构区间施工安排本标段盾构机从G3工作井始发向G2盾构井方向掘进。
到达G2盾构吊出井后解体吊出撤场。
二、设计概况G3-G2区间起讫里程:K2+208.077-K5+508.426,区间全长3300.349m。
区间最小平曲线半径400米,最大纵坡1.771%,顶覆土厚度10.1~24.4m。
区间采用1台土压盾构机,从G 3盾构工作井向G2盾构工作井推进。
G3盾构井始发端地层:⑤2-1层粉质粘土、⑤2-2层含砂粉质粘土、⑦2-1层含泥粉细砂;G2盾构井接收端地层:⑩3层中风化基岩;区间主要穿越地层:⑤1层粉质粘土、⑤2-1层粉质粘土、⑤2-2层含砂粉质粘土、⑦1层粉质粘土、⑦2-1层含泥粉细砂、砾砂、⑦2-2含泥圆砾、卵石、⑩1层全风化基岩、⑩2层强风化基岩、⑩3层中风化基岩等。
区间特点G2-G3盾构区间隧道线路附近有一条港华高压天然气管线,区间下穿高压天然气管线2次,2次下穿中间区域及天然气高压管线并行,并行长度约2539m,最小平面间距11m。
2次下穿位置约在里程K5+398及K2+859处,竖向间距约4.4m~19.4米。
管材为DN620mm钢管,埋深约3~7米。
盾构掘进管线沉降变形要求高。
G3盾构井概况G3始发井南端头设置13m×7.5m的盾构机下井口,用于盾构机和后配套台车的吊装下井组装。
在始发井北端头设置6.8×7.5m的出土口,用于分体始发掘进阶段的渣土吊运。
如下图:三、始发段概述盾构始发是指在始发竖井内利用临时组装的管片、反力台架等设备,使台架上的盾构机推进,从井壁上的到达口处入地层,并沿着规定路线掘进的一系列作业。
本工程先进行右线始发,鉴于始发场地局限,盾构机始发不能按照正常始发方案进行,盾构机部分台车必须位于地面。
以延伸管线实现始发,经过台车转接使盾构机设备正常连接和正常掘进,进行两次始发。
四、盾构机概况本区间采用一台辽宁33土压平衡盾构机始发掘进。
该盾构机适宜复合地层、泥岩、砂岩、砂卵石、软土等土层的掘进施工;盾构机掘进最小曲率半径250m,最大坡度50‰;盾构机设备总重量约为450T,盾体刀盘长度为9.07m,包括后配套总长73m,分为盾构机主机和后配套设备两大部分,后配套设备分别安装在7节后续台车上;盾构机盾尾间隙29mm,最大掘进速度10cm/min,最大推力36000KN。
地铁隧道土压平衡盾构始发掘进施工技术摘要:盾构始发掘进是地铁隧道工程中的一个重要环节,它直接影响到以后的工程质量和实际进度。
本文以地铁隧道开挖工程为基础,结合工程实例,对盾构始发掘进各个阶段的技术要点进行了讨论,以期为工程实践提供借鉴。
关键词:地铁隧道;土压平衡盾构;始发掘进引言某区间隧道的左线为4.26公里,右线为4.29公里,该区间采用2台06440 mm的土压平衡式盾构机进行掘进。
该工程的起始段位在全风化、强烈风化的混合花岗岩(砂土)中,其围岩为Ⅲ级硬土,根据现场地质调查和周围的条件,该区段的起始段长为100 m,起始段为直线段,分别采用-2%(49.6 m)和-25%(25%)的下坡段,按原计划,由右线起,在50米左右开始。
盾构始发是隧道开挖的重要环节,如果施工过程中不能严格控制,很容易造成盾构的偏心或姿态控制不当,从而影响到整个隧道的施工质量。
一、施工前期准备(一)端头加固施工根据工程设计和工程实际情况,经综合比较,确定了采用O600mm的双管高压旋喷桩,加固深度为6米,厚度为3米,顶部和底部3米,对风化岩层进行加固,并将其加固到中风化层顶部。
采用端头土体进行防渗处理,可以有效地防止盾构机在进、出隧道时发生“叩头”、“抬头”现象,从而保证了隧道的安全和稳定。
(二)加固效果检测第一,垂直取芯检测。
在施工开始时,通过竖向钻孔取心,检查其均匀性和抗压性,确保其各项性能符合设计要求,28天内无侧限抗压强度不低于1.0 MPa,渗透系数小于1.0x10-6/cm/s。
