先进变循环发动机技术研究
- 格式:pdf
- 大小:1.73 MB
- 文档页数:4
到底什么是变循环航空发动机?变循环航空发动机,是最近⼏年⾼频出现的⼀个词汇。
之所以被各军事强国所⾼度重视,就是因为这种发动机是和各⼤国正在全⼒攻关的第6代战机所配套的航发项⽬,正如说起5代战机必然有隐⾝性能⼀样,那么若6代机不具备变循环发动机,那么这种6代机也只能是⼀种伪6代。
传统的航空涡扇—涡轮发动机的热⼒循环特性是固定不变的,⼀种发动机只能在⼀种模式下⼯作,并且仅在有限的飞⾏包线范围内具有最好的性能。
这往往是现役航发的⼀个难以克服的死结。
⽐如某超级⼤国著名的F404—F414中等推⼒航空发动机,这种航发在海平⾯和6000⽶以下的中低空的推⼒很强劲,燃油效率也⾼,这是因为他的叶⽚和涡轮和外壳之间的密封性能基本做到了极致,⼏乎可以发挥每⼀克氧⽓的燃烧效率。
⽽这类发动机⼀旦到了万⽶以上的⾼空,在⾼空⾼速下出现准冲压燃烧状态,⾼度密封的涡轮⼏乎成了⼀个累赘。
发动机的推⼒会急剧下降。
因此装备这类发动机的战⽃机都尽量避免飞的太⾼。
还有⼀个与前⾯的例⼦⼏乎相反的典型,这就是著名的F22A的发动机F119。
这种先进⼤推⼒发动机为了追求⾼空超⾳速巡航性能,因此涵道⽐做的⾮常⼩,⼏乎和过去的涡喷发动机差不多。
因此在⾼空性能⾮常好。
⽽因为涵道⽐过低,其在低空的推⼒就⼤打折扣,燃油效率甚⾄⽐不过落后他⼀代的三代涡扇,⾮常的耗油。
因此F22A的航程是出了名的腿短。
甚⾄远远不如F16A等典型的偏轻型的三代机,这就造成F22A不能适合空域⼴阔的战场环境。
先进变循环发动机技术的出现就是要解决前两类发动机不能兼顾⾼空和低空性能的⽭盾,可以通过改变⼀些部件的⼏何形状、尺⼨或位置,来调节其热⼒循环参数:如增压⽐、涡轮进⼝温度、空⽓流量和涵道⽐,改变发动机循环⼯作模式。
在⼏乎所有包线下,都维持⾼推⼒的同时确保低油耗,使发动机在各种飞⾏情况下都能⼯作在最佳状态。
与此同时,变循环发动机能以多种模式,包括涡轮模式、涡轮风扇模式和冲压模式等⼯作,因⽽在亚声速、跨声速、超声速和⾼超声速飞⾏状态下都具有良好的性能。
变循环发动机(Variable Cycle Engine)是一种燃气涡轮发动机,它结合了传统的喷气发动机和涡扇发动机的特点。
变循环发动机的工作原理是根据飞行阶段的要求,通过调整发动机的参数和工作模式,实现在不同飞行条件下的最佳性能。
变循环发动机的关键特点是它能够在不同模式之间切换,以适应不同的飞行阶段。
通常,变循环发动机可以在两种基本模式之间切换:高涵道比模式和低涵道比模式。
在高涵道比模式下,发动机采用较大的涵道比,这意味着进气流经过的气流比例较大。
这种模式适用于飞行的高速巡航阶段,因为高涵道比可以提供较高的推力和燃油效率。
在低涵道比模式下,发动机的涵道比较小,进气流经过的气流比例也较小。
这种模式适用于低速飞行或起降阶段,因为较小的涵道比可以提供更大的推力和较好的加速性能。
变循环发动机实现这些模式切换的方法可以有多种。
一种常见的方式是通过可调节的涵道比风扇来实现。
在高涵道比模式下,风扇的涵道比较大,使得进气流量比例较大;而在低涵道比模式下,涵道比会减小,从而提供更大的推力。
此外,变循环发动机还可以通过调整压气机和燃烧室的工作参数来实现不同的工作模式。
例如,在高涵道比模式下,可以采用较高的压比和较低的燃烧室出口温度以提高燃油效率;而在低涵道比模式下,可以增加燃烧室出口温度以提供更大的推力。
