mems加速度计参数
- 格式:doc
- 大小:12.20 KB
- 文档页数:1
常用车载imu的参数加速度计量程:±2g 至±1000g分辨率:0.01 mg 至 10 mg噪声密度:0.001 mg/√Hz 至10 mg/√Hz 偏置稳定性:0.01 mg/°C 至5 mg/°C陀螺仪量程:±15°/s 至±1000°/s分辨率:0.001°/s 至1°/s噪声密度:0.001°/s/√Hz 至1°/s/√Hz 偏置稳定性:0.001°/s/°C 至1°/s/°C磁力计量程:±300μT 至±5000μT分辨率:0.01μT 至1μT噪声密度:0.001μT/√Hz 至1μT/√Hz 偏置稳定性:0.01μT/°C 至1μT/°C 温度范围操作:-40°C 至+105°C存储:-55°C 至+125°C其他参数更新速率:加速度计:10Hz 至 1000Hz陀螺仪:10Hz 至 1000Hz磁力计:10Hz 至 100Hz数据输出接口:CANSPII2C电源要求:电压:2.5V 至 5.5V电流:10mA 至 100mA尺寸和重量:尺寸:10mm x 10mm x 5mm 至 50mm x 50mm x 25mm重量:1g 至 50g选择车载 IMU 时应考虑的其他因素:应用: IMU 的预期用途环境: IMU 运行的环境条件,例如温度、振动和电磁干扰尺寸和重量: IMU 的物理限制功耗: IMU 的能耗要求成本: IMU 的价格点通过了解这些参数并仔细考虑选择标准,可以为特定应用选择最合适的车载 IMU。
从三大应用角度深度剖析MEMS加速度计的关键指标MEMS加速度计是一种使用微机电系统(MEMS)技术制造的加速度测量装置。
它广泛应用于汽车、消费电子、航空航天等领域。
从三大应用角度来看,MEMS加速度计的关键指标主要包括精度、线性度和频率响应。
首先,精度是MEMS加速度计的重要指标之一、精度可以衡量传感器在测量中产生的误差大小。
对于加速度计来说,精度通常以百分比(%)或千分比(‰)来表示。
精度取决于传感器的制造工艺和设计,主要包括零点偏移、零点漂移和缩放因子误差。
零点偏移指的是传感器在无任何加速度时输出的电压或电流不为零。
零点漂移是指在长时间使用后,传感器在静态条件下输出的漂移现象。
缩放因子误差是指传感器的增益因子不准确,造成输出的加速度值与实际值存在偏差。
在实际应用中,需要根据具体的需求选择适当的精度等级。
其次,线性度是MEMS加速度计的另一个关键指标。
线性度指的是传感器在一定范围内,输出信号与输入加速度之间的比例关系是否符合线性关系。
线性度通常以百分比(%)来表示,表示输出信号与输入加速度之间的最大偏差。
线性度的好坏取决于传感器的设计和制造质量。
较高的线性度意味着传感器能够更准确地测量加速度。
最后,频率响应是MEMS加速度计的另一个重要指标。
频率响应指的是传感器在不同频率下对加速度信号的响应能力。
频率响应通常以赫兹(Hz) 或角频率 (rad/s) 来表示。
传感器的频率响应取决于其固有机械和电子特性。
高频率响应意味着传感器能够检测到高频振动或快速改变的加速度。
在不同应用领域中,需要根据实际需求选择适当的频率响应范围。
综上所述,MEMS加速度计的关键指标包括精度、线性度和频率响应。
精度衡量传感器测量误差的大小,线性度表征传感器输出信号与输入加速度之间的比例关系,频率响应描述传感器对不同频率下加速度信号的响应能力。
这些关键指标对于MEMS加速度计的性能和应用具有重要意义。
在选择和使用MEMS加速度计时,需要根据具体的应用需求和控制要求来综合考虑这些指标。
MEMS加速度计MEMS(Micro-Electro-Mechanical Systems)加速度计是一种集成了微电子技术、微机械技术和传感器技术的微型加速度计。
MEMS加速度计以微机电系统技术为基础,利用微型机械结构和微电子技术制作而成的一种传感器。
其结构通常包括一个质量并且可以在三个不同方向上移动的臂梁,一些感应电极以及一个基座。
当加速度计受到外部加速度作用时,质量会受力发生偏移,从而导致感应电极的电荷和电场发生变化,通过测量这些变化,就可以得到外部加速度的信息。
MEMS加速度计主要有压电加速度计和电容加速度计两种类型。
压电加速度计是利用压电效应实现加速度测量的,当受到外部加速度作用时,压电材料产生电荷,从而产生电压输出。
电容加速度计是基于电容变化原理设计的,当加速度计产生加速度时,微机械结构中的电容会发生变化,通过测量电容变化就可以得到加速度的信息。
由于压电加速度计和电容加速度计都是微型化设计,制作工艺成熟,因此MEMS加速度计具有尺寸小、功耗低、成本低和可靠性高等特点。
MEMS加速度计广泛应用于许多领域,特别是在移动设备、汽车、航空航天、智能穿戴设备和工业自动化等领域。
在移动设备方面,MEMS加速度计可用于屏幕旋转、晃动控制和跌落检测等功能。
在汽车领域,MEMS加速度计能够实现碰撞检测、车身稳定控制和自动泊车等功能。
在航空航天领域,MEMS加速度计可用于姿态测量和导航系统。
在智能穿戴设备方面,MEMS加速度计可用于步数统计、睡眠监测和运动追踪等功能。
在工业自动化领域,MEMS加速度计可用于振动检测和故障诊断等应用。
然而,MEMS加速度计也存在一些问题。
首先,由于其微小尺寸,对温度、湿度和振动等环境因素的影响较大,可能会导致测量误差。
其次,MEMS加速度计的精度和分辨率相对较低,对微小加速度的测量不够敏感。
此外,MEMS加速度计的线性度和漂移等问题也需要进一步优化和改进。
综上所述,MEMS加速度计作为一种集成了微电子技术、微机械技术和传感器技术的微型加速度计,在各个领域有着重要的应用价值。
加速度计参数简介加速度计是一种用于测量物体加速度的传感器。
它广泛应用于许多领域,包括航空航天、汽车工业、运动医学等。
本文将详细介绍加速度计的参数及其相关知识。
加速度计工作原理加速度计的工作原理基于质量与力的关系。
它利用质量在受力作用下产生的加速度来测量物体的加速度。
常见的加速度计采用微机电系统(MEMS)技术,通过微小的力传感器来测量物体的加速度。
加速度计参数加速度计通常具有以下几个重要参数:1. 测量范围加速度计的测量范围指的是它能够测量的加速度的最大值和最小值。
常见的单位为g(重力加速度)。
例如,一个测量范围为±2g 的加速度计可以测量从 -2g 到+2g 的加速度。
2. 分辨率分辨率是指加速度计能够区分的最小加速度变化。
它通常以位(bit)或毫米每秒平方(mm/s²)表示。
较高的分辨率意味着加速度计能够更准确地测量小的加速度变化。
3. 灵敏度灵敏度是指加速度计输出的电压或数字信号与实际加速度之间的关系。
它通常以mV/g 或 LSB/g(最小可分辨加速度的单位)表示。
较高的灵敏度意味着加速度计能够更精确地测量加速度。
4. 频率响应频率响应是指加速度计能够测量的加速度变化的频率范围。
它通常以赫兹(Hz)表示。
较高的频率响应意味着加速度计能够更好地测量高频的加速度变化。
5. 噪声加速度计的噪声指的是其输出中的随机波动。
它通常以g/√Hz 或mg/√Hz 表示,表示每根号赫兹(Hz)的噪声水平。
较低的噪声意味着加速度计能够更准确地测量加速度。
6. 温度稳定性温度稳定性是指加速度计在不同温度下的输出稳定性。
它通常以mV/℃ 或%FS/℃ 表示。
较好的温度稳定性意味着加速度计能够在不同温度条件下提供更一致的测量结果。
加速度计应用加速度计的应用非常广泛。
以下是一些常见的应用领域:1. 航空航天在航空航天领域,加速度计被用于飞行器姿态控制、惯性导航系统和飞行数据记录等方面。
它们可以帮助飞行器实时监测加速度变化,确保飞行的稳定性和安全性。
Single-Axis, High-g , i MEMS ® AccelerometersADXL193Rev. AInformation furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 Fax: 781.461.3113 ©2005 Analog Devices, Inc. All rights reserved.FEATURESComplete acceleration measurement system on a single monolithic ICAvailable in ±120 g or ±250 g output full-scale ranges Full differential sensor and circuitry for high resistance to EMI/RFIEnvironmentally robust packagingComplete mechanical and electrical self-test on digital commandOutput ratiometric to supplySensitive axes in the plane of the chip High linearity (0.2% of full scale) Frequency response down to dc Low noiseLow power consumption (1.5 mA)Tight sensitivity tolerance and 0 g offset capability Largest available prefilter clipping headroom 400 Hz, 2-pole