全网自动频率规划
- 格式:ppt
- 大小:1.09 MB
- 文档页数:19
电信联通“4G一张网”的探讨与实践【摘要】:近年随着5G网络大规模建设入网,标志着4G网络建设进入了尾期,在投资及运维收缩的情况下,探索如何低成本完善4G的后续网络建设、降低基站的运营维护成本,提升无线设备的利用率,是摆在现实中迫切需要解决的难题。
电信联通城区场景下的“4G一张网”的战略合作,为解决这一问题提供了思路,但是方案部署的选择,需平衡投资与网络质量之间的关系。
本文通过在百色田林县电联“4G一张网”的探索与实践,实现了“减量”、“提质”、“增效”的目标。
【关键字】:4G一张网共建共享资源盘活运维成本翻频1 引言在4G领域上,电信与联通公司加快推进4G一张网整合,利用双方资源禀赋,在存量区域实行资源整合共享,快速实现低成本完善双方覆盖薄弱区域。
百色市电信公司积极探索“4G一张网”,经过与百色市联通公司进行多次方案沟通,在站点共享、频率重构方案、站址合并明细、参数配置方面进行多次商讨,确定了一张网的方案,并最终选择在百色田林县城开展本次实践。
本文主要从技术层面探讨电信、联通城区场景下的LTE 网络一张网的可行性,分析一张网的优劣势,为后续方案演进决策提供参考。
2 电信联通一张网的概念及意义电信联通一张网,其实就是将电信、联通两大运营商的网络资源整合起来,通过技术手段实现互联互通。
也就是说,用户在使用电信、联通网络的时候,可以无缝切换,感知不到转换,实现更加快捷、高效的网络体验。
它不仅提升了双方的竞争力,也为用户带来更好的网络体验,同时也推动了整个行业的发展。
我们相信,在这样的模式下,未来我国的电信行业一定能够取得更加辉煌的成就。
3 一张网前景和目标3.1 商业模式和市场前景分析随着信息技术的不断发展,人们对通信技术的依赖越来越高。
在这一背景下,电信联通一张网的商业模式备受关注。
本文将通过对电信联通一张网商业模式及市场前景的分析,探讨其未来发展的潜力。
从商业模式角度来看,电信联通一张网建立了开放共享、合作共赢的合作模式,实现了多个运营商在相同光纤资源上能够共同入网,真正实现资源的共享,达到资源互补的目的。
L T E基础知识整理(共17页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--LTE知识点整理1.1.1LTE测试用什么软件什么终端答:LTE测试前台测试使用的测试软件CXT,后台分析使用CXA;测试终端为中兴MF8311.1.2LTE测试中关注哪些指标答:LTE测试中主要关注PCI(小区的标识码)、RSRP(参考信号的平均功率,表示小区信号覆盖的好坏)、SINR(相当于信噪比但不是信噪比,表示信号的质量的好坏)、RSSI(Received Signal Strength Indicator,指的是手机接收\到的总功率,包括有用信号、干扰和底噪)1.1.3UE的发射功率多少答:LTE中UE的发射功率由PUSCH Power 来衡量,最大发射功率为23dBm;1.1.4LTE各参数调度效果是什么1、20M带宽有100个RB,只有满调度才能达到峰值速率,调度RB越少速率越低;2、PDCCCH DL Grant Count 在F\D\E频段中下行满调度为600次/秒,只有满调度才能达到峰值速率,调度次数越少速率越低;PDCCCH UL Grant Count 在F频段中上行满调度为200次/秒(时隙配比 2:5,SA2(3:1)SSP(3:9:2)),D\E频段中上行满调度为400次/秒(时隙配比1:7,SA2(2:2)SSP(10:2:2)),只有满调度才能达到峰值速率,调度次数越少速率越低;1.1.5MCS调度实现过程:答:UE测算SINR,上报RI及CQI索引给eNodeB,eNodeB根据UE反馈的RI及CQI 索引进行TM和MCS调度;MCS一般由CQI,IBLER,PC+ICIC等共同确定的。
下行UE根据测量的CRS SINR映射到CQI,上报给eNB。
上行eNB通过DMRS或SRS测量获取上行CQI。
对于UE上报的CQI(全带或子带)或上行CQI,eNB首先根据PC约束、ICIC约束和IBLER情况来对CQI 进行调整,然后将4bits的CQI映射为5bits的MCS。