竖向取心时,抽样样本数在总桩量中所占比例不小于2-5%,取芯数量不能少于3个,钻探取芯应距离隧道构造较远,取样完毕后要按照规定进行回填[1]。
第二,水平探孔检测。
在开始掘进之前,按设计的要求,在加劲口中心、环向均匀布置9个O42mm的观测孔,观测孔要穿过整个地下连续墙,并取1/2的长度,取心长度大于4 m;对未达到加固效果的,可以采用压力水平注浆或地面压浆,提高始发端土体的自稳定性,从而确保始发隧道的可靠性和安全性。
盾构短延长环始发施工工法一、前言盾构是一种大型的隧道掘进工具,广泛应用于城市地铁、水利、道路、石油、天然气、通讯等各个领域的隧道工程。
近年来,随着城市化进程的快速推进,盾构技术的发展也在不断提高,盾构施工工法也在不断创新。
其中,盾构短延长环始发施工工法作为一种新型的施工方式,具有广阔的应用前景。
本文将从工法特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析和工程实例等方面进行详细介绍。
二、工法特点盾构短延长环始发施工工法是指在盾构机进洞前,先在洞口处挖一段深度较浅的环形隧道,然后于该环形隧道内置一段盾构机壳体,即可启动隧道掘进。
该工法的主要特点包括:1. 施工速度快:由于盾构机壳体已提前置于洞口内,因此启机后即可直接进入洞内掘进,省去了其他施工工艺环节,进一步缩短了隧道掘进工期。
2. 施工节约成本:盾构机壳体具有良好的密封性,可以减少破损垃圾物流带来的环保问题,同时也可减少一些必要的流程和投入,从而降低总体施工成本。
3. 施工质量高:盾构机壳体由钢壳来进行构造,具有高强度、耐磨损等特点,在隧道掘进中可以大大提高效率和质量,减少质量问题的出现。
三、适应范围盾构短延长环始发施工工法适用于地质条件较为复杂的城市地下工程,包括地铁、隧道、水利、道路、石油、天然气、通讯等领域。
尤其是在地质条件较为恶劣,钻爆等传统施工工法不适用的情况下,该工法的应用更能够发挥其优势。
四、工艺原理盾构短延长环始发施工工法是在传统盾构施工技术的基础上创新发展出来的。
该工法最大的特点在于其使用了延长环的工艺,即在盾构进洞前先挖出一段环形隧道,然后将盾构机壳体轴线放置于其中,再通过接缝连接到上一管环,即可启动隧道掘进。
在实际使用中,盾构机壳体在移动时,首先需要将其从倒置的状态转换到正立的状态,再将其置于环形隧道内。
之后,固定壳体的位置并完成前部接缝后,即可基于延长环进行正常的工作。
该工艺的核心在于将机身放入环形隧道内进行自由走向的环境下推进,利用机壳与围岩之间的高压差力,让机壳自主向前先行推进,而在隧道倒伏的初始阶段,由于围岩的支承作用,延长环能够更好地支撑在原有的环形隧道上。
第三篇盾构隧道设计指导书第一章基本情况介绍我国XX市地下铁道的建设中,因埋深条件、周边环境条件等因素的限制不允许采用明挖法施工时,矿山法暗挖施工是目前应用较多的施工方法,但从已建地下铁道的工程实践上看,因其难于从根本上解决防渗漏水问题、施工工艺复杂、施工期间的安全性和工程进度难于控制等因素,在地下铁道的建设中已受到越来越多的局限。
而盾构施工法以其良好的防渗漏水性、施工安全快速、对周围环境的影响极小等优点,在地下铁道的建设中已成为重要的可选施工方法之一,在许多场合已成为首选方法。
尤其是随着近年国内外盾构设备技术水平的提高、盾构设备在工程成本中所占比重的下降,盾构法施工的综合工程造价已接进甚至低于矿山法暗挖施工,特别是在地层条件差、地质情况复杂、地下水位高等情况下盾构法已具明显技术经济优越性。
随着我国新一XX市基础设施大规模建设高潮的到来,地下铁道的建设呈高速增长之势,从长远来看,盾构隧道技术在包XX市地下铁道在内的基础设施建设中应用前景十分广阔。
在世界各国的地下铁道XX市地下基础设施的建设中,与我国一致,即主要采用盾构法、矿山法及明挖法3大系列技术及各种辅助工法。
