离散数学_第06章代数结构概念及性质
- 格式:ppt
- 大小:493.00 KB
- 文档页数:99
离散数学是数学中的一个重要分支,它研究离散的、非连续的数学对象和结构。
在离散数学中,代数结构是其中一个重要的概念,而置换群是代数结构的一个重要例子。
代数结构是研究对象间关系的一种数学工具。
它包括集合,运算和运算性质。
集合是代数结构的基础,是一个由元素组成的不重复的集合。
运算指的是将集合中两个元素映射到集合中的另一个元素的操作,常见的运算有加法、乘法等。
运算性质是指运算在代数结构中具有的性质,如结合律、交换律、单位元等。
在代数结构中,置换群是一种重要的结构。
置换是一种改变事物次序的方法,它可以是将事物重新排列,也可以是将某个事物替换为另一个事物。
置换群是一组置换构成的集合,并且具有封闭性,结合律和单位元等性质。
置换群可以描述物体的旋转、对称和变换等操作,也可以用于密码学和密码破解等领域。
置换群的运算是指将两个置换进行合成,可以通过将第一个置换的作用结果作为第二个置换的作用对象来实现。
例如,设置换π1表示将物体的位置1和位置2进行交换,置换π2表示将物体的位置2和位置3进行交换,那么置换π1和置换π2的合成操作即为将物体的位置1和位置3进行交换。
正如前所述,置换群具有封闭性、结合律和单位元等性质。
封闭性指的是任意两个置换的合成结果仍然是一个置换。
结合律是指对于置换群中的任意三个置换a、b和c,有(a * b) * c = a * (b * c),即合成的顺序不影响结果。
单位元是指存在一个特殊的置换,它与任意置换进行合成后结果仍然是原置换。
在置换群中,还有一个重要的概念是逆元。
对于每个置换a,都存在一个逆置换a',使得a * a' = a' * a = e,其中e是置换群的单位元。
逆元表示将一个置换的操作逆向执行,可以将置换还原为原来的状态。
置换群不仅在离散数学中有重要应用,还在计算机科学、物理学和化学等领域中得到广泛应用。
在计算机科学中,置换群可以用于密码学中的置换密码,用于保护数据的安全性。
离散数学结构第6章集合代数第六章集合代数1. 集合,相等,(真)包含,⼦集,空集,全集,幂集2. 交,并,(相对和绝对)补,对称差,⼴义交,⼴义并3. ⽂⽒图,有穷集计数问题4. 集合恒等式(等幂律,交换律,结合律,分配律,德·摩根律,吸收律,零律,同⼀律,排中律,⽭盾律,余补律,双重否定律,补交转换律等)学习要求1. 熟练掌握集合的⼦集、相等、空集、全集、幂集等概念及其符号化表⽰2. 熟练掌握集合的交、并、(相对和绝对)补、对称差、⼴义交、⼴义并的定义及其性质3. 掌握集合的⽂⽒图的画法及利⽤⽂⽒图解决有限集的计数问题的⽅法4. 牢记基本的集合恒等式(等幂律、交换律、结合律、分配律、德·摩根律、收律、零律、同⼀律、排中律、⽭盾律、余补律、双重否定律、补交转换律)5. 准确地⽤逻辑演算或利⽤已知的集合恒等式或包含式证明新的等式或包含式6.1 集合的基本概念⼀.集合的表⽰集合是不能精确定义的基本概念。
直观地说,把⼀些事物汇集到⼀起组成⼀个整体就叫集合,⽽这些事物就是这个集合的元素或成员。
例如:⽅程x2-1=0的实数解集合;26个英⽂字母的集合;坐标平⾯上所有点的集合;……集合通常⽤⼤写的英⽂字母来标记,例如⾃然数集合N(在离散数学中认为0也是⾃然数),整数集合Z,有理数集合Q,实数集合R,复数集合C等。
表⽰⼀个集合的⽅法有两种:列元素法和谓词表⽰法,前⼀种⽅法是列出集合的所有元素,元素之间⽤逗号隔开,并把它们⽤花括号括起来。
例如A={a,b,c,…,z}Z={0,±1,±2,…}都是合法的表⽰。
谓词表⽰法是⽤谓词来概括集合中元素的属性,例如集合B={x|x∈R∧x2-1=0}表⽰⽅程x2-1=0的实数解集。
许多集合可以⽤两种⽅法来表⽰,如B也可以写成{-1,1}。
但是有些集合不可以⽤列元素法表⽰,如实数集合。
集合的元素是彼此不同的,如果同⼀个元素在集合中多次出现应该认为是⼀个元素,如{1,1,2,2,3}={1,2,3}集合的元素是⽆序的,如{1,2,3}={3,1,2}在本书所采⽤的体系中规定集合的元素都是集合。
离散数学形考任务3代数结构部分概念及性质一、概念介绍代数结构是离散数学中的一个重要概念。
它描述了在特定集合上定义的运算规则和性质。
常见的代数结构主要包括:1. 群(Group):群是一种具有封闭性、结合律、单位元和逆元的代数结构。
它是一种基本的抽象代数结构,并具有丰富的性质和应用。
2. 环(Ring):环是一种具有加法和乘法两种运算的代数结构。
它具有封闭性、结合律、单位元、交换律和分配律等性质。
3. 域(Field):域是一种具有加法、乘法、减法和除法四种运算的代数结构。