MOTO 网优理念和网优工具分析1 MOTO无线网络优化1.1 无线网络优化理念:1.以最小的成本获得最佳的性能, 最大限度的发挥网络的效用2.提高市场竞争能力, 提高运营商的信誉1.2 无线网络如何优化:1.传统方法: 1)路测;2)分析系统统计数据2.增强方法: 1)具有网络self optimization的工具, 软件实现自动/半自动优化;2)传统与增强相结合的方式是网络优化的最佳方法(“drive-less” optimization); 1.3 无线网络优化的目标:1.neighbor list prioritization2.pilot power3.cell coverage2 MOTO CDMA网优工具MOTO System Monitoring Application Processor (SMAP),是MOTO的Cdma优化与自优化工具,它主要提供详细无线统计数据搜集、无线统计数据监测与分析、无线网络优化支持;主要有如下功能:1.频谱/干扰分析,天线参数建议2.引入Orthogonal Channel Noise模拟系统负载(OCNS)3.发现覆盖不良区域(通过手机确定)4.发现导频污染–多个导频区域5.话务/数据接续流程分析6.小区发射/接受电平分析(noise rise)7.无线容量分析a)前向链路TCH增益b)反向链路Eb/No设置点8.Neighbor List (NL)优化9.Pilot Power优化(PPO)10.小区覆盖优化(CCO)2.1 Falcon 相邻小区产生工具(NLRT):1.记录通话、检测系统性能,避免单纯路测的high cost;2.邻区列表优化算法(Neighbor List Optimization (NLO) algorithm);3.邻区列表参数更新,可以由优化工程师手工修改,也可以有NLRT自动进行;4.基于统计的概念,并与现网数据的对比,以及优化前后的性能统计对比;2.2 OCNS (Orthogonal Channel Noise Simulation):1.用于系统过载情况下,模拟前向链路上的orthogonal traffic loading来确定链路容量;2.建立专用的OCNS channels,实时监测Reverse FER and Pilot Ec/Io;3.目标是:increases FER (call failures),reduces handoff zones (dropped calls);2.3 CDMA RF无线优化工具(CDMA RFOT):1.目的是提升RF性能;2.可以提供Pilot Power(导频功率-PPR)、Cell Coverage (天线俯仰角AntennaDowntilt- ADR);3 MOTO GSM网优工具MOTOvip是MOTO的网络优化专业服务品牌,它本身还汇聚了一些重要的智能优化工具,介绍如下:3.1 小区优化工具包(COP)要实现整体的网络优化,首先需要对各个基站所属区域进行局部优化。
校园无线网络安全及局域网认证解决方案一.现状分析 (2)二.解决提案 (2)三.解决方案 (2)3.1不用安装客户端软件的Web认证具有以下优势: (2)3.2先进的无线整体解决方案特点 (3)四.无线网络技术 (3)如火如荼的IEEE802.11系列 (3)笑傲欧洲的HiperLAN (4)独树一帜的红外系统 (5)互为补充的蓝牙技术 (5)力不从心的HomeRF (5)一.现状分析无线信息时代的来临,校园无线信息化的教学也成为学校等级的一个评判标准。
而且随着带有无线上网功能笔记本的普及和Internet及内部局域网接入需求的增长,无论是教师还是学生都迫切要求移动性上网和进行网上教学互动活动。
使得有线网络无法灵活满足他们对网络的需求。
二.解决提案无线局域网(WLAN)因其具有不受环境的局限、灵活便捷、不影响原有装修布局、建网周期短等优点,与传统的有线接入方式相比,无线局域网还不仅可以实现许多新的应用,更可以克服线缆限制引起的不便性,成为各大城市大.中、小学最适合的组网方式之一。
三.解决方案由于无线网络采用的是公共电磁波,任何人都有条件窃听或干扰信息,因此在无线局域网中,网络安全很重要。
无线认证管理安全网关系统是不用安装客户端软件的无线认证管理网络安全网关。
做到了无线网络从安全到管理的整个解决方案。