根据日本1991年对东京、大阪等主XX市的统计,在总延长75224米XX市隧道工程中,矿山法的比例占6.1%、盾构法占60.9%、明挖法占33%。
在建筑物密集和对周围环境影响限制严格的XX市中,盾构法具有明显的优势。
第二章盾构断面及隧道线型设计2.1 内空及断面形状自1869年Greathead 发明圆形回转式盾构机以来,盾构隧道断面的主要形状为圆形。
但随着技术的进步,盾构断面的形状出现了半圆形、矩形以及马蹄形等,但一般圆形断面使用得最广泛,成了盾构断面的标准形状。
其主要理由如下:①一般条件下,对外压是坚固;②施工中,便于盾构机的推进和管片的制作和拼装;③即使盾构机产生偏转,也对断面利用影响不大。
最近,除单圆断面外,又出现了双圆盾构隧道断面,如日本广岛54号国道系统盾构工程—世界首条双圆盾构工程、名古屋4号线隧道工程、XX县干线管道建设工程。
调整掘进方向,始发阶段空间定位意义在于保证盾构机始发掘进的隧道线形满足设计规范,不超限。
(1)盾构机始发时一般处在直线段或者缓和曲线段,在直线段盾构机始发采取盾构机轴线与设计轴线平行或者重合的方式来始发。
(2)在缓和曲线段采取盾构机轴线与隧道设计轴线相切的方式来始发(切线始发)。
(3)在小曲线段,盾构机始发采用盾构机轴线割隧道轴线的方式来始发(割线始发)。
割线的确定根据隧道设计轴线的曲线半径、盾构机体长度、盾构机调整方向的操作因素来考虑。
Cad制图的方法,简单、精确。
(4)考虑始发井主体结构、维护结构的目的在于确定其结构施工成果是否偏差过大,影响洞门密封的安装,保证洞门密封效果。
(5)盾构机沿轴线方向的定位对盾构始发影响不大,但准确的定位会对洞门施工产生影响,主要指零环与主体结构在轴线方向上的距离,洞门施工时是否需要切割或拆除零环。
2、始发托架和反力架的安装定位一般在始发井主体结构施工时即进行始发托架、反力架安装预埋件的安装固定。
盾构机始发托架、反力架的安装定位依赖于预埋件安装位置和强度,因此预埋件需定位准确,安装牢固;盾构机始发托架的安装定位,依据盾构机始发空间位置来确定,在安装方面主要考虑其固定牢固;反力架的安装定位需考虑盾构机始发的空间位置,选择合理的固定方式,以保证足够的始发反力,从受力的角度分析,反力架的安装需满足抗弯、抗剪、抗拔;反力架的基准钢环平面要与盾构机始发方向垂直,基准环的空间位置,与待拼装的负环位置要准确对应。
3 洞门密封的安装、洞门破除、始发负环管片的拼装1、洞门密封的结构图1 洞门密封结构2、安装注意要点定位准确、安装牢固。
3、洞门破除检查确定地层稳定的条件下方可破除洞门,洞门破除要遵循快速破除,及时清理,迅速推进、刀盘快速顶到掌子面为原则。
4、负环管片拼装方法在盾尾刷上直接拼装。
图2 负环管片拼装负环管片一般采取错缝拼装,根据负环管片拼装成果为直线选用管片,考虑隧道设计轴线线形因素,可在-1环开始调整管片类型和拼装点位,拟合施工曲线。
第一节盾构法隧道的起源及历史据记载,人类设想建造各种用途的隧道已有上千年了。
1802年,英国采矿工程师阿贝尔·马蒂厄提出修建英吉利海峡隧道计划,设计从英法两岸用一种有掩体结构的挖掘机修筑隧道,每侧各挖掘18.7km,最后在瓦恩·班克浅滩对接贯通。
他建议在海峡地下通道的中间设计一个人工岛,隧道的照明由油灯提供,而烟囱将提供通风。
阿贝尔·马蒂厄1802年设计可行驶马车隧道1803年爆发了英法战役,阿贝尔·马蒂厄的计划未能付诸实施。
法国工程师布鲁诺尔(Mare Isambard Brunel)在伦敦从船蛀在船板上蛀孔,再用分泌物涂在孔的四周中得到启示,发现了盾构法掘进隧道的原理。
当时,圣·彼德斯勃格(St.Pertersburg)正规划一条跨越Neca河的工程,布鲁诺尔参与了此项目的设计研究。
布鲁诺尔看到每年桥墩总是遭受从Lagoda湖上漂流的大冰块的破坏,当时曾提议修建一隧道(用盾构法挖掘)。