它是一种高级的代数结构,并满足多种性质,如交换性、维数等。
二、性质探讨不同的代数结构具有不同的性质,下面我们分别探讨一下群、环和域的性质:1. 群的性质:- 封闭性:对于群G中的任意元素a和b,它们的运算结果ab 也属于G。
- 结合律:对于群G中的任意元素a、b和c,(ab)c = a(bc),即运算顺序不影响结果。
- 单位元:群G中存在一个元素e,使得对于任意元素a,ae = ea = a。
- 逆元:对于群G中的任意元素a,存在一个元素b,使得ab = ba = e。
2. 环的性质:- 封闭性:对于环R中的任意元素a和b,它们的加法运算结果a+b和乘法运算结果ab都属于R。
- 结合律:对于环R中的任意元素a、b和c,(a+b)+c = a+(b+c)和(ab)c = a(bc),即运算顺序不影响结果。
- 单位元:环R中存在一个元素0,使得对于任意元素a,a+0 = 0+a = a。
- 交换律:对于环R中的任意元素a和b,a+b = b+a和ab = ba。
- 分配律:对于环R中的任意元素a、b和c,a(b+c) = ab+ac和(a+b)c = ac+bc。
3. 域的性质:- 封闭性:对于域F中的任意非零元素a和b,它们的加法运算结果a+b和乘法运算结果ab都属于F。
- 结合律、单位元和逆元:与群和环的性质类似,域也具有结合律、单位元和逆元的性质。
离散数学中代数系统知识点梳理离散数学作为一门数学学科,研究的是离散化的对象和结构。
代数系统作为离散数学的一个重要分支,是对数学对象的代数性质进行研究的一种形式化工具。
在离散数学中,代数系统的概念和相关知识点是非常重要的。
一、代数系统的基本概念代数系统是指由集合和一组运算构成的数学结构。
其中,集合是代数系统中最基本的概念,可以是有限集或无限集;运算是指对集合中的元素进行操作并得到新的元素。
代数系统主要包括代数结构、代数运算和代数性质三个方面。
1. 代数结构:代数结构由集合和一组运算构成,可以包括加法、减法、乘法、除法等。
常见的代数结构有群、环、域等。
2. 代数运算:代数运算是指对集合中的元素进行操作,可以是二元运算也可以是多元运算。
常见的代数运算有加法、乘法、幂运算等。
3. 代数性质:代数系统具有一些特定的性质,如封闭性、结合律、交换律、单位元素、逆元素等。
二、代数系统的分类根据代数运算的性质,代数系统可以分为群、环、域和向量空间等不同类型。
1. 群:群是一种代数系统,具有封闭性、结合律、单位元素和逆元素等性质。
群分为有限群和无限群,可以是交换群或非交换群。
2. 环:环是一种代数系统,具有封闭性、结合律、交换律和单位元素等性质。
环分为有限环和无限环,可以是可除环或非可除环。
3. 域:域是一种代数系统,具有封闭性、结合律、交换律、单位元素、逆元素和分配律等性质。
域是一种完备的代数系统,可以进行加、减、乘、除运算。
4. 向量空间:向量空间是一种代数系统,具有封闭性、结合律、交换律、单位元素、逆元素和分配律等性质。
向量空间是一种具有线性结构的代数系统。
三、代数系统的应用代数系统作为离散数学的一个重要分支,在计算机科学、密码学、通信工程等领域有着广泛的应用。
1. 计算机科学:代数系统在计算机科学中起到重要的作用,比如在数据库设计、编译原理、算法设计等方面都有应用。
代数系统可以描述和分析计算机系统的运行和性能。
第六章几个典型的代数系统6.1 半群与群引言:简略介绍群论产生的背景1. 图形的对称性如正三角形、正方形(一般地正n 边形)、长方形、 等腰三角形、等腰梯形等;三维空间中的正四面体、 正方体、长方体等都各有自己的对称性。
画图解释:2.用根式求解代数方程的根(1)一元二次方程:20x bx c ++=⇒122b x -±=,。
注:①约公元前2000年即出现二次方程求根问题; ②约公元9世纪时,阿拉伯人花拉子米首次得到上述求根公式。
(2)三次及四次方程的求根公式一般三次方程: 320x ax bx c +++=。
先作变换:用3a x -代替x 后可化成 3x mx n +=(不含二次项), (*)其中 332,3327a ab a m b n c =-=--。
利用恒等式:333()3()u v uv u v u v -+-=-,把它与(*)比较得:33,3,x u v uv m u v n =-=-=。
由后面两个关于33,u v 的方程可得u x u v v ⎫⎪=⎪⇒=-= (即*方程的解) 以上求解三次方程的公式叫做卡丹公式, 出现在公元1545年出版的著作《大书》中。
关于四次方程的求根公式这里从略,可以肯定的是, 四次一般方程也有求根公式,并且也叫卡丹公式。
