离散数学第六章 群论
- 格式:ppt
- 大小:331.50 KB
- 文档页数:33
离散数学是数学中重要的一个分支,它研究离散对象和离散结构。
在离散数学的范畴中,代数系统是一个非常基础而重要的概念。
代数系统是在一组元素上定义了一组操作的结构,它研究了这些操作的性质和规律。
而群论是代数系统研究的一个重要方向,它研究了代数系统中的群的性质和特点。
代数系统是离散数学的重要概念之一。
它是一个三元组(S, F, O) ,其中S是一个非空集合, F是定义在S上的一组操作,O是与操作F相适应的元素关系。
代数系统可以是代数学、逻辑学、计算机科学等领域的基本概念。
在代数系统中,操作具有封闭性、结合律、单位元和逆元等基本性质。
代数系统可以有多种形式,如群、环、域等。
而群论就是研究代数系统中的群的性质和规律。
群论是代数系统研究的一个重要方向。
群是一种具有封闭性、结合律、单位元和逆元等性质的代数系统。
在群论中,我们研究了群的基本性质和规律。
群论有两个基本概念:子群和同态。
子群是群中的一个子集,并且仍然满足群的定义。
同态是两个群之间的一个映射,并且保持了一些重要的性质。
群论在数学中有广泛的应用。
它在几何学、物理学、密码学等领域中都有应用。
在几何学中,群论被应用于对称性的研究,帮助我们理解对称性的本质和规律。
在物理学中,群论被用于对物理规律和物理现象的数学描述。
在密码学中,群论被应用于设计和分析密码系统,保证信息的安全性。
总的来说,离散数学中的代数系统与群论是数学中重要的研究方向。
代数系统是在一组元素上定义了一组操作的结构,而群论研究了代数系统中的群的性质和规律。
群论在数学以及其他领域中有广泛的应用。
它不仅为我们解决实际问题提供了新的思路和方法,也帮助我们理解了离散数学中的一些基本概念和原理。
因此,学习和掌握离散数学中的代数系统与群论是非常重要的,它们对我们提高数学素养和解决实际问题都具有重要的意义。
离散数学是研究离散结构的数学学科,而群论是其中一个重要的分支。
群论研究的是集合上的代数结构,它是数学中一种最基本、最抽象也是最重要的代数结构之一。
而群表示则是将一个群的元素用矩阵或线性变换表示的方法,它在研究群论以及其他数学领域中都有广泛的应用。
首先,让我们来了解一下群论的基本概念。
一个群是一个集合,配以一个二元运算,并满足封闭性、结合律、单位元存在性和逆元存在性等四个基本性质。
群论的研究对象可以是各种各样的集合,比如整数、矩阵、几何变换等,它们在群运算下具有不同的性质。
群论的基本性质包括群的封闭性、结合律、单位元存在性和逆元存在性等,这些性质很大程度上影响着群的结构和性质。
群论的应用范围十分广泛,从代数几何到量子力学,从密码学到编码理论,都离不开群论的应用。
群论在密码学中的应用,比如RSA加密算法、椭圆曲线加密算法等,能够保障数据的安全性。
在编码理论中,群论可以用来研究调制解调、编码纠错等问题。
群论在物理学中的应用也是非常重要的,比如量子力学中的对称群和轨道角动量的群表示等。
群表示是研究群的元素如何被矩阵或线性变换表示的方法。
群表示可以用来研究群的性质和结构,它将抽象的群元素转化为具体的矩阵或线性变换,使得我们能够更方便地研究群的性质。
群表示的基本概念包括等幺同态、不可约表示、经验公式等。
群表示的研究在量子力学、几何代数、图论等领域都有广泛的应用。
总之,离散数学中的群论和群表示是研究代数结构和抽象结构的基本工具。
群论研究的是集合上的代数运算,而群表示则是将群的元素用矩阵或线性变换表示的方法。
群论和群表示在密码学、编码理论以及物理学等领域都有重要的应用,它们为我们理解和解决问题提供了有效的数学工具。
对于离散数学的学习者来说,深入理解群论和群表示的概念和方法,对于提升数学素养和解决实际问题都是非常有帮助的。
群论是离散数学中一个重要的分支,它研究的是集合上的一种代数结构。