无线计费认证管理器可以提供全网的用户认证管理及计费等服务,并根据客户需要可实现对不同权限用户实现对上网流量、上网时间段、上网计费费用.上网范围、访问权限等等适合网络规划管理方面的要求,整个无线网络安全、管理策略可以在无线接入上网认证管理器上统一实现,扩展性以及安全保密的问题在这里得到了很好的解决。
方案选用的AirLive室内覆盖无线接入点,产品特点是Web管理口可让使用者设定在多个AP的会议室环境里.有着4个级别的TX 功率调节,可调低功率以防AP间的讯号重叠干扰.此外,有着重新苏醒功能,假如去PING 使用者定义的IP地址失败,这看门狗的功能将重新启动AP. 此系列产品针对无线网络专业设计的无线接入点系列,设计轻巧外形美观,安装使用简便。
基于内容的DTMB 700M对5G 700M干扰定位的方案研究作者:***来源:《中国新通信》2022年第16期摘要:针对工信部于2020年4月1日发布《关于调整700MHz频段频率使用规划的通知》,将702-798MHz频段频率使用规划调整用于移动通信系统,并将703-743/758-798MHz 频段规划用于频分双工(FDD)工作方式的移动通信系统。
目前中国移动5G 700M已开始大规模建设,需要开展全网700M扫频工作,排查并收集现存广播电视系统信号干扰范围、电台位置,为后续5G 700M站点的规划、建设、优化提供无线频谱数据支撑。
关键词:700M;DTMB;数字电视接收系统;上行干扰;下行干扰一、移动700M 5G建设的重大意义5G频段大致分为两段:1、低频段的Sub6G (FR1:450 MHz - 6000 MHz);2、高频段的毫米波(FR2:24250 MHz - 52600 MHz)。
Sub 6G频段就是6Ghz以下频段,相对毫米波频率更低,是常规的无线通信频段。
2020年4月之前工信部给三大运营商都分配的商用频段如下:中国移动:2515MHz-2675MHz、4800MHz-4900MHz,两段共260M;中国电信:3400MHz-3500MHz,共100M;中国联通:3500MHz-3600MHz,共100M。
随着电联的共建共享,3.5G的频段有200M,中国移动的竞争优势就不太明显,中国移动要想在全网特别是农村场景实现全覆盖需要投入的成本巨大。
根据无线电磁波传播模型,路损与频率的关系:Los = 10log(4π d/λ )^2=20log(4πdf/c) =32.44 + 20lgd + 20lgf,(距离d(km)、频率f(MHz)、Los 路径损耗),传播相同距离的路径损耗只与频率相关。
拿700M与2.6G相比,相同距离下的路径损耗,700M比2.6G 的少了11.4dB,据实际测试效果来看,700M的覆盖距离是2.6G的2.1倍,建设700M能快速低成本实现全网连续覆盖。
中国联通网络优化工程技术标准书一、人员配置1.1人员配备厂家需为本工程配备熟识网优工作、经历丰富的网优人员,并且明确人员数量、工作职责分工,以及为该工程预料工作时间,同时供应当人员工作简历。
人员至少应包括:工程经理、系统分析工程师、射频优化工程师、无线测试工程师、基站工程师等。
具体人员请按如下清单供应。
工作过程中如需聘请第三方队伍,应同时明确第三方队伍的数量和人员构成,且第三方网优队伍资格须得到当地分公司认可,具体资格认证方法由分公司制定。
具体人员配备标准由厂家与分公司协商确定,但至少满足在全面优化期间原那么上每300个基站〔指扩容前站数,缺乏300个按300个计〕或每新增100个基站〔缺乏100个按100个计〕至少配备一个优化小组,每个优化小组至少包括1名系统分析工程师、1名射频优化工程师、1名无线测试工程师、1名基站工程师。
〔各分公司可依据本地实地状况对人员队伍的配备提出进一步细化要求〕1.2工作职责➢工程经理职责:〔1〕负责全部工程工程管理、协调和限制,制定一个全面、完善、切实可行的工作打算,审核各小组工作进度和完成质量状况,指导各小组开展工作。
〔2〕配置和协调内外人力、软件、硬件等资源。
催促工程组成员安既定打算和目标完成工程目标。
➢系统分析工程师工作职责〔1〕负责分析各种测试和性能统计数据,特殊是要能够利用MR〔测量报告〕进展网络评估,依据网络评估结果,找出网络存在的突出问题,提出整体优化建议书和实施方案;〔2〕负责确定全网频率规划方案,重点解决同频干扰问题,降低邻频干扰问题;〔3〕负责网络系统参数的分析,提出对系统参数的修改方案;〔4〕负责对系统容量、负荷等进展核算,提交优化方案;〔5〕负责跟踪系统性能无线侧优化实施的效果;〔6〕负责制定无线网络优化工作的具体工作流程和技术标准。