Bessel filter Single-supply operationCompatible with Sn/Pb and Pb-free solder processesAPPLICATIONSVibration monitoring and control Vehicle collision sensing Shock detectionGENERAL DESCRIPTIONThe ADXL193 is a low power, complete single-axisaccelerometer with signal conditioned voltage outputs that are all on a single monolithic IC. This product measures acceleration with a full-scale range of ±120 g or ±250 g (minimum). It can also measure both dynamic acceleration (vibration) and static acceleration (gravity).The ADXL193 is a fourth-generation surface micromachined i MEMS® accelerometer from ADI with enhanced performance and lower cost. Designed for use in front and side impact airbag applications, this product also provides a complete cost-effective solution useful for a wide variety of other applications. The ADXL193 is temperature stable and accurate over theautomotive temperature range, with a self-test feature that fully exercises all the mechanical and electrical elements of the sensor with a digital signal applied to a single pin. The ADXL193 is available in a 5 mm × 5 mm × 2 mm, 8-terminal ceramic LCC package.FUNCTIONAL BLOCK DIAGRAM05366-001X OUTFigure 1.ADXL193Rev. A | Page 2 of 12TABLE OF CONTENTSSpecifications.....................................................................................3 Absolute Maximum Ratings............................................................4 ESD Caution..................................................................................4 Pin Configuration and Function Descriptions.............................5 Theory of Operation........................................................................7 Applications.......................................................................................8 Power Supply Decoupling............................................................8 Self-Test..........................................................................................8 Clock Frequency Supply Response.............................................8 Signal Distortion...........................................................................8 Outline Dimensions..........................................................................9 Ordering Guide.. (9)REVISION HISTORY5/05—Rev. 0 to Rev. AADXL193Rev. A | Page 3 of 12SPECIFICATIONS 1At T A = −40°C to +105°C, 5.0 V dc ± 5%, acceleration = 0 g ; unless otherwise noted. Table 1.Model No. AD22282Model No. AD22283Parameter Conditions Min Typ Max Min Typ Max Unit SENSOR Output Full-Scale Range I OUT ≤ ±100 μA 120 250 gNonlinearity 0.2 2 0.2 2 %Package Alignment Error 1 1 Degree Cross-Axis Sensitivity −5 +5 −5 +5 % Resonant Frequency24 24 kHz Sensitivity, Ratiometric(Over Temperature) V DD = 5 V, 100 Hz 17.1 18 18.9 7.6 8 8.4 mV/g OFFSETZero-g Output Voltage(Over Temperature)2V OUT − V DD /2, V DD = 5 V −125 +125 −100 +100 mVNOISE Noise Density 10 Hz − 400 Hz, 5 V 3 10 5 15 m g /√Hz Clock Noise 5 5 mV p-p FREQUENCY RESPONSE Two-pole Bessel −3 dB Frequency 360 400 440 360 400 440 Hz−3 dB Frequency Drift 25°C to T MIN or T MAX2 2 Hz SE L F-TESTOutput Change(Cube vs. V DD )3V DD = 5 V 400 500 600 200 250 300 mV Logic Input High V DD = 5 V 3.5 3.5 V Logic Input Low V DD = 5 V 1 1 V Input Resistance Pull-down resistor to GND 30 50 30 50kΩOUTPUT AMP L IFIER Output Voltage Swing I OUT = ±400 μA 0.25 V DD − 0.25 0.25 V DD − 0.25 V Capacitive Load Drive 1000 1000 pF PREFI L TER HEADROOM 800 1400 g CFSR @ 400 kHz 21.5 V/V POWER SUPPLY (V DD ) 4.75 5.25 4.75 5.25 V Functional Range 3.5 6 3.5 6 V Quiescent Supply Current V DD = 5 V 1.5 21.5 2 mA TEMPERATURE RANGE−40 +125−40 +125°C1 All minimum and maximum specifications are guaranteed. Typical specifications are not guaranteed. 2Zero g output is ratiometric. 