后来,布鲁诺尔完善了构思,注册了专利。
布鲁诺尔构想的盾构机械内部结构由不同的单元格组成,每一个单元格可容纳一个工人独立工作并对工人起到保护作用(图l-5)。
采用的方法是将所有的单元格都被牢靠地装在盾壳上。
当时设计了两种施工方法,一种是当一段隧道挖完后,整个盾壳由液压千斤顶借助后靠向前推进;另一种方法是每一个单元格能单独地向前推进。
第一种施工法后来被采用,并得到推广应用,演变为成熟的盾构法,目前所有的封闭式盾构都是基于第一种方法。
此后,布鲁诺尔逐步完善了盾构结构的机械系统,设计成封闭式盾壳用全断面螺旋式开挖,衬砌紧随其后的(图l-6)。
它可以被认为是土压平衡盾构(EPB Shield)的先行者。
图1-5 布鲁诺尔注册专利的盾构,1806图1-6 M.I.Brunel 螺旋盾构,18181825年~1843年,布鲁诺尔在伦敦泰晤士河下的隧道工程中使用这种盾构,布鲁诺尔终于实现了他的设想(图1-7)。
盾构隧道始发技术摘要:结合盾构隧道施工始发技术在南京地铁TA15标施工过程中的应用,介绍了盾构施工始发技术的组成、关键技术、关键工序及工艺,并提出了常见问题的对策和预防措施。
1 前言我国地铁隧道施工已开始使用盾构法。
随着技术进步、认识提高、综合国力的增强,特别是随着该施工技术所显现的优势,盾构法越来越多地被国内地铁界所接受,上海、广州、南京、北京、深圳、天津、西安、成都、沈阳、杭州、青岛等城市都使用这种方法。
上海地铁是国内最早采用盾构施工的,且大部分工程都是利用盾构完成的;南京地铁目前有3个盾构标段4台盾构机在进行施工,施工总量约占全线的30%。
虽然盾构有许多成功的工程实例,但是使用这种方法也有较大的风险。
如盾构在隧道内只能前进,不可后退,一旦盾构本身出现致命的故障,可能就会产生灾难性的后果。
而且使用盾构在对洞口进行加固处理的始发时阶段出问题的概率很高,即使是非常有经验的承包商也常会发生类似事故。
本文重点介绍盾构始发的技术问题。
2 始发技术的重要性及关键技术由于在始发阶段存在以下几种特殊情况:(1)始发推进前需凿除车站的围护结构(主要是处理钢筋砼结构),凿除围护结构后的土体在一定的时间段内必须保持自稳,不能有水土流失;(2)始发阶段盾构机主体在始发导轨上不能进行调向;(3)始发阶段的姿态及地面沉降控制比正常推进阶段更困难;(4)始发期间一些设备如管片小车、管片吊机,包括出渣都不能正常使用。
有时也会存在盾构机因为车站结构的原因而不能整机始发。
综上所述,盾构在初始阶段的施工难度很大。
因此,盾构隧道始发技术是盾构法施工技术的关键,也是盾构施工成败的一个标志,必须要全力做好。
同时还应确保盾构连续正常地从非土压平衡工况过渡到土压平衡工况,以达到控制地面沉降,保证工程质量等目的。
始发技术包括洞口端头处理(在软土无自稳能力的地层中)、洞门砼凿除(主要针对钢筋砼围护结构)、盾构始发基座的设计加工、定位安装;始发用反力架的设计加工、就位;支撑系统、洞门环的安设、盾构组装、盾构始发方案、其他保证盾构推进用设备、人员、技术准备等,直到始发推进。
3 始发施工技术3.1 始发洞口的地层处理在盾构始发之前,一般要根据洞口地层的稳定情况评价地层,并采取有针对性的处理措施。
地层处理一般采取如“固结灌浆”、“冷冻法”、“插板法”等措施进行地层加固处理。
选择加固措施的基本条件为加固后的地层要具备最少一周的侧向自稳能力,且不能有地下水的损失。
常用的具体处理方法有搅拌桩、旋喷桩、注浆法,SMW工法、冷冻法等。
选择哪一种方法要根据地层具体情况而定,并且严格控制整个过程。
3.2 始发洞口维护结构的切除根据经验,一般在始发前至少一个月开始洞口维护结构的切除。
整个施工一般分两次进行,第一次先将围护结构主体凿除,只保留维护结构的钢筋保护层,在盾构始发前将保护层混凝土凿除。
