高一数学 三视图
- 格式:pptx
- 大小:2.46 MB
- 文档页数:27
高一数学空间几何体的三视图知识点归纳高一数学空间几何体的三视图知识点归纳知识点是知识、理论、道理、思想等的相对独立的最小单元。
下面是店铺给大家带来的高一数学空间几何体的三视图知识点归纳,希望能帮到大家!光由一点向外散射形成的投影叫做中心投影,其投影的大小随物体与投影中心间距离的变化而变化。
平行投影:在一束平行光线照射下形成的投影叫做平行投影。
在平行投影中,投影线正对着投影面时,叫做正投影,否则叫做斜投影。
空间几何体的`三视图:光线从几何体的前面向后面正投影,得到投影图,叫做几何体的正视图;光线从几何体的左面向右面正投影,得到投影图,叫做几何体的侧视图;从几何体的上面向下面正投影,得到投影图,高考地理,叫做几何体的俯视图。
几何体的正视图、侧视图、俯视图统称为几何体的三视图。
注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
平行投影与中心投影的区别和联系:①平行投影的投射线都互相平行,中心投影的投射线是由同一个点发出的.如图所示,②平行投影是对物体投影后得到与物体等大小、等形状的投影;中心投影是对物体投影后得到比原物体大的、形状与原物体的正投影相似的投影.③中心投影和平行投影都是空间图形的基本画法,平行投影包括斜二测画法和三视图.中心投影后的图形与原图形相比虽然改变较多,但直观性强,看起来与人的视觉效果一致,最像原来的物体.④画实际效果图时,一般用中心投影法,画立体几何中的图形时一般用平行投影法.画三视图的规则:①画三视图的规则是正侧一样高,正俯一样长,俯侧一样宽.即正视图、侧视图一样高,正视图、俯视图一样长,俯视图、侧视图一样宽;②画三视图时应注意:被挡住的轮廓线画成虚线,能看见的轮廓线和棱用实线表示,不能看见的轮廓线和棱用虚线表示,尺寸线用细实线标出;D表示直径,R表示半径;单位不注明时按mm计;③对于简单的几何体,如一块砖,向两个互相垂直的平面作正投影,就能真实地反映它的大小和形状.一般只画出它的正视图和俯视图(二视图).对于复杂的几何体,三视图可能还不足以反映它的大小和形状,还需要更多的投射平面.【高一数学空间几何体的三视图知识点归纳】。
高一数学空间几何体的三视图与直观图试题答案及解析1.已知一个几何体的三视图如图所示.(Ⅰ)求此几何体的表面积;(Ⅱ)在如图的正视图中,如果点为所在线段中点,点为顶点,求在几何体侧面上从点到点的最短路径的长.【答案】(1);(2)【解析】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素的位置关系和数量关系;(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理;(3)圆锥、圆柱、圆台的侧面是曲面,计算侧面积或长度时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和. 试题解析:(Ⅰ)由三视图知:此几何体是一个圆锥加一个圆柱,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.所以. 6分(Ⅱ)沿点到点所在母线剪开圆柱侧面,如图:则,所以从点到点在侧面上的最短路径的长为. 12分【考点】空间几何体的表面积.2.如果一个水平放置的图形的斜二测直观图是一个底面为,腰和上底均为的等腰梯形,那么原平面图形的面积是_______-【答案】【解析】如图,根据斜二测画法,可得原平面图形是直角梯形,在直观图中,分别过顶点作底面的高,由于是等腰梯形,可得底面边长为,所以在平面图形中,可知DC=2,所以S= ( AD+BC)·DC=.【考点】直观图和平面图的关系.3.下列命题中正确的是()A.空间三点可以确定一个平面B.三角形一定是平面图形C.若A、B、C、D既在平面α内,又在平面β内,则平面α和平面β重合D.四条边都相等的四边形是平面图形【答案】B【解析】不在同一直线的三点确定一个平面,故A错,B对;共线的四点可以构成无数个平面,故C错;正四面体的四个边都相等,但它不是平面图形,故D错.故选B.【考点】平面的基本性质.4.将棱长为2的正方体切割后得一几何体,其三视图如图所示,则该几何体的体积为___________.【答案】.【解析】由三视图可知,该几何体为正方体先切割得到的三棱柱后切割一三棱锥,如图所示,则其体积为.【考点】空间几何体的体积.5.某一几何体的三视图如图所示.按照给出的尺寸(单位:cm),(1)请写出该几何体是由哪些简单几何体组合而成的;(2)求出这个几何体的体积.【答案】(1) 正方体和直三棱柱;(2)10cm3.【解析】(1)画出已知三视图的直观图,就很容易获得此几何体是由哪些简单几何体组合而成的;(1)既然几何体是由简单几何体组合而成的,那就只需先求得各个简单几何体的体积,然后相加即得所求几何体的体积.试题解析:(1)如图是题中所给几何体的直观图,所以这个几何体可看成是由正方体及直三棱柱的组合体.(2)由,,可得.所求几何体的体积:【考点】1.三视图;2.直观图;3.体积公式.6.某向何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该几何体是一个长方体和一个半圆柱组成的几何体,所以体积为。