3Self-test output at V DD = (Self-Test Output at 5 V) × (V DD /5 V)3.ADXL193Rev. A | Page 4 of 12ABSOLUTE MAXIMUM RATINGSTable 2.Parameter RatingAcceleration (Any Axis, Unpowered) 4,000 gAcceleration (Any Axis, Powered) 4,000 gV S −0.3 V to +7.0 VAll Other Pins (COM − 0.3 V) to(V S + 0.3 V) Output Short-Circuit Duration (Any Pin to Common)Indefinite Operating Temperature Range −65°C to +150°CStorage Temperature −65°C to +150°CStresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.ESD CAUTIONESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performancedegradation or loss of functionality.ADXL193Rev. A | Page 5 of 12PIN CONFIGURATION AND FUNCTION DESCRIPTIONS05366-002NC = NO CONNECTNCNC COM V DD X OUT NCSTVFigure 2. Pin ConfigurationTable 3. Pin Function DescriptionsPin No. Mnemonic Description 1 NC Do Not Connect 2 NCDo Not Connect3 COM Common4 ST Self-Test5 NC Do Not Connect6 X OUT X Channel Output7 V DD 3.5 V to 6 V8 V DD23.5 V to 6 VADXL193Rev. A | Page 6 of 12T E M P E R A T U R ETIMET TFigure 3. Recommended Soldering ProfileTable 4. Recommended Soldering ProfileProfile Feature Sn63/Pb37 Pb-Free AVERAGE RAMP RATE (T L TO T P ) 3°C/s max3°C/s maxPREHEATMinimum Temperature (T SMIN ) 100°C 150°C Maximum Temperature (T SMAX ) 150°C 200°C TIME (T SMIN TO T SMAX ), t S 60 s − 120 s 60 s − 150 s T SMAX TO T L Ramp-Up Rate 3°C/s 3°C/s TIME MAINTAINED ABOVE LIQUIDOUS (T L ) Liquidous Temperature (T L ) 183°C 217°C Time (t L ) 60 s − 150 s60 s − 150 s PEAK TEMPERATURE (T P ) 240°C + 0°C/−5°C 260°C + 0°C/−5°C TIME WITHIN 5°C OF ACTUAL PEAK TEMPERATURE (t P ) 10 s − 30 s 20 s − 40 s RAMP-DOWN RATE 6°C/s max 6°C/s max TIME 25°C TO PEAK TEMPERATURE 6 min max 8 min max05366-004EARTH'S SURFACE= 2.482VXXXXX XXXX22282X OUT = 2.500VX X X X X X X X X22282X X X X X X X X X22282X OUT = 2.500V X OUT = 2.518VX OUT = 2.500VFigure 4. Output Response vs. OrientationADXL193Rev. A | Page 7 of 12THEORY OF OPERATIONThe ADXL193 provides a fully differential sensor structure and circuit path, resulting in the industry’s highest resistance to EMI/RFI effects. This latest generation uses electrical feedback with zero-force feedback for improved accuracy and stability. The sensor resonant frequency is significantly higher than the signal bandwidth set by the on-chip filter, avoiding the signal analysis problems caused by resonant peaks near the signal bandwidth.Figure 5 is a simplified view of one of the differential sensor elements. Each sensor includes several differential capacitor unit cells. Each cell is composed of fixed plates attached to the substrate and movable plates attached to the frame.Displacement of the frame changes the differential capacitance, which is measured by the on-chip circuitry.Complementary 400 kHz square waves drive the fixed plates. Electrical feedback adjusts the amplitudes of the square waves such that the ac signal on the moving plates is 0. The feedback signal is linearly proportional to the applied acceleration. This unique feedback technique ensures that there is no net electrostatic force applied to the sensor. The differentialfeedback control signal is also applied to the input of the filter, where it is filtered and converted to a single-ended signal. 05366-005UNIT SENSINGCELLUNITFORCING CELLFigure 5. Simplified View of Sensor Under AccelerationADXL193Rev. A | Page 8 of 12APPLICATIONSPOWER SUPPLY DECOUPLINGFor most applications, a single 0.1 μF capacitor, C DC , adequately decouples the accelerometer from noise on the power supply. However, in some cases, particularly where noise is present at the 400 kHz internal clock frequency (or any harmonic thereof), noise on the supply can cause interference on the ADXL193’s output. If additional decoupling is needed, a 50 Ω (or smaller) resistor or ferrite bead can be inserted in the supply line. Additionally, a larger bulk bypass capacitor (in the 1 μF to 4.7 μF range) can be added in parallel to C DC .SELF-TESTThe fixed fingers in the forcing cells are normally kept at the same potential as that of the movable frame. When the self-test digital input is activated, the voltage on the fixed fingers on one side of the moving plate in the forcing cells is changed. This creates an attractive electrostatic force, which causes the frame to move toward those fixed fingers. The entire