➢射频优化工程师职责〔1〕负责对采集数据进展分析,提出对现场测试发觉问题的解决方案;〔2〕能够利用相关工具采集MR〔测量报告〕并进展初步分析;〔3〕负责投诉的现场测试、分析并提出射频方面的解决方案;〔4〕负责对外部干扰问题进展定位并供应解决方案;〔5〕负责验证DT测试、CQT测试和投诉处理优化方案的实施效果。
移动通信系统频点划分一、GSM900上下行差45MHz说明:GSM频率在890M~915M上行,935M~960M下行,频点为0~124,其中95为临界频点;分配给移动公司的890M~909M,分配给联通公司的为909M~915M;其中对应移动的频点为0~94,联通的频点为96~124;E-GSM说明:GSM频率在880M~890M上行,925M~935M下行,频点为975~1024,其中1024为临界频点;分配给移动公司的885M~890M,未分配给联通公司;其中对应移动的频点为1000~1023;二、GSM1800上下行差95MHz说明:GSM频率在1710M~1785M上行,1805M~1880M下行,频点为512~886;分配给移动公司的1710M~1720M、1725M~1735M共20M、100个频点其中1730-1735MHz/1825-1830MHz是07年信息产业部新批,而上海、广东、北京特殊分配了1720M~1725M据集团公司技术部2006年2月通信资源管理信息;广西移动全网可使用的频点范围为512~562、586~636共100个频点,分配给联通公司的为1745M~1755M;其中一些地市1735M-1745M已经被联通占用1、频道间隔相邻两频点间隔为为200kHz,每个频点采用时分多址TDMA方式,分为8个时隙,既8个信道全速率,如GSM采用半速率话音编码后,每个频点可容纳16个半速率信道,可使系统容量扩大一倍,但其代价必然是导致语音质量的降低;2、频道配置绝对频点号和频道标称中心频率的关系为:GSM900MHz频段:f1n=+n-1×移动台发,基站收fhn=f1n+45MHz基站发,移动台收;n∈1,124GSMl800MHz频段为:f1n=+n-512×移动台发,基站收fhn=f1n+95MHz基站发,移动台收;n∈512,885其中:f1n为上行信道频率、fhn为下行信道频率,n为绝对频点号ARFCN;3、在我国GSM900使用的频段为:890~915MHz 上行频率935~960MHz 下行频率频道号为76~124,共10M带宽;中国移动公司:890~909MHz上行,935~954MHz下行,共19M带宽,95个频道,频道号为1~95; 目前通过中国移动TACS网的压频,为GSM网留出了更大的空间,因而GSM实际可用频点号要远大于该范围;中国联通公司:909~915MHz上行,954~960MHz下行,共6M带宽,29个频道,频道号为96~124;4、干扰保护比载波干扰比C/I是指接收到的希望信号电平与非希望信号电平的比值,此比值与MS的瞬时位置有关;这是由于地形的不规则、散射体的类型及数量不同,以及其他一些因素如天线的类型、方向性及高度,站址的标高及位置,当地的干扰源数目等造成的;同频干扰保护比:C/I≥9dB;所谓C/I,是指当不同小区使用相同频率时,另一小区对服务小区产生的干扰,它们的比值即C/I,GSM规范中一般要求C/I>9dB;工程中一般加3dB余量,即要求C/I>12dB;邻频干扰保护比:C/I≥-9dB;所谓C/A,是指在频率复用模式下,邻近频道会对服务小区使用的频道进行干扰,这两个信号间的比值即C/A;GSM规范中一般要求C/A>-9dB,工程中一般加3dB 余量,即要求C/A>-6dB;载波偏离400kHz的干扰保护比:C/I≥-41dB;三、其他相关频段TD-SCDM 1880-1900MHz 2010-2025MHzWCDMA 1940-1955MHz上行 2130-2145MHz下行CDMA2000 825-835MHz 870-880MHz 现用1920-1935MHz上行2110-2125MHz下行备用CDMA 825~835MHZ, 870~880MHZ上/下行,CH.ETS 450~455MHZ 