在凿除完最后一层混凝土之后,要及时检查始发洞口的净空尺寸,确保没有钢筋、混凝土侵入设计轮廓范围之内。
3.3 洞口密封洞口密封是为盾构在始发时防止背衬注浆砂浆外泄所用,按种类分有压板式和折叶式两种,其中折叶式越来越被人们所认可。
洞口密封的施工分两步进行施工,第一步是在车站结构的施工工程中,做好始发洞门预埋件的埋设工作,要特别注意的是在埋设过程中预埋件必须与车站结构钢筋连接在一起;第二步在盾构正式始发之前,应先清理完洞口的碴土,再完成洞口密封的安装。
3.4 洞口始发导轨的安装在围护结构破除后,盾构始发台端部距离洞口围岩必然会产生一定的空隙,为保证盾构在始发时不致于因刀盘悬空而产生盾构“叩头”现象,需要在始发洞内安设洞口始发导轨。
安设始发导轨时应在导轨的末端预留足够的空间,以保证盾构在始发时,不致因安设始发导轨而影响刀盘旋转。
3.5 反力架、始发台的安装3.5.1 反力架、负环管片位置的确定依据反力架的位置确定主要依据洞口第一环管片的起始位置、盾构的长度以及盾构刀盘在始发前所能到达的最远位置确定。
3.5.2 负环管片环数的确定假定盾构长度LTBM=8.3M,安装井长度LAS=12M(因不同的始发井尺寸而不同),洞口维护结构在完成第一次凿除后的里程DF,设计第一环管片起始里程D1S,管片环宽WS =1.2M,反力架与负环钢管片长WR=1.5M(自行设计加工的尺寸)。
DR为反力架端部里程,N为负环管片环数。
(1)在安装井内的始发时最少负环管片环数确定N=(D1S-DF+8.3)/WS环3.5.3 反力架、负环钢管片位置的确定在确定始发最少负环管片环数后,即可直接定出反力架及负环管片的位置。
反力架端部里程DR=D1S-N×WS3.5.4反力架、始发台的定位与安装在盾构主机与后配套连接之前,开始进行反力架的安装。
安装时反力架与车站结构连接部位的间隙要垫实,以保证反力架脚板有足够的抗压强度。
由于反力架和始发台为盾构始发时提供初始的推力以及初始的空间姿态,在安装反力架和始发台时,反力架左右偏差控制在±10MM之内,高程偏差控制在±5MM之内,上下偏差控制在±10MM之内。
始发台水平轴线的垂直方向与反力架的夹角<±2‰,盾构姿态与设计轴线竖直趋势偏差<2‰,水平趋势偏差<±3‰。
3.6 盾构的始发3.6.1 始发台两侧的加固由于始发台在盾构始发时要承受纵向、横向的推力以及约束盾构旋转的扭矩。
所以在盾构始发之前,必须对始发台两侧进行必要的加固。
加固的方式见图1。
3.6.2 负环管片安装(1)负环管片安装准备在安装负环管片之前,为保证负环管片不破坏尾盾刷、保证负环管片在拼装好以后能顺利向后推进,在盾壳内安设厚度不小于盾尾间隙的方木(或型钢),以使管片在盾壳内的位置得到保证,如图2。
(2)负环管片后移第一环负环管片拼装成圆后,用4~5组油缸完成管片的后移。
管片在后移过程中,要严格控制每组推进油缸的行程,保证每组推进油缸的行程差小于10MM。
在管片的后移过程中,要注意不要使管片从盾壳内的方木(或型钢)上滑落。
(3)负环管片与负环钢管片的连接负环管片的最终位置要以推进油缸的行程进行控制,在负环管片与负环钢管片之间的空隙用早强砂浆或钢板填满。
(4)负环管片的拼装类型在安装井内的负环管片的拼装类型通常采取通缝拼装,主要是因为盾构井一般只有一个,在施工过程中要利用此井进行出渣、进管片。
所以采用通缝拼装可以保证能及时、快速的拆除负环管片。
3.6.3 盾构的始发(1)空载推进盾构在空载向前推进时,主要控制盾构的推进油缸行程和限制盾构每一环的推进量。
要在盾构向前推进的同时,检查盾构是否与始发台、始发洞发生干涉或是否有其他异常事件或事故的发生,确保盾构安全的向前推进。
(2)始发时盾构姿态的控制主要通过盾构机的推油缸行程来控制姿态。
(3)始发时盾构推进参数的控制在保证盾构正常推进的情况下,稍微降低总推力和刀盘扭矩。