总之,变循环发动机通过调整发动机参数和工作模式,可以
在不同飞行条件下实现最佳性能。
这使得飞机可以在高速巡航和低速起降等不同飞行阶段都能够得到有效的推力和燃油效率。
变循环⾃适应发动机技术2007年美国空军在发展未来的先进航空发动机技术⽅⾯有了进⼀步的动作,年初1⽉29⽇美国空军研究实验室(AFRL)发出了投标征询书,要求到2017年时⽐2000年的基准发动机⽔平在经济可承受性⽅⾯提⾼10倍。
计划的关键是美国空军研究实验室的"⾃适应通⽤发动机技术"(ADVENT)项⽬。
为此美国空军研究实验室的⼯程师们制定了⼀个为期5年的时间表,希望在2012年进⾏技术验证。
新技术可⽤于⼀系列的平台:超声速、亚声速、攻击、机动以及情报、监视和侦察,也可以⽤于海军的平台。
以⾃适应通⽤发动机技术为基础的发动机可能到2014年开始研制。
2007年9⽉25⽇,美英的公开消息来源报道美国空军研究实验室授予美国通⽤电⽓公司(GE)和罗罗美国公司两项合同,开发⾼压⽐压⽓机系统和主动⽓流控制进⽓道和喷管。
这些⾏动预⽰着美国正在积极准备新⼀代发动机的研制⼯作。
⾸先在通⽤经济可承受先进涡轮发动机计划提出验证的概念是美国通⽤电⽓公司(GE)的⾃适应循环发动机概念。
特点是发动机的总压⽐、涵道⽐、流量可调,发动机可以在固定进⽓道的情况下,以亚声速和超声速⼯作,过多的⽓流不会因⽆法通过发动机⽽从进⽓道溢流,引起过⼤阻⼒。
发动机可以调节装置改变空⽓流量和单位推⼒,以适应超声速巡航、跨声速和亚声速巡航,同时满⾜最严格的噪声要求。
⾃适应通⽤发动机技术项⽬源于美国空军正在实施的通⽤经济可承受先进涡轮发动机计划(VAATE),⽽VAATE计划是"综合⾼性能涡轮发动机技术"(IHPTET)的继续。
技术持续发展的需要随着发动机控制技术的提⾼,实现变循环/⾃适应技术变得易于实现,⽽这种能够全⾯提升飞机性能的新技术的出现,相当于从涡轮喷⽓发动机到涡轮风扇发动机的进步,具有⾥程碑意义。
"⾃适应通⽤发动机技术"项⽬是通⽤经济可承受先进涡轮发动机计划中的典型项⽬。
⽬标是发展在飞⾏包线内可以改变风扇、核⼼机流量和压⽐,从⽽优化发动机性能的能⼒。
54航空制造技术·2014 年第 1/2 期NEW VIEWPOINTMBD。
北京航空航天大学能源与动力工程学院 李 斌中航工业沈阳发动机设计研究所 赵成伟变循环与自适应循环发动机技术发展Consider on Variable Cycle Engine and Adaptive Cycle Engine Technology De-velopment动机(Adaptive Cycle Engine, 简称ACE)。
其独特之处在于它是在典型的类似YF120发动机的双外涵变循环发动机布局基础上又增加了一个外涵道而构成,即在双外涵变循环发动机风扇上采用一个“Flade”(风扇叶尖风扇)级延伸出第3外涵道,见图1。
Flade 是接在风扇外围的一排短的转子叶片,有单独可调静子。
因为采用Flade 和多个外涵道,自适应循环发动机能够实现更大幅度的变循环能力,是变循环发动机技术发展重要的前沿方向。
变循环发动机技术进化分析变循环发动机(Variable Cycle Engine,简称VCE)的研究由来已久。