460~465MHZ上/下行小灵通 1900-1920MHz小灵通退网之后给TD使用WLAN 2400~2485MHz四、WCDMA相关内容:1、扰码规划3GPP规范定义的扰码被分为512个扰码组,每个组包括1个主扰码和相应的15个辅扰码;每个小区分配1个主扰码,并且只能分配1个主扰码;为了提高小区内用户终端的接入速度,512个主扰码进一步被分为64个主扰码组,每个组内包括8个主扰码色码;为避免省际边界和室内外覆盖扰码规划冲突导致干扰,应为省际边界基站和室内覆盖站点预留一定的扰码资源,分配如下: 1) 分配6组共48个扰码用于边界扰码规划,分为A 、B 两组,每组24个扰码;2) 分配4组共32个扰码用于室内覆盖系统,为边界分配的6组在市区可用于室内覆盖系统;室内覆盖系统共可使用10组扰码; 3) 其余1-54组共432个扰码用于室外基站;2、频率规划根据工信部规定,中国联通可用的频段是1940MHz ~1955MHz 上行、2130MHz ~2145MHz 下行,上下行各15MHz;相邻频率间隔采用5MHz 时,可用频率是3个;载波频率是由UTRA 绝对无线频率信道号UARFCN 指定的;在IMT2000频带内的UARFCN 的值是通过下述公式定义的:UTRA 绝对无线频率信道号上行链路U N = 5 uplink f ; N 为9613 到 9888uplink f MHz, 其中uplink f 是上行频率,单位MHz下行链路D N = 5 downlink f ; N 为10563 到 10838.downlink f MHz, 其中downlink f 是下行频率,单位MHz根据可用频段和绝对无线频率信道号计算公式,中国联通可用的频率号见下表: 序号1 2 3 上行链路 9713 9738 9763 下行链路106631068810713频率规划应遵循如下原则:1为了尽可能降低PHS 对WCDMA 的干扰,从高端向下顺序使用频率,即单载波基站采用9763号频率,二载波基站采用9763号、9738号频率;2原则上室内外采用同频设置,个别区域如超高楼层如同频设置确实通过优化无法解决干扰问题,可慎重选择异频设置;一般建议10层以上高楼采用异频设置;3、频点使用简述:做规划优化、电磁背景干扰测试的相关工程师,可能会用到相关的信道号和对应的频率等信息;关于这些信道号与频率的信息提供一个快速记忆思路:联通WCDMA 频率范围:上行1940MHz ~1955MHz ,下行2130MHz ~2145MHz;带宽15MHz,上下行间隔为190MHz;WCDMA 的信道号即所谓的绝对无线频率信道号间隔为200KHZ,即;则25个信道的带宽为25=5M,也就是说5M 带宽包括25个信道;同理,190MHz 带宽所包含的信道为 190/=950个,即上下行间隔190M 等同于950个信道加起来的带宽; 5MHz=25个信道 190MHz=950个信道快速记忆和推算联通WCDMA的载波信道号和相应频率:1、总带宽 15MHz, 而WCDMA每个载波要求的带宽是5MHz,故可用载波为3个;可称为载波1,载波2,载波3;2、载波1的绝对无线频率信道号:上行为9713,对应频率为 MHZ; 5=9713下行为10663,对应频率为 MHZ; 5=10663可以根据上行计算下行:信道号 10663=9713+950 , 频率 =+190 MHz;3、快速推算载波2的信道号与频率:发射机CDMA信道号CDMA频率指配MHz1 N 799 N +移动台991 N 1023 N-1023 +1 N 799 N +基站991 N 1023 N-1023 +下行信道号为 10663+25=10688,频率为 +5MHz=;也可以根据上行推算下行:下行信道号为 9738+950=10663,频率为+190MHz=;4、载波3同理类推;五、CDMA相关内容:CDMA制式一开始的标准是IS95,往后演进有IS95A--IS95B---IS2000,到了IS2000实际上就到了CDMA2000 1X;CDMA2000 1X较IS95有很大改进,比如在前向引入了快速功控、在反向增加了导频信道等;800M是指CDMA使用的频段是800M的频段:反向825-835M,前向870-880M;CDMA 800MHZ 应该指的是IS95;CDMA2000 