机载激光雷达点云的阶层式分类
- 格式:pdf
- 大小:327.29 KB
- 文档页数:4
无人机激光雷达点云数据处理研究近年来,随着科技的发展,无人机激光雷达点云数据处理技术得到广泛关注和研究。
无人机搭载激光雷达系统可以获取大规模高精度点云数据,这种技术已被广泛应用于测绘、建筑安全检测、森林资源监测、城市规划和环境保护等领域。
一、无人机激光雷达点云数据采集一台无人机搭载激光雷达系统可以在短时间内采集大量精确的点云数据。
无人机搭载的激光雷达系统可以发送激光束,在接收器接收反弹的激光后,计算机处理数据,生成三维点云数据。
在数据采集方面,无人机搭载激光雷达系统可以完成难以达到的采集任务,如在高山峡谷、森林、城市楼宇等高难度场所采集数据。
此外,用无人机搭载激光雷达系统可以完成地面难以到达或无法采集的区域数据采集。
二、无人机激光雷达点云数据处理无人机激光雷达点云数据处理是激光雷达技术的一个重要组成部分。
无人机激光雷达点云数据处理主要包括数据预处理、点云分割、点云地面分类等。
数据预处理是指将从激光雷达系统采集到的原始数据进行预处理和滤波,去除数据中噪声和杂点等因素造成的干扰。
点云分割是将点云数据根据各个目标进行分离,并将相同目标的点云分成一个整体进行处理。
点云地面分类是将地面点云数据与非地面点云数据进行分类,使非地面点云数据集中在一起进行处理,提高数据处理的效率。
三、无人机激光雷达点云数据应用无人机激光雷达点云数据在实际应用中可以大大提高工作效率和效益。
无人机点云数据采集与处理可以被应用于制作数字地图、城市规划、建筑模型和自然资源调查等领域。
在制作数字地图方面,无人机激光雷达点云数据可以提供高精度的三维地图,这种地图可以帮助规划城市、制作航空图、资源平衡估算等工作。
在城市规划方面,无人机搭载激光雷达技术可以提供大规模点云数据,使城市相应地区的建筑物及环境特征得到精确地理解。
在建筑模型制作方面,无人机搭载激光雷达系统可以采集建筑物的表面形状数据,以非常高的质量构建建筑模型和纹理贴图。
此外,无人机搭载激光雷达系统可以用于森林资源调查,以监测森林蓄积量,森林覆盖率和森林结构等。
基于机载激光雷达点云的目标提取与分类算法研究摘要:目标分类是机载激光雷达数据处理中的重要环节,它通过对点云数据中的目标进行分类归类,实现目标的识别和分析。
本文介绍了几种常用的目标分类算法,不同的算法可以根据具体需求选择和综合应用,提高目标分类的准确性和鲁棒性。
关键词:机载激光雷达点云;目标提取;分类算法引言随着激光雷达技术的发展和应用的推广,机载激光雷达数据处理在地理测绘、遥感、智能交通等领域具有广阔的应用前景。
而目标分类作为机载激光雷达数据处理中的关键步骤,对于进一步分析和利用点云数据起着重要作用。
因此,研究和开发高效准确的目标分类算法具有重要的理论意义和实际价值。
1机载激光雷达系统概述1.1概念机载激光雷达系统(ALS)是一种将激光雷达设备安装在航空器上,通过发射激光脉冲并测量其返回时间来获取地面的三维点云数据的技术。
机载激光雷达系统通常包括激光发射器、接收器、GPS/INS系统等组成部分。
1.2原理机载激光雷达系统的工作原理基于激光束在发射后经过一定时间再被接收到的原理。
系统激光器发射一束脉冲激光,激光束照射在地面或目标上,并被目标反射回来。
接收器接收到反射激光信号,并记录其返回的时间。
通过测量激光脉冲的发射和返回时间,可以计算目标与激光雷达之间的距离。
1.3组成(1)激光发射器:负责产生激光脉冲并控制其发射频率和功率。