群论的研究对象是一种特殊的代数结构,即群。
群是一个有限或无限集合,上面定义了一种二元运算,满足封闭性、结合律、单位元和逆元的条件。
在群论中,置换群是一种重要的群结构。
置换群是由一组有限的置换构成的群,它和对称性的概念密切相关。
在置换群中,逆元的概念也十分重要。
在置换群中,每个置换都可以看作是一种重排,它将集合中的元素按照一定规则进行了重新排列。
而置换群的逆元就是将这种重排的操作进行了逆向操作。
具体而言,对于一个置换群中的元素a,如果存在一个元素b在该群中,使得a 和b进行相互重排后得到的结果是集合中的每个元素都恰好一样,那么b就是a的逆元。
置换群的逆元的存在性是群论中的重要性质之一。
事实上,逆元的存在性是群论中一个基本的公理,它是群运算的基础。
所有的群都满足逆元存在性,并且具有相应的性质。
置换群的逆元的求解方法也是群论中的一个重要问题。
根据置换群的性质和逆元的定义,可以使用多种方法来求解置换群的逆元。
其中一种常见的方法是通过交换和反转操作来求解逆元。
具体而言,对于一个置换群中的置换,可以通过先进行交换操作,然后再进行反转操作,来得到该置换的逆元。
置换群的逆元在离散数学中具有广泛的应用。
它在密码学中的应用尤为重要,例如在公钥密码学中,通过求解置换群的逆元问题,可以实现对称密钥的生成和加密解密过程的安全性。
此外,在图论、编码理论等领域中,置换群的逆元也有着重要的应用。
综上所述,离散数学中的群论和置换群的逆元是一个重要的研究内容。
通过对群的性质和逆元的定义进行深入研究,可以获得对离散数学和相关领域理论的深刻理解。
对于解决实际问题,如密码学和图论等领域的应用问题,群论和置换群的逆元给予了重要的方法和工具。
群论是离散数学中的重要分支,研究集合上的一种二元运算,需要满足封闭性、结合律、单位元和逆元等性质。
有限群分类定理是群论中的重要定理之一,它描述了有限群的分类和结构。
在群论中,群是指一个集合G以及G上的一个二元运算组成的结构。
群需要满足四个性质:封闭性、结合律、单位元和逆元。
封闭性指的是对于任意的a、b∈G,a b也属于G;结合律指的是对于任意的a、b、c∈G,(a b)c=a(b c);单位元指的是存在一个元素e∈G,对于任意的a∈G,a e=e a=a;逆元指的是对于任意的a∈G,存在一个元素b∈G,使得a b=b a=e。
有限群分类定理是群论中的重要定理之一,它描述了有限群的分类和结构。
有限群是指元素个数有限的群。
有限群分类定理说明了任意一个有限群都可以被分解成若干个单群的直积。
一个单群是指除了单位元外,没有其他真子群的群。
有限群分类定理指出,任意一个有限群都可以被表示为若干个单群的直积,其中每个单群可以有不同的重复次数。
这样的分解方法是唯一的。
有限群分类定理的证明十分复杂,涉及到许多高级群论的概念和工具,如正规子群、陪集、同态映射、共轭等。
证明过程中使用了许多数学技巧和方法,如数学归纳法、反证法、构造法等。
有限群分类定理的应用非常广泛。
在代数几何、组合数学、密码学等领域都有运用。
例如在密码学中,公钥密码体制中的群是密码算法的基础,有限群分类定理提供了使用一些特殊类别的群的可行性。
综上所述,群论和有限群分类定理是离散数学中的重要内容。
群论研究集合上的一种二元运算,有限群分类定理描述了有限群的分类和结构。
它的应用广泛且重要,对于理解和应用群论有着重要的意义。
对于研究者来说,深入理解群论和掌握有限群分类定理是探索数学更深层次的必经之路。
第六章几个典型的代数系统6.1 半群与群引言:简略介绍群论产生的背景1. 图形的对称性如正三角形、正方形(一般地正n 边形)、长方形、 等腰三角形、等腰梯形等;三维空间中的正四面体、 正方体、长方体等都各有自己的对称性。
画图解释:2.用根式求解代数方程的根(1)一元二次方程:20x bx c ++=⇒122b x -±=,。