从20世纪60年代开始,国外各大航空发动机公司均在不断地进行VCE 的概念和方案设计以及相关技术的本文所论及的变循环发动机是指实际使用中能通过(但不限于)控制调整发动机相关部件的几何形状、尺寸或者位置等手段,改变流路结构和相应热力循环参数(流量、压比、涵道比等)、获得预期性能的航空燃气涡轮发动机。
广义上看,能够通过再燃、电功转换等途径实现工作循环过程中能量的可控“迁移”的发动机,也可以归为变循环发动机的范畴。
与常规循环发动机相比,变循环发动机在配装飞行包线宽广、任务剖面复杂多样的飞机时,可以有针对性地采用不同的工作模式,最大限度地兼顾超声速飞行的高推力性能和亚声速巡航低耗油率的矛盾性要求,适应多用途飞机的各种任务需求。
并且与进气道的流量匹配性能好,减小飞机在低速飞行时因发动机深度节流而产生的溢流阻力,从而降低推进系统的安装损失,提高飞行器性能。
航空航天工程的前沿技术研究在人类不断探索未知的征程中,航空航天领域一直是最具挑战性和吸引力的前沿阵地之一。
从早期的梦想飞行到如今的太空探索,航空航天工程的每一次进步都离不开前沿技术的推动。
这些技术不仅改变了我们对天空和宇宙的认知,也为人类的未来发展开辟了无限可能。
一、先进的航空发动机技术航空发动机被誉为飞机的“心脏”,其性能直接决定了飞行器的飞行速度、航程和燃油效率等关键指标。
在前沿技术的推动下,航空发动机正朝着更高推力、更低油耗和更低排放的方向发展。
其中,变循环发动机技术备受关注。
这种发动机能够根据不同的飞行条件,自动调整工作模式,在亚音速和超音速飞行中都能实现最优性能。
通过改变发动机的涵道比、压气机和涡轮的工作状态等,变循环发动机可以在不同的飞行阶段提供恰到好处的动力输出,有效提高了飞机的整体性能和燃油经济性。
此外,新材料的应用也为航空发动机带来了革命性的变化。
陶瓷基复合材料、高温合金等新型材料具有更高的强度、耐高温性能和抗腐蚀能力,使得发动机能够在更加恶劣的环境下稳定工作,同时减轻发动机的重量,提高推重比。
二、高超音速飞行技术高超音速飞行是指飞行器的速度超过 5 倍音速以上。
这一领域的研究对于未来的军事、民用航空以及太空探索都具有重要意义。
实现高超音速飞行面临着诸多技术挑战,其中热防护是关键问题之一。
由于飞行器在高速飞行时与空气剧烈摩擦,会产生极高的温度,传统的材料和结构难以承受。
因此,研发新型的热防护材料和冷却技术成为当务之急。
另外,高超音速飞行器的气动设计也极为复杂。
需要精确计算和优化飞行器的外形,以减少空气阻力和提高飞行稳定性。
同时,高超音速飞行过程中的燃烧控制、导航与制导等技术也需要取得重大突破。
三、可重复使用运载火箭技术随着太空探索活动的日益频繁,降低发射成本成为航天领域的重要目标。
可重复使用运载火箭技术的出现为解决这一问题带来了希望。
以SpaceX 的猎鹰9 号火箭为例,其通过回收一级火箭并重复使用,大幅降低了发射成本。
先进航空发动机技术研究与开发随着时代的进步和技术的发展,航空发动机技术的不断进步是航空工业中不可或缺的一部分。
发动机作为整个飞机的“心脏”,它的性能关系到飞机的安全性和经济性。
因此,先进航空发动机技术的研究和开发具有非常重要的意义。
一、先进航空发动机技术的发展历程航空发动机的发展历程可以分为四个阶段。
第一阶段是直线活塞式内燃机时期,主要应用于轻型飞机和舰载机。
第二阶段是喷气式内燃机时期,主要应用于民用和军用喷气飞机,如战斗机、轰炸机、客机等。