signal channel is active; therefore, the sensor displacement causes a change in V OUT . The ADXL193’s self-test function is a comprehensive method of verifying the operation of the accelerometer. Because electrostatic force is independent of the polarity of the voltage across capacitor plates, a positive voltage is applied in half of the forcing cells, and its complement in the other half of the forcing cells. Activating self-test causes a step function force to be applied to the sensor, while the capacitive coupling term is canceled. The ADXL193 has improved self-test functionality, including excellent transient response and high speed switching capability. Arbitrary force waveforms can be applied to the sensor by modulating the self-test input, such as test signals to measure the system frequency response, or even crash signals to verify algorithms within the limits of the self-test swing. The ST pin should never be exposed to voltages greater than V S + 0.3 V . If this cannot be guaranteed due to the systemdesign (for instance, if there are multiple supply voltages), then a low V F clamping diode between ST and V S is recommended.CLOCK FREQUENCY SUPPLY RESPONSEIn any clocked system, power supply noise near the clock frequency may have consequences at other frequencies. An internal clock typically controls the sensor excitation and the signal demodulator for micromachined accelerometers. If the power supply contains high frequency spikes, they may be demodulated and interpreted as an acceleration signal. A signal appears as the difference between the noise frequency and the demodulator frequency. If the power supply spikes are 100 Hz away from the demodulator clock, there is an output term at 100 Hz. If the power supply clock is at exactly the same frequency as the accelerometer clock, the term appears as an offset.If the difference frequency is outside of the signal bandwidth, the filter attenuates it. However, both the power supply clock and the accelerometer clock may vary with time or temperature, which can cause the interference signal to appear in the output filter bandwidth.The ADXL193 addresses this issue in two ways. First, the high clock frequency eases the task of choosing a power supply clock frequency such that the difference between it and the accelero-meter clock remains well outside of the filter bandwidth.Second, the ADXL193 is the only micromachined accelerometer to have a fully differential signal path, including differential sensors. The differential sensors eliminate most of the power supply noise before it reaches the demodulator. Good highfrequency supply bypassing, such as a ceramic capacitor close to the supply pins, also minimizes the amount of interference. The clock frequency supply response (CFSR) is the ratio of the response at V OUT to the noise on the power supply near the accelerometer clock frequency. A CFSR of 3 means that the signal at V OUT is 3× the amplitude of an excitation signal at V DD near the accelerometer internal clock frequency. This is analogous to the power supply response, except that the stimulus and the response are at different frequencies. The ADXL193’s CFSR is 10× better than a typical single-ended accelerometer system.SIGNAL DISTORTIONSignals from crashes and other events may contain high amplitude, high frequency components. These components contain very little useful information and are reduced by the 2-pole Bessel filter at the output of the accelerometer. However, if the signal saturates at any point, the accelerometer output does not look like a filtered version of the acceleration signal. The signal may saturate anywhere before the filter. For example, if the resonant frequency of the sensor is low, the displacement per unit acceleration is high. The sensor may reach the mechanical limit of travel if the applied acceleration is high enough. This can be remedied by locating the accelerometer where it does not see high values of acceleration and by using a higher resonant frequency sensor, such as the ADXL193.Also, the electronics may saturate in an overload condition between the sensor output and the filter input. Ensuring that internal circuit nodes operate linearly to at least several times the full-scale acceleration value can minimize electricalsaturation. The ADXL193 circuit is linear to approximately 8× full scale.ADXL193Rev. A | Page 9 of 12OUTLINE DIMENSIONSBOTTOM VIEWFigure 6. 