(2)接收器:负责接收被目标反射的激光信号。
(3)接收通道:用于对接收到的激光信号进行放大、滤波和数字化转换。
(4)定位系统:通常使用全球定位系统(GPS)和惯性导航系统(INS)来确定激光雷达的位置和姿态。
(5)数据存储装置:用于存储采集到的原始激光点云数据。
(6)控制和处理单元:负责控制整个系统的运行,并对原始数据进行预处理和处理。
2目标提取算法研究2.1基于形状特征的目标提取算法这类算法利用目标物体的形状特征来进行目标提取。
常见的方法包括计算点云中的曲率、法线等特征,并通过阈值或其他形状判别标准来判断是否为目标。
激光点云分类的基本方法主要包括以下几个步骤:1.点云数据预处理:建立电力线三维结构特征指标体系。
基于原始点云数据,噪声、地面、建筑物等显著非电力线点的过滤机制,将更加准确地区分非电力线点,减少后续处理数据量,同时保证可能电力线点的完整筛选。
2.地面点过滤和DTM 生成:根据原始LiDAR 点云进行地面点过滤和DTM(数字地面模型)生成以提取所有非地面点。
3.电力线候选点滤波:根据电力线布设规范,选择地面一定高度(如4m)以上的非地面点作为电力线候选点。
4.多尺度邻域类型选取:使用给定点X 的局部三维空间形状结构进行电力线分类。
初步选取两类邻域:单一尺度邻域和多尺度邻域,并在每个尺度上分别选取球形邻域、柱状邻域和K 值邻域 3 种邻域类型。
每种邻域类型的限制参数为半径和K 值。
5.形状结构特征提取:结合LiDAR 点云数据中电力线与林木、建筑物等地物相互遮挡、混杂的问题和电力线快速自动化提取的需求,针对已有的基于结构形状的统计分析和图像处理分类方法中的不足,通过研究在不同复杂场景下电力线点云数据的形状结构特征,确定其关联参数。
6.SVM 分类:基于前述的候选电力线点云数据集及其三维形状结构关联参数,设计和研究基于机器学习监督分类的电力线智能分类模型。
设计机载LiDAR 点云数据的SVM(支持向量机)分类算法,以候选电力线点云的三维形状结构关联参数作为特征向量,以是否属于电力线点作为结果种类,构建电力线SVM 分类算法的训练样本和测试样本。
使用五重交叉对比分析来验证评估分类器的准确性。
这些方法在激光点云分类中各有优势,可以根据实际应用场景和需求进行选择和优化。
激光雷达点云处理方法研究激光雷达点云处理作为一项基础的技术,一直以来都备受重视。
在人工智能、自动驾驶等领域的快速发展下,点云处理方法的研究和应用也越发成为了一项热门研究领域。
针对激光雷达点云处理方法的研究,本文将从三个方面进行探讨:点云数据处理、点云分类、点云配准。
一、点云数据处理激光雷达获取到的点云数据中,除了目标物体的轮廓信息和表面纹理信息,还包含了很多无关地面信息。
而在实际场景中,需要对点云数据进行分类和处理,以达到快速分析和处理的目的。
1.1 点云滤波点云滤波是点云处理的一项重要技术。
它可以通过消除一些草地、树木等杂乱信息,从而得到更加准确的目标物体轮廓。
常用的点云滤波方法包括半径滤波、统计滤波、自适应滤波等。
1.2 点云降采样点云数据容量较大,因此降采样可以有效地减小点云数据量,提高处理效率。
点云降采样可以采用下采样、体素化等方法。
二、点云分类点云分类可以对点云数据进行分类,并对每个类别进行识别与分析。
高效的点云分类方法是点云处理的关键。
2.1 特征提取点云数据的特征提取是点云分类的基础。
点云数据可以通过曲率、法线、局部表面等特征进行提取。
其中,曲率是一种较为常用的特征。