注:①约公元前2000年即出现二次方程求根问题; ②约公元9世纪时,阿拉伯人花拉子米首次得到上述求根公式。
(2)三次及四次方程的求根公式一般三次方程: 320x ax bx c +++=。
先作变换:用3a x -代替x 后可化成 3x mx n +=(不含二次项), (*)其中 332,3327a ab a m b n c =-=--。
利用恒等式:333()3()u v uv u v u v -+-=-,把它与(*)比较得:33,3,x u v uv m u v n =-=-=。
由后面两个关于33,u v 的方程可得u x u v v ⎫⎪=⎪⇒=-= (即*方程的解) 以上求解三次方程的公式叫做卡丹公式, 出现在公元1545年出版的著作《大书》中。
关于四次方程的求根公式这里从略,可以肯定的是, 四次一般方程也有求根公式,并且也叫卡丹公式。
(3从1545年之后的近300年间,人们都没能找到五次(当然,这并不排除对 某些特殊的五次及五次以上的方程可以求出它们的根)。
直到1830年由法国人Galois (伽珞瓦)解决,证明出:五次及五次以上的一般方程不存在用加、减、乘、除及开方表示的求根公式,所用方法就是现在已广为接受的群的思想。
可是在当时,很多同时代的大数学家都无法理解和接受他的思想方法。
3.群在其它方面的应用:如编码理论、计算机等。
一.群的定义及简单性质1定义:设,G ⋅是一个具有二元运算⋅的代数系统,如果⋅同时满足(1)结合律:即,,a b c G ∀∈,()()a b c a b c ⋅⋅=⋅⋅总成立;(2)存在单位元(也称为幺元,记为e ),即 ,;a e e a a a G ⋅=⋅=∀∈(3)中每个元素a 都有逆元(记为1a -):即存在1a G -∈,使得11a a a a e --⋅=⋅=,则称G 关于运算⋅构成一个群。
离散数学第六章第二部分集合论引言集合是数学中最为基本的概念,又是数学各分支、自然科学及社会科学各领域的最普遍采用的描述工具。
集合论是离散数学的重要组成部分,是现代数学中占有独特地位的一个分支。
G.康托尔是作为数学分支的集合论的奠基人。
1870年前后,他关于无穷序列的研究导致集合论的系统发展。
1874年他发表了关于实数集合不能与自然数集合建立一一对应的有名的证明。
1878年,他引进了两个集合具有相等的“势”的概念。
然而,朴素集合论中包含着悖论。
第一个悖论是布拉利-福尔蒂的最大序数悖论。
1901年罗素发现了有名的罗素悖论。
1932年康托尔也发表了关于最大基数的悖论。
集合论的现代公理化开始于1908年E.策梅罗所发表的一组公理,经过A.弗兰克尔的加工,这个系统称为策梅罗-弗兰克尔集合论(ZF),其中包括1904年策梅罗引入的选择公理。
另外一种系统是冯*诺伊曼-伯奈斯-哥德尔集合论。
公理集合论中一个有名的猜想是连续统假设(CH)。
K.哥德尔证明了连续统假设与策梅罗-弗兰克尔集合论的相容性,P.J.科恩证明了连续统假设与策梅罗-弗兰克尔集合论的独立性。
现在把策梅罗-弗兰克尔集合论与选择公理一起称为ZFC系统。
本部分主要介绍朴素集合论的主要内容,其中包括集合代数(第六章)、二元关系(第七章)、函数(第八章)、集合的基数(第九章)等。
本部分的先行知识及各部分的关系如下图所示:6.1 集合的基本概念一.集合的表示集合是不能精确定义的基本概念。
直观地说,把一些事物汇集到一起组成一个整体就叫集合,而这些事物就是这个集合的元素或成员。
例如:方程x2-1=0的实数解集合;26个英文字母的集合;坐标平面上所有点的集合;……集合通常用大写的英文字母来标记,例如自然数集合N(在离散数学中认为0也是自然数),整数集合Z,有理数集合Q,实数集合R,复数集合C等。
表示一个集合的方法有两种:列元素法和谓词表示法,前一种方法是列出集合的所有元素,元素之间用逗号隔开,并把它们用花括号括起来。