8-Terminal Ceramic Leadless Chip Carrier [LCC](E-8)Dimensions shown in millimetersADXL193 ORDERING GUIDEModel 1Parts per Reel MeasurementRange SpecifiedVoltage (V) TemperatureRange PackageDescription Package Option AD22282-A-R2 250 ±120 g 5 −40°C to +125°C 8-Terminal Ceramic Leadless Chip Carrier E-8 AD22282-A 3000 ±120 g 5 −40°C to +125°C 8-Terminal Ceramic Leadless Chip Carrier E-8 AD22283-B-R2 250 ±250 g 5 −40°C to +125°C 8-Terminal Ceramic Leadless Chip Carrier E-8 AD22283-B 3000 ±250 g5 −40°C to +125°C 8-Terminal Ceramic Leadless Chip Carrier E-81All models are on tape and reel and are Pb-free parts.ADXL193NOTESRev. A | Page 10 of 12ADXL193 NOTESRev. A | Page 11 of 12ADXL193NOTES©2005 Analog Devices, Inc. All rights reserved. Trademarks andregistered trademarks are the property of their respective owners.D05366–0–5/05(A)Rev. A | Page 12 of 12。
Colibrys加速度计惯性传感器MS1000 –初步数据表单轴模拟加速度计MS1000是专为惯性应用而设计的最好的同类电容式体硅MEMS加速度计。
其优异的长期零偏和比例因子重复性,低运行偏差,优异的振动行为(VRE)和低噪声,可用于非常精确和具有成本效益的战术级测量。
内部电子电路集成了一个具有差分模拟±2.7V输出的信号调理器,一个内置自检和一个温度补偿传感器。
功能原理框图主要特性 (±10g)•运行中偏置稳定性: 15 µg•非线性: ±0.3% FS•优异的长期零偏重复性: 1.2mg•恶劣环境中的可靠性•低噪声: 34 µg/√Hz•LCC20, 密封包装重要参数, 典型值MS1002 MS1005* MS1010 MS1030* MS1100* Unit加速度全量程± 2 ± 5 ± 10 ± 30 ± 100 g剩余偏置建模误差0.14 0.35 0.7 2.1 7.0 mg长期零偏重复性0.24 0.6 1.2 3.6 12.0 mg运行中偏置稳定性 3 7.5 15 45 150 µg剩余比例因子建模误差120 120 120 120 120 ppm比例因子敏感性1350 540 270 90 27 mV/g轴不对准10 10 10 10 10 mrad分辨率(1Hz) 7 17 34 102 339 µg rms非线性 (IEEE norm) 0.3 0.3 0.3 0.3 0.3 % FS工作温度-40 to +125 -40 to +125 -40 to +125 -40 to +125 -40 to +125 °C运行功耗10 10 10 10 10 mW尺寸9 x 9 9 x 9 9 x 9 9 x 9 9 x 9 mm2特色应用(未全列入):航空航天 & 国防: 海军 &陆地:惯性测量单元 (IMUs) 寻北、天线、声纳定位航空电子设备(固定翼和旋翼):FCS,自动驾驶仪,姿态系统(AHRS,待机) ,武器发射系统 - 平台稳定性GPS辅助引导&导航无人机系统ROV制导,武器发射系统,船舶导航和控制移动测绘列车定位(GPS航位推算)短程制导,机器人MWD–随钻导向MS1002 参数除非另有说明,所有数值都是在环境温度(20°C)和 3.3 V 供电 VDD 下测得。
mems器件参数MEMS器件是一种基于微机电系统技术制造的微小尺寸机械和电子元件。
本文将从MEMS器件的参数角度出发,探讨其特点和应用。
一、尺寸MEMS器件的尺寸通常在微米到毫米级别,相较于传统器件尺寸更小。
小尺寸使得MEMS器件可以集成在更小型的设备中,例如智能手机和可穿戴设备。
MEMS器件的小尺寸还带来了其他优势,如低功耗、高灵敏度等。
二、灵敏度MEMS器件具有高度灵敏的特点,可以检测到微小的物理和化学变化。
例如,MEMS加速度计可以测量细微的加速度变化,用于智能手机的自动旋转和运动跟踪功能。
MEMS气体传感器可以检测到微量的气体浓度,用于环境监测和室内空气质量检测。
三、响应速度由于MEMS器件的小尺寸和低质量,其响应速度通常非常快。
这使得MEMS器件在高频应用中具有优势,例如MEMS声波传感器用于声纳和无线通信设备中。
此外,MEMS光学开关也可以实现快速的光信号切换,用于光纤通信和光学网络。
四、功耗MEMS器件通常具有低功耗的特点,这是由于其小尺寸和低质量。
低功耗使得MEMS器件在便携设备中得到广泛应用,例如MEMS压力传感器用于智能手表和健康监测设备中。
此外,MEMS能量收集器可以将环境中的能量转换为电能,用于传感器节点和物联网设备的能量供应。
五、可靠性MEMS器件具有良好的可靠性和长寿命。
由于其微小的尺寸,MEMS器件的热膨胀系数与封装材料更加匹配,减少了应力和热问题。
此外,MEMS器件通常采用无接触式工作原理,避免了机械磨损和接触电阻问题,提高了器件的可靠性和寿命。
六、集成度MEMS器件具有良好的集成度,可以集成多种功能和传感器在一个芯片上。
这种集成度使得设备制造更加简化和紧凑,减少了电路连接和封装成本。
例如,MEMS惯性导航系统集成了加速度计和陀螺仪,用于飞行器和导航设备的姿态控制和定位。
七、应用领域MEMS器件广泛应用于各个领域。
在汽车行业中,MEMS传感器用于车辆稳定控制和轮胎压力监测;在医疗领域,MEMS生物传感器用于体内监测和医学诊断;在工业领域,MEMS压力传感器用于流体控制和工艺监测。
MEMS加速度计的振动校正是如何发生的,并讨论各种测量此参数的技术高性能MEMS加速度计为各种集成惯性测量的应用提供低成本解决方案。
具体例子包括:导航和AHRS系统,用于机器健康状况检测的振动监控,基础设施的结构健康状况监控,以及用于平台稳定、井下定向钻探的倾斜监控、施工行业平路机和勘测设备的调平、吊车稳定系统吊杆倾角测量的高精度倾角计。
在大多数此类例子中,加速度计会经受不同幅度的振动。
这些应用的另一个不同方面是振动的频率成分。
振动与传感器和系统误差源相结合可能导致振动校正,这是高性能加速度计的一个重要指标。
本文说明MEMS加速度计中的振动校正是如何发生的,并讨论各种测量此参数的技术。
作为案例研究,本文会讨论低噪声、低功耗加速度计ADXL355的振动校正。
低振动校正误差以及所有其他特性,使这款器件成为上述精密应用的理想之选。
振动校正的来源振动校正误差(VRE)是加速度计对交流振动(被整流为直流)的响应,表现为加速度计失调的异常偏移。
在倾角计等应用中,这是一个重大误差源,因为加速度计的直流输出是目标信号,失调的任何改变都可能被错误地解读为倾角变化,导致误差一路向下传递,从而引起安全系统误触发、平台稳定或钻桅对准机制过度补偿等。
VRE高度依赖于加速度计所经受的振动特性曲线,不同应用施加于加速度计的振动模式会不同,因而VRE可能不同。
振动校正有多种发生机制,本文讨论其中的两种。
非对称轨第一种机制是非对称轨。
重力产生一个静态加速度场,当加速度计敏感轴竖直对齐时,其测量范围会有一个偏移。
2g满量程范围的传感器与重力加速度对齐时,将只能测量1 g峰值振动,否则响应会被削波。
超过1 g的对称激励信号的平均值将不为零,原因是在经受额外1 g加速度的方向上,电平会被削波。
图1中,一个激励振动信号施加于2 g满量程传感器上。
当振动为0.3 g rms(300到600样本之间)时,失调没有可观测的偏移。
然而,当振动为1 g rms(600到1000样本之间)时,VRE约为–100 mg。