2.2 神经网络随着人工智能和深度学习的发展,人们开始尝试使用神经网络进行点云分类。
对于点云数据,可以使用PointNet、PointCNN等深度学习网络进行分类。
三、点云配准在激光雷达扫描到物体和场景时,由于误差存在,造成不同位置扫描到的点云数据存在不一致性。
因此需要进行点云配准,将不同位置的点云数据进行匹配。
3.1 特征匹配点云配准中,需要将不同位置扫描到的点云进行特征匹配。
常用的特征匹配算法包括ICP(Iterative Closest Point)、SVD (Singular Value Decomposition)等。
3.2 双边匹配双边匹配是一种基于强特征匹配的算法。
它可以对点云数据进行处理,通过强特征匹配的方式进行配准。
电气工程与自动化!Di*+qi Gongcheng yu Zidonghua无人机机载激光雷达在输电线路巡线中的应用丁华(张辉!(1.贵州电网有限责任公司输电运行检修分公司,贵州贵阳550002;2.中国电建集团贵州电力设计研究院有限公司,贵州贵阳550081)摘要:针对传统人工电力巡线方法存在的效率低、成本高,以及直升机电力巡检存在的技术烦琐、可操作性不强等问题,探讨了无人机机载激光雷达系统、巡线原理及技术流程,重点介绍了点云数据的处理,点云的分、点分析、工拟分<=>:电力巡线激光雷达无人机点分0引言随着电网规模的迅速扩大,对于经济发展较慢的山区,大的输电线于、流、高高压等,输电线成了大损害,、线、等了输电线路的安全稳定运行,各电力巡检系统对输电线行巡检。
传统输电线的巡检人工巡线,存在巡线周期长、效率低、成高等点,不大电网的巡线,的、的人工巡检带来了大的限直升机的出现虽然给输电线路巡检带来了极大的便利,直升机的技术人作,电力巡检公司有直升机,可操作性不强,直升机巡检需,,大量时因此,轻的无人机输电线巡检带来了质的改变,其结合激光雷达对输电线行点云采集,解决了机载相机无法准确得到输电线路通道内地物至电力线距离的问题!1"。
1无人机机载激光雷达系统1.1无人机系统无人机种可自主飞行或远程引导、不搭载人员的动力飞行器。
无人机因可以搭载相机、位系统、信息传输系统等硬广泛应用于紧急救灾、农、测绘等领通常情,无人机系统除了无人机体外,还包括飞行控系统、动力系统、源系统、任务荷载设备、通信 系统、地面监控站。
(1)飞行控系统作为整个系统的核心部位,用于控制无人机的起飞、降落等种工作状态。
(2)动力系统即发动机及相关附件设施。
(3)源系统即无人机系统提供电的相关部件。
(4)任务荷载设备即根务搭载的相关软硬件设备,如气象设备、农药喷洒设备、相机等。
(5)通信系统即数传输软硬(6)地面监测站用于控制并调整无人机飞行的路线、高度、角度等参数!2"。
机载激光雷达是一种精度高、成本低、速度快的新型技术。
借助机载激光雷达技术可获取到相应数据,利用软件进行处理后可得到数字高层模型(DEM)、三维建筑物模型、等高线图,应用效果良好。
为使其发挥更好的效果,必须加强对机载激光雷达点云数据的研究。
1 机载激光雷达测绘技术的优势1.1 生产效益高合理应用机载激光雷达技术可以快速获取到大范围、大区域内的地表信息和空间信息,缩短作业时长,快速完成相应作业。
采用三维激光点云数据在业内可以清晰地获取到地物的具体属性,减少外业测绘作业开展的作业量,提高生产效益。
1.2 精密度高采用机载激光雷达技术能够获取到大量数据,而且数据精度高,可以满足应用需求。