3.6.4 洞口注浆在盾尾完全进入洞体后,调整洞口密封,进行洞口注浆。
浆液不但要求顺利注入,而且要有早期的强度。
注浆压力控制在1.5BAR以内。
3.7 反力架、负环管片的拆除反力架、负环管片的拆除时间根据背衬注浆的砂浆性能参数和盾构的始发掘进推力决定。
一般情况下,掘进100M以上(同时前50环完成掘进7日以上),可以根据工序情况和工作整体安排,开始进行反力架、负环管片拆除。
4 常见问题的预防或处理4.1 加固效果不好端头土体加固的效果不好是在始发过程中经常遇到的问题。
采取的主要措施是必须根据端头土体情况选择合理的加固方法,而且要加强过程控制,特别是要严格控制一些基本参数。
对于加固区与始发井间形成的必然间隙要采取其它方式处理。
4.2 开洞门时失稳开洞门时失稳主要表现为土体坍塌和水土流失二种,其主要原因也是由端头加固效果不好所致。
在小范围的情况下可采用边破除洞门砼,边利用喷素砼的方法对土体临空面进行封闭。
如果土体坍塌失稳情况严重时,只有封闭洞门重新加固。
4.3 始发后盾构机“叩头”始发推进后,在盾构机抵达掌子面及脱离加固区时容易出现盾构机“叩头”的现象,根据地质条件不同有些可能出现超限的情况。
为此,通常采用抬高盾构机的始发姿态、合理安装始发导轨以及快速通过的方法尽量避免“叩头”或减少“叩头”的影响。
4.4 密封效果不好洞门密封的主要目的也是在始发掘进阶段减少土体流失。
当洞门加固达到预期效果时,对于洞门环的强度要求相对较低,否则要在盾构推进前彻底检查和确定洞门环的状况。
在始发过程中若洞门密封效果不好时可即时调整壁后注浆的配合比,使注浆后尽早封闭,也可采用在洞门密封外侧向洞门密封内部注快凝双液浆的办法解决。
4.5 盾尾失圆在很多情况下,始发阶段由于自重及其他原因,盾尾一般都会出现失圆的情况,有些可能达到10CM之多。
可以采用盾构机自带的整圆器进行整圆,在必要的情况下,可采用错缝拼装以保证在管片拼至隧道内时管片自身的椭圆度控制在误差以内。
4.6 支撑系统失稳支撑系统在某些情况下由于盾构机推进中的瞬时推力或扭矩较大而产生失稳,这样将导致整个始发工作的失败。
对于支撑系统的失稳只能从预防角度进行,同时在始发阶段对支撑系统加强监测。
4.7 地面沉降较大由于始发施工的特殊性,始发阶段的地面沉降值均较大,因此在始发阶段需尽早建立盾构机的适合工况并严密注意出土量及土压情况,同时加大监测频率,控制地面沉降值。
5 实例简介南京地铁南北线一期工程共有三个盾构标段,其中由中铁隧道集团施工的TA15标的始发掘进一次成功。
TA15标主要包括二个区间:玄武门站~许府巷站,许府巷站~南京站站。
区间线路总长4574M。
该段工程地质第一区间主要是隧道底部,基本位于可~硬塑粉质粘土上,隧道中部以下为可塑状粉质粘土,以上为流塑状粉质粘土;主要穿越的地层有②-2B4粉质粘土~淤泥质粉质粘土和②-2C2-3粉土。
其中②-2B4粉质粘土~淤泥质粉质粘土高压缩性和高灵敏度,易产生土体流动、开挖面不稳定现象;②-2C2-3饱和粉土具中低压缩性、中~高灵敏度,易产生涌水、涌砂、开挖面不稳定现象。
地下水位在地面以下1. 1~3.1M之间。
在许府巷到南京站区间,隧道穿越中~稍密实砂层为主,在到达南京站段,局部穿越粘土层。
其中场地范围内分布的②-1C2-3粉土、②-1D3-4粉砂夹细砂、②-2 C2-3粉土及②-2D2-3粉砂夹细砂均为液化地层,液化程度属轻微液化~严重液化。
隧道穿越的土层及隧道底板下的土层分布复杂,其中②-2B4淤泥质粉质粘土和②-3B3-4粉质粘土承载力低,具有高压缩性及高灵敏度,易产生土体流动、开挖面不稳;②-2C2-3粉土、②-2D2-3粉砂夹细砂及②-3D2-3粉细砂,含水量丰富,透水性强,渗透系数达5×10-3CM/S,极易产生涌砂、涌水、开挖面不稳现象。