性质3:不在同一条直线上的三个点,可以确定一个平面. 【说明】 这里“确定一个平面”指的是“有且只有一个平 面”. 根据上述性质,可以得出下面的三个结论: (1)直线与这条直线外的一点可以确定一个平面. (2)两条相交直线可以确定一个平面. (3)两条平行直线可以确定一个平面.
(1)在下列条件中,可以确定一个平面的是 ( B )
【说明】 与线面垂直几个有关的结论: ①如果一条直线垂直于一个平面,则这条直线垂直于平面内 任意一条直线. ②过平面外一点有且只有一条直线和已知平面垂直. ③如果两条平行直线中的一条垂直于一个平面,则另一条也 垂直于这个平面. ④两个平面垂直于同一条直线,则这两个平面平行.
3.平面与平面垂直的判定与性质 (1)两个平面相交,如果所成的二面角是直二面角,那么称这两 个平面互相垂直.平面α与平面β垂直,记作α⊥β. 表示两个互相垂直平面的图形时,一般将两个平行四边形的 一组对边画成垂直的位置,可以把直立的平面画成矩形(图(1)),也 可以把直立的平面画成平行四边形(图(2)).
A.平行
B.相交
C.异面
D.平行或相交或异面
(2)下列命题正确的是
( B)
A.若直线a在平面α外,则a∥α.
B.直线a在平面α外,直线b在平面α内,若a∥b,则a∥α.
C.直线b在平面α内,若直线a∥平面α,则a∥b.
D.若直线a∥平面α,直线b∥平面α,则a∥b.
3.平面与平面 (1)平面与平面的位置关系: 如果两个平面没有公共点,那么称这两个平面互相平行.平面α 与平面β平行,记作α∥β. 空间两个平面的位置关系有两种:平行与相交. (2)平面与平面平行的判定方法: 如果一个平面内的两条相交直线都与另一个平面平行,那么 这两个平面平行. (3)平面与平面平行的性质: 如果一个平面与两个平行平面相交,那么它们的交线平行.