通过应用机载激光雷达系统可获取到密实性点云数据,其中点间距可小于1.0m。
另外,机载激光雷达系统采用的激光具有很强的穿透能力,在野外应用可以将各种植物的叶冠穿透,激光脉冲不会受太阳角度和阴影等因素的影响,高程精度也不会受航高约束。
可见,应用机载激光雷达技术能够获取到精度较高的平面数据和高程数据,为后续相关工作顺利开展提供支持。
1.3 约束条件少开展测量作业是通过主动发射激光脉冲方式完成相应测量作业的。
因此,实际作业开展不受光照、天气外界因素影响,作业效率高。
另外,开展测量作业时由于测量人员很少进入作业现场,故作业安全,很少有人员伤亡。
1.4 方便检查数据以三维激光点云数据为基础,能够快速得到EDM 成果,快速地对原始成果的质量情况进行检查。
在作业现场应用机载激光雷达航测技术,可以通过对数码影像、激光点云各项原始数据进行采集,各项数据能够相互检验,对于质[2]量欠佳的数据可以及时将其剔除,确保数据精准合理。
2 机载激光雷达点云数据处理过程2.1 处理机载激光雷达数据基本流程在处理机载激光雷达数据时,要根据项目具体情况选择不同类型的模块和软件,通过应用TerraSolid、Li DAR_Suite系列软件完成相应工作,具体操作流程如下:1)建设激光点云工程,工程建设必须合理,能够满足应用需求;2)预处理点云数据,处理必须依据实际情况开展; 3)点云分离,在该过程中划分为地表点、建筑物点、未分类点;4)将地表点划分为格网类DEM 成果和点云类DEM 成果; 5)转换坐标,对成果的质量进行检验; 6)验收成果。
机载激光雷达(LiDAR)测量在公路三维测设中的应用探究机载激光雷达(LiDAR)测量技术融合了多种先进技术,在公路三维测设中发挥着更大的作用。
基于此,本文分析了机载激光雷达(LiDAR)测量的技术的使用优势,阐述了辅助地面控制测量、采集参数的选择、横断面的采集、DOM、DEM、DLG的制作这些机载激光雷达(LiDAR)测量技术在公路三维测设中的应用。
标签:机载激光雷达(LiDAR)测量;公路;三维测设作为一种新型的空间测量技术,机载激光雷达(LiDAR)测量技术融合了全球定位系统(GNSS)、激光扫描、摄影测量、惯性导航系统(IMU)等技术,能够更加准确的、快速的完成地表三维空间信息的收集。
可以说,机载激光雷达(LiDAR)测量技术是继GPS技术后的又一次三维测绘技术进步。
经过实践能够发现,机载激光雷达(LiDAR)测量技术能够更加高效的获取地面精密数字地面模型,在公路三维测设中发挥着重要的作用。
一、机载激光雷达(LiDAR)测量的技术分析(一)机载激光雷达(LiDAR)测量技术的使用优势分析对于机载激光雷达(LiDAR)测量技术来说,其融合的多种先进技术,在公路三维测设中有着更好的使用有优势。
机载激光雷达(LiDAR)测量技术主要有以下几种使用优势:第一,数据密度相对较高。
机载激光点云的采集间距相对较小,一般在0.8-1.2米之间。
结合实际的需求该间距可以更小。
在这样的采集条件下,数据密度显著提升,在真实地面高程模型的建立中有着极大的优势。
而在传统的DTM测量中,平均点的间距在25米左右。
可知,机载激光雷达(LiDAR)测量技术有着更高的数据密度。
第二,精确度相对较高。
对于机载激光点云数据来说,其获取都是激光测量直接完成的。
理论上,机载激光雷达(LiDAR)测量技术的高程精度可以达到0.1米;平面精度可以达到0.15米。
而在传统的航测中,理论上的高程精度为0.3-0.5米。
第三,空三定位更为先进。