第三阶段是涡扇式喷气发动机时期,其特点是高效、低噪声、低污染,应用于现代喷气客机和商用飞机等。
第四个阶段是高温合金材料、先进材料和复合材料的应用时期,主要应用于高速飞机、超音速飞行和太空航行。
随着航空飞行的不断推进,先进航空发动机技术研究和开发也从传统的涡轮扇发动机、涡轮螺旋桨发动机、高温高速喷气发动机等方向不断向复合材料、新型燃烧室、先进气体涡轮、高效推进、发动机控制系统等方向拓展。
二、先进航空发动机技术的特点和优势先进航空发动机技术的特点主要包括:高效、高速、高可靠性、低噪声、低污染和多功能化等因素。
这些特点是基于目前现代航空工业的需求,能够更好地适应高速和高温环境,减轻飞机重量和燃料消耗,提高飞机的安全性和经济性。
其中,高效是指发动机的热效率、压缩效率和推力重量比等都要比传统发动机高。
高效发动机能够在较低的燃料消耗下提供更高的推力,从而减少运营成本。
高速是指发动机能够适应高速和高温的环境,以满足高速飞行的需求。
高可靠性是指发动机的工作时间、寿命和故障率都要比传统发动机高。
低噪声和低污染是指发动机要具备低噪声和低污染的特点,以保护环境和减少对居民的干扰。
多功能化是指发动机在不同工作条件下,能够执行不同的任务和应用。
三、先进航空发动机技术的研究和开发航空发动机技术的研究和开发需要投入大量的人力、物力和财力,但对航空工业的发展意义重大。
目前,国际上很多航空工业制造企业都在积极进行先进航空发动机的技术研究和开发。
变循环发动机发展综述刘治呈【摘要】在介绍变循环发动机概念基础上,对不同国家变循环发动机研究历程与成果进行介绍,同时分析每一段历程所具有的技术特点,希望能够为相关专业提供可以参考的理论依据.【期刊名称】《现代制造技术与装备》【年(卷),期】2019(000)001【总页数】3页(P177-179)【关键词】变循环发动机变几何结构推力耗油率【作者】刘治呈【作者单位】中国航发四川燃气涡轮研究院,成都 610500【正文语种】中文航空发动机由最初的活塞发动机逐渐发展为涡喷、涡扇发动机,性能得到了显著提升。
变循环发动机是通过改变发动机零部件几何形状与尺寸的一种热力循环燃气涡轮发动机[1]。
1 英国变循环发动机的研究英国设计了一款选择性排气变循环发动机,这款发动机采用两轴三压气机的设计原理[2]。
发动机结构如图1所示。
这款发动机在低马赫数飞行过程中,燃油消耗率非常低;当在超音速飞行时,具备较高推力。
在这两种基本特性要求下,发动机上设计了两种工作模式:一种是低压工作模式;另一种是高压动作模式。
选择性排气变循环发动机采用了固定几何结构涡轮技术,有效降低了设计风险。
2 日本变循环发动机的研究日本发明了一种变循环发动机,该发动机属于组合循环发动机,核心机为HYPR90-T涡轮风扇发动机,HYPR90-T结构如图2所示。
HPYRBO-T将低压涡轮设计成可调结构,可调低压涡轮叶片结构是这款发动机可变结构之一。
3 美国变循环发动机的研究除了日、英两国,美国关于变循环发动机的研究也取得了显著成果,截至目前一共发明设计了五代变循环发动机,并且每一代变循环发动机都有着自己独特的技术特点。
3.1 GE第一代变循环发动机图1 选择性排气变循环发动机图2 HYPR90-T结构图图3 后VABI变循环发动机在第一代变循环发动机中,技术人员设计了可调面积涵道引射器(VABI)这一关键构件[3]。
第一代变循环发动机采用了后VABI设计方式,具体结构如图3所示。