(3从1545年之后的近300年间,人们都没能找到五次(当然,这并不排除对 某些特殊的五次及五次以上的方程可以求出它们的根)。
直到1830年由法国人Galois (伽珞瓦)解决,证明出:五次及五次以上的一般方程不存在用加、减、乘、除及开方表示的求根公式,所用方法就是现在已广为接受的群的思想。
可是在当时,很多同时代的大数学家都无法理解和接受他的思想方法。
3.群在其它方面的应用:如编码理论、计算机等。
一.群的定义及简单性质1定义:设,G ⋅是一个具有二元运算⋅的代数系统,如果⋅同时满足(1)结合律:即,,a b c G ∀∈,()()a b c a b c ⋅⋅=⋅⋅总成立;(2)存在单位元(也称为幺元,记为e ),即 ,;a e e a a a G ⋅=⋅=∀∈(3)中每个元素a 都有逆元(记为1a -):即存在1a G -∈,使得11a a a a e --⋅=⋅=,则称G 关于运算⋅构成一个群。
离散数学代数结构部分离散数学是数学的一个分支,主要研究离散的、分离的、离散化的对象和结构。
其中代数结构是离散数学的一个重要部分,涉及到一些常见的代数结构,如群、环和域等。
下面将从群、环和域三个方面展开,对离散数学中的代数结构进行详细介绍。
一、群群是离散数学中的一个基本代数结构,它由三个主要部分组成:集合、运算和满足一定性质的公理。
具体地,一个群G是一个非空集合,也即G={a,b,c,...},其中的元素a、b、c等叫做群的元素。
除此之外,群还具有一个二元运算,记作"·",满足以下四个公理:1.封闭性公理:对于群的任意两个元素a、b,它们的乘积c=a·b仍然属于G,即c∈G。
2.结合律公理:对于群的任意三个元素a、b、c,(a·b)·c=a·(b·c)。
3.单位元公理:群中存在一个特殊的元素e,称为单位元,满足对于任意元素a,有a·e=e·a=a。
4.逆元公理:对于群中任意元素a,存在一个元素b,使得a·b=b·a=e,其中e是群的单位元。
群结构的研究对于解决各类数学问题具有重要意义。
例如,在密码学中,通信双方使用群的运算来实现加密和解密的功能。
二、环环是另一个重要的代数结构,在离散数学中有广泛的应用。
一个环R由一个非空集合以及两个满足一定条件的二元运算分别组成。
对于一个环R={G,+,·},其中G是一个非空集合,"+"和"·"分别是R上的两个二元运算,满足以下四个公理:1.集合G关于"+"构成一个阿贝尔群,即对于任意的a、b、c∈G,满足以下性质:(a+b)+c=a+(b+c),存在单位元0,对于任意元素a,有a+0=0+a=a,对于任意元素a,存在一个元素-b,使得a+(-b)=-b+a=0,且满足交换律性质:a+b=b+a。
数学中的代数结构数学是一门富有创造性和严谨性的学科,它研究的范围广泛,包括了代数、几何、分析等多个分支。
而其中的代数结构则是数学中的一个重要概念,它涉及到数学对象之间的关系和运算规则。
本文将介绍数学中的代数结构及其应用。
一、代数结构的概念和基本性质代数结构是数学中研究对象之间关系的一种抽象模型。
代数结构通常由集合和集合上的运算构成。
常见的代数结构有群、环、域等等。
群是最基本的代数结构之一。
它由一个集合和一个二元运算组成,满足封闭性、结合律、单位元和逆元等性质。
群的例子包括整数加法群、对称群等。
环是在群的基础上扩展而来的。
它由一个集合和两个二元运算(加法和乘法)组成,满足封闭性、结合律、单位元、零元、交换律和分配律等性质。
整数环和多项式环都是环的例子。
域是代数结构中更为丰富和复杂的一个概念。
它由一个集合和两个二元运算(加法和乘法)组成,满足封闭性、结合律、单位元、零元、交换律、分配律以及存在乘法逆元等性质。
实数域和复数域是常见的域。
二、代数结构的应用代数结构在数学中的应用非常广泛,涉及到了许多领域。
下面将介绍几个与代数结构相关的应用示例。
1. 密码学密码学是研究如何保护信息安全的学科。
其中,代数结构在密码学中起到了重要作用。
例如,RSA加密算法就是基于数论和代数结构的。
它利用了大整数分解难题和模幂运算等数论性质,确保了信息的机密性和安全性。
2. 编码理论编码理论是研究如何有效地传输和存储信息的学科。
代数结构在编码理论中有着广泛的应用。
例如,线性码和循环码都是基于代数结构的。
线性码利用了有限域的性质,通过矩阵运算实现编码和解码;而循环码则利用了多项式环的特性,具有良好的纠错能力。
3. 图论图论是研究图及其性质的学科。
代数结构在图论中也有着重要的应用。
例如,邻接矩阵和邻接表等数据结构可以用来表示图,通过代数运算可以进行图的遍历、连通性判断等操作。
此外,图的同构性判断和染色问题等也与代数结构密切相关。
三、代数结构的拓展与发展代数结构作为数学的一个重要分支,不断地在发展和拓展。