© 2007 ... 2021 Kistler Group, Eulachstrasse 22, 8408 Winterthur, Switzerland Tel.+41522241111,****************,Kistler Group products are protected by various intellectual property rights. For more This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting from the use of Kistler products is excluded.Page 1/68396A _003-325a -10.21Capacitive MEMS, Triaxial AccelerometerK-Beam AccelerometerAccelerationType 8396A...Type 8396A… is a high-sensitivity, low noise triaxial acceler-ometer which simultaneously measures acceleration and/or low-frequency vibration in three mutually perpendicular axes (x, y, z). The accelerometer features include:• Measuring ranges: ±2 g, ±10 g, ±30 g, ±50 g, ±100 g, ±200 g • Frequency response: 0 ... 2,000 Hz (5 %) (except ±2 g)• Output Options: 0±4V or 2.5±2V single ended, 0±4V or 0±8V differential• Operating temperature: –55 ... 125°C [–65 … 260°F]• Low noise• Excellent thermal stability • Small cube, 30 grams mass• Wide supply voltage range, 6 … 50 VDC • 6,000 g pk shock rated • Conforming to äDescriptionType 8396A… triaxial capacitive accelerometer family utilizes a silicon Micro-Electro-Mechanical System (MEMS) variable capacitance sensing element. The sensing element of each axis consists of a very small inertial mass and a flexure element canti-lever positioned between two plates. As the mass deflects under acceleration, the capacitance between these plates changes. AC excitation and synchronous amplitude demodulation circuitry contained in the accelerometer's internal signal conditioner provides an analog output signal proportional to the applied acceleration. This output signal is scaled as a voltage which is proportional to the applied acceleration.The output signal format is available as bipolar 0±4 V, single-ended 2.5±2 V and 0±4 V or 0±8 V differential. The accelerometer is powered by a single regulated supply between 6 and 50 VDC. Temperature output is provided if external compensation of the output signal is desired. The sensing element and electronics are contained in a lightweight, welded titanium housing with either a circular 9p in c onnector o r a n i ntegral c able* t erminated b y p igtails o r 9 pin D-Sub connector. Ground isolation is obtained by mounting the sensor using one of the off-ground accessories or by adhe-sively mounting the sensor to the test object using the side of the sensor with the integral hard anodized plate.* braided shield protection option also available upon requestDimensions – units (in [mm])8396A _003-325a -10.21TypeUnit 8396A2D08396A0108396A0308396A0508396A1008396A200Acceleration rangeg ±2±10±30±50±100±200Frequency response, ±5%, min.Hz 0 … 2500... 1,0000... 1,5000... 1,5000... 1,5000... 1,500 ±5%, typ.Hz 0 ... 9000 ... 2,0000 ... 2,3000 ... 2,7000 ... 3,0000 ... 3,500±10%, typ.Hz 0 ... 1,0000... 2,4000... 3,0000... 3,0000... 3,5000... 4,500±3 dB, typ.Hz0 ... 1,1500... 3,2000... 4,0000... 4,5000... 5,0000... 7,000Damping ratio, nom.0.7Sensitivity, ±5% (ref 100 Hz),Output Type A, 0±4 V FSO output Output Type B, 2.5±2 V FSO output Output Type C, 0±4 V FSO differential Output Type D, 0±8 V FSO differential mV/g mV/g mV/g mV/g2,0001,0002,0004,000400200400800133.366.6133.3266.68040801604020408020102040Resonant frequency, nom.kHz 1.23.25.26.58.511Transverse sensitivity, typ. (max.)% 1.0 (3.0)Sensitive axis misalignment, typ. (max.)mrad 10 (30)Amplitude linearity, max.% FSO ±0.3Amplitude linearity, typ.% FSO ±0.1Phase shift (max.) @ 0 Hzdegrees 0@ 10 Hz degrees 2@ 100 Hzdegrees 10Noise density, 0 ... 100 Hz, typ. (max)mg rms /√ Hz 0.007 (0.0085)0.035 (0.042)0.105 (0.125)0.175 (0.210)0.350 (0.420)0.700 (0.840)Noise 0 ... 100 Hz, typ.mg rms 0.0700.350 1.050 1.750 3.5007.000Resolution (threshold), typ.mg rms0.1000.5001.4702.4504.9009.800Electrical0 g output, output Type (A; B; C; D)mV 0 ±60 (A); 2,500±30 (B); 0±60 (C); 0 ±120 (D)Capacitive load, max.μF 0.5Load resistance, min.kΩ30Output impedance, typ.ohm 300Supply current, nom.mA 12Supply voltage, temperature VDC 6 … 50 (≤ 100°C [210 °F]); 6 … 35 (≤ 110°C [230°F]); 6 … 20 (≤ 120°C [250°F]);6 … 12.5 (125°C [260°F])Reverse polarity protection yes/noyesEnvironmentalShock, (half sine, 200 μs)g 6,000Random, (20 ... 