1X往后演进,划分出高速的数据网络EVDO,它有2个版本R0和RA,RA较R0有更高的前反向速率:前向3.1M,反向1.8M,这次电信重组后,中国电信将建设1X 和EVDO RA的网络,演进到3G 中的CDMA2000标准,目前搭载在CDMA800MHz系统上,我国为中国电信cdma2000分配的频率是1920~1935MHz上行/2110~2125MHz下行,共15MHz×2;在CDMA系统中,已知系统使用的频点后,根据频点计算公式得到对应的具体频率,该频率就是系统使用的频带的中心频率,然后在该中心频率上下加减,就是该频点对应使用的频带;800M频段的划分如下图所示:电信的补充频段CDMA商用系统常用频段为:上行频段范围1920~1935M;下行频段范围 2110~2125M;频点换算成频率的公式为:基站收上行: +MHz基站发下行: +MHz六、TD-SCDMA频点规划将我国第三代公众移动通信系统主要工作频段规划为时分双工TDD方式:即1880~1920MHz、2010~2025MHz;补充工作频率为时分双工TDD方式:2300~2400MHz;因为第三代公众移动通信系统中TDD方式仅有我国的TD-SCDMA,根据上述规定,产业界为方面表达,称1880~1920MHz为A频段,称2010~2025MHz为B频段,称2300~2400MHz为C频段;目前中国移动10城市TD-SCDMA均运行于B频段;随着TD-SCDMA的进一步发展和小灵通目前实际占用1900~1915MHz的退出,TD-SCDMA系统将逐渐采用A频段;七、TDD LTE的频段TDD LTE的频段啊,频段范围如下:38 2570 MHz –2620 MHz 2570 MHz –2620 MHz TDD39 1880 MHz –1920 MHz 1880 MHz –1920 MHz TDD40 2300 MHz –2400 MHz 2300 MHz –2400 MHz TDD41 2496 MHz 2690 MHz 2496 MHz 2690 MHz TDD1、D频段38主要用于主城区,宏基站覆盖;2、E频段40主要用于分布系统;3、F频段39,目前已知的主要用于农村广覆盖的建设,如目前流行的农村宽带;4、41 R10,3GPP又引入了新的TDD频段,其中B41为2500~2690MHz,非常重要;因为中国已经宣布,将B41的全部频段用于TD-LTE;38虽然包含在41内,但和频谱是相关的,有的国家地区能够拿出38的频谱,但无法拿出41这样180那么宽的频谱出来;另外38是3gpp最早定义给tdd的,但随着版本的上升需要考虑载波聚合需要很宽的带宽,而38只有50m可用,另外像日本有些国家拿不出38这个频带,但能提供38附近的频谱做tdd所以41被提出来,并被3gpp接纳;最后要说的,支持41的虽然硬件能支持38但不能说肯定支持38,这要看厂家和运营商的定制策略;LTE频段信息3GPP R10中,规定的LTE频段信息如下,高BAND为TDD-LTE频段E-UTRA Operating Band Downlink UplinkF DL_low MHz N Offs-DL Range of N DL F UL_low MHz N Offs-UL Range of N UL1211000 – 59919201800018000 –18599 21930600600-1199 18501860018600 –19199 3180512001200 – 194917101920019200 –19949 4211019501950 – 239917101995019950 –20399 586924002400 – 26498242040020400 –20649 687526502650 – 27498302065020650 –20749频段和频点信息如何映射那协议中如下规定:F DL= F DL_low+ N DL– N Offs-DLF UL= F UL_low+ N UL– N Offs-UL例如:要计算频点为38000的频段,那么根据频点表格,首先确定EARFCN=38000是BAND38的频段,那么F DL_low=2570,N DL– N Offs-DL=37750F DL= 2570+ 38000 – 37750=2595,上行频点以及从频点计算频段方法都以此类推参考文档:3GPP。