2,000 Hz)g rms 20Storage temperature range°C [°F]–55 ... 125 [–65 ... 260]Operating temperature range °C [°F]–55 ... 125 [–65 ... 260]Temp. coeff. sensitivity, typ. (max.)ppm/°C [ppm/°F]±100 (±300)[±55 (±165)]Temp. coeff. sensitivity, typ. (max.)%/°C [%/°F]±0.01 (±0.030)[±0.006 (±0.017)]Temp. coeff. bias, typ. (max.)mg/°C [mg/°F]±0.1 (±0.8)[±0.06 (±0.4)]±0.5 (±4)[±0.3 (±2.2)]±1.5 (±12)[±0.8 (±6.6)]±2.5 (±20)[±2.5 (±11)]±5 (±40)[±2.8 (±22)]±10 (±80)[±5.5 (±44)]Technical dataNOTE: Operation of the sensor with supply voltage exceeding stated values at indicated temperatures will cause permanent damage to the sensor.1 g = 9.80665 m/s 2, 1 in = 25.4 mm, 1 gram = 0.03527 oz, 1 lbf-in = 0.1129 N·m8396A _003-325a -10.21Technical data (continued...)Operation of the sensor with supply voltage exceeding stated values at indicated temperatures will cause permanent damage to the sensor.1 g = 9.80665 m/s 2, 1 in = 25.4 mm, 1 gram = 0.03527 oz, 1 lbf-in = 0.1129 N·mTypeUnit8396A2D08396A0108396A0308396A0508396A1008396A200Temperature sensor Output @ 20°C[68°F]V (E.U.)[V (U.S.)] 1.23[1.23]Sensitivity mV/°C [mV/°F]–4[–2.2]Accuracy °C [°F]±5 [±9]Physical Case type Titanium Mounting type 10-32 stud/adhesiveSealingtypeHermetic (A00 - IP50)(Bxx/Cxx/Dxx/Exx - IP64)(Fxx/Gxx - IP68 tested at 10 barfor 48 hours)Ground isolationyes/no yesWeight (excluding cable), output type (A, B, C, D)grams 31 (A, B); 33 (C, D)Cable length tolerancem±0.18396A _003-325a -10.21Integral cable solution9 pin circular male connector sensor viewSensor connectorFunction outputIntegral cable TB vrs. or cable Type 1792A…K00/KB00Integral cable TC vrs. or cable Type 1792A…K01/KB01Mini 9 pin female AT, BT version CT, DT versions pigtail (color)9 pin D-Sub 1Power Power Red 12*Ground Ground Black 23 X DC output X DC output +White 34Y DC output Y DC output +Yellow 45Z DC output Z DC output +Blue 56Temp. output Temp. output Orange 97N/C X DC output –Brown 68N/C Y DC output –Green 79N/C Z DC output –Violet 8-CaseCaseShieldShield* not connected to cable shieldWiring - mating cableMountingReliable and accurate measurements require that the mount-ing surface be clean and flat. The accelerometer can be directly attached to the test structure with the supplied stud. Alternately, a ground isolated adhesive mount is obtained by mounting the hard anodized aluminum side of the sensor to the test object. Several optional accessories are offered to mount Type 8396A… Type 8466K01 has an integral 10-32 stud and screws into threaded hole on the sensor to provide a ground isolated adhesive mount. Type 8466K02 is similar to Type 8466K01 except it has a threaded 10-32 hole to provide a ground isolated stud mount. Type 8466K03 has an integral 10-32 stud and screws into threaded hole on the sensor and provides a magnetic mount for the sensor. The instruction manual for Type 8396A… provides detailed information regard-ing mounting surface preparation.ApplicationType 8396A… is an instrument grade triaxial accelerometer. As such, Type 8396A… is well-suited for a wide variety of R&D and OEM applications requiring precision measurements and packaging for demanding application and handling needs.In particular, the sensor design is optimized for low frequency applications common to Aviation/Aerospace, Automotive, Civil Engineering Structures, Seismic, Railway and other R&D studies. In particular, Aviation/Aerospace ground and flight testing often evaluates dynamics and structural vibration to assess performance parameters, reliability and integrity. Automotive laboratory androad testing often evaluates system parameters such as vehicle ride, dynamics and structural analysis to assess performance parameters, reliability and durability. Civil engineering structures, such as bridges, often are evaluated for structural response to assess the integrity of the bridge to ensure safety. Seismic ground and structural testing is often performed to measure the effect of earthquakes and other natural phenomena. The differential versions are being used for railway comfort or conditional main-tenance monitoring applications where halogen free cables are requested as well. Other R&D studies include human motion, robotics and platform motion control systems for example.Dimensions specified (in [mm])8396A _003-325a -10.21Center of sensing elementsIncluded accessories Type/Art. No.• 10-32 mounting stud8402• Mounting wax 8432• ISO 17025 Calibration CertificateMeasuring chainOptional accessories Type/Art. No.• Adhesive mounting base (off-ground) 8466K01 with 10-32 male sensor side• Mounting base (off-ground) with 8466K02 10-32 male sensor side to 10-32 female mounting side• Magnetic mounting base 8466K03• Interface plate for compatibility with 8466K04 legacy Type 8393 mounting hole pattern • Cable – mini 9 pin circular connector 1792AxxK00 female, silicone jacket to pigtail (xx = l• ength: 2, 5, or 10 meters – For other special length requests use 1792AK00sp)• Cable – mini 9 pin circular connector 1792AxxK01 female, silicone jacket to 9 pin D-Sub(xx = length: 2, 5, or 10 meters – For other special length requests use 1792AK01sp)• 9 pin neg. D-Sub, (3) BNC pos. | 1794Ax(2) banana jacks (x = length: 2 meters – For other special length requests use 1794Asp) • Halogen-free cable – mini 9 pin circular 1792AK10sp connector female to pigtail(Length to be specified upon order) • Braided cable – mini 9 pin circular 1792AxxKB00 connector female, silicone jacket topigtail (xx = length: 2, 5 or 10 meters – For other special length requests use 1792AKB00sp)• Braided cable – mini 9 pin circular 1792AxxKB01 connector female, silicone jacket to9 pin D-Sub (xx = length: 2, 5, or 10 meters –For other special length requests use 1792AKB01sp)Type 1794, not suppliednot supplied••Type 5146A1515-Channel ••customer KiDAQ system Dimensions specified (in [mm])8396A _003-325a -10.21。
部分加速度计型号参数部分加速度计型号参数加速度传感器MXP7205VF MXP7205VF引脚低成本±5 G带SPI接口的双轴加速度计MXR6500G MXR6500G引脚薄型,低功耗±1.7克双轴加速度计,按比例输出KXTE9-1026 KXTE9-1026引脚±2g的三轴数字加速度计产品规格LSM320HAY30 LSM320HAY30引脚MEMS运动传感器模块的三维数字加速度计和2D间距和偏航模拟陀螺仪SCA830-D06 SCA830-D06引脚SCA830-D06单轴数字SPI接口的高性能加速度计,KXSS5-2057 KXSS5-2057引脚为±3克三轴加速度计产品规格ADIS16006 ADIS16006引脚双轴±5 g加速度计具有SPI接口的2240-002 2240-002引脚的模拟加速计模块KXP74 KXP74引脚 Kxp74系列加速度计和倾角传感器SCA3000-E01 SCA3000-E01 超低功耗引脚 SCA3000-E01 3轴加速度计,数字SPI接口KXTF9-4100 KXTF9-4100引脚±2g的三轴数字加速度计产品规格2430-002 2430-002引脚三轴模拟加速计模块KXPA4-2050 KXPA4-2050引脚±2 G三轴模拟加速度计产品规格SCA2100-D01 SCA2100-D01 SCA2100-D01 2轴加速度计,数字SPI接口引脚MXA2050A MXA2050A引脚低成本,±10 G双模拟输出三轴加速度计SCA3000-E05 SCA3000-E05 超低功耗引脚 SCA3000-E05 3轴加速度计,数字SPI接口MXR7150V MXR7150V引脚低成本?7 G按比例输出的双轴加速度计,MXR2010A MXR2010A引脚低成本,±35克双轴加速度计,按比例输出KXSC7-1050 KXSC7-1050引脚±2g的三轴模拟加速度计产品规格SCA3100-D03 SCA3100-D03 SCA3100-D03的3轴加速度计,数字SPI接口引脚MXA6500G MXA6500G引脚低成本,低噪音1 G双轴加速度计,绝对模拟输出SCA3060-D01 SCA3060-D01引脚 Sca3060-D01数位式低功率加速度计非安全关键汽车应用? 2012-002 2012-002引脚的模拟加速计模块MXD6125G MXD6125G引脚薄型,低功耗,±2 G双数字输出三轴加速度计MXR9500G MXR9500G引脚低成本±1.5 G三成比例的输出三轴加速度计KXTE9-2050 KXTE9-2050引脚±2g的三轴数字加速度计产品规格KXSS5-4457 KXSS5-4457引脚为±3克三轴加速度计产品规格2264-005 2264-005引脚的模拟加速计模块KXP84 KXP84引脚 Kxp84系列加速度计和倾角传感器SCA3100-D04 SCA3100-D04 SCA3100-D04 引脚高性能3轴加速度计,数字SPI接口SCA820-D04 SCA820-D04引脚 Sca820-D04 1轴高性能加速度计,数字SPI接口2460-002 2460-002引脚三轴模拟加速计模块格SCA820-D03 SCA820-D03引脚 Sca820-D03单轴加速度计,数字SPI接口BU-21771-000 BU-21771-000引脚BU系列加速BU-21771-000ADXL202E ADXL202E引脚低成本?2 G,占空比输出的双轴加速度计MXD2020E MXD2020E引脚超低噪声,低失调漂移±1 G双数字输出三轴加速度计KXR94-1050 KXR94-1050引脚±2g的三轴加速度计产品规格SCA3100-D07 SCA3100-D07 SCA3100-D07 引脚高性能3轴加速度计,数字SPI接口MX205Q MX205Q引脚低成本,5.0G,双模拟输出三轴加速度计ADXL202 ADXL202引脚低成本?2 G双轴加速度计,占空比输出MXR7250VW MXR7250VW引脚低成本±5 G双轴加速度计,按比例输出MXR6400Q MXR6400Q引脚超高性能为±1g双轴加速度计,按比例输出KXSD9-2050 KXSD9-2050引脚±2g的三轴数字加速度计产品规格SCA2100-D02 SCA2100-D02 SCA2100-D02 引脚 2轴高性能加速度计,数字SPI接口ADIS16003 ADIS16003引脚双轴±1.7 g加速度计具有SPI接口的2220-002 2220-002引脚的模拟加速计模块KXD94-2802 KXD94-2802引脚±10克三轴加速度计产品规格SCA3000-D02 SCA3000-D02引脚SCA3000-D02低功耗3轴加速度计,数字I 2 C接口KXTF9-1026 KXTF9-1026引脚±2g的三轴数字加速度计产品规格2422-002 2422-002引脚三轴模拟加速计模块KXPA4-1050 KXPA4-1050引脚±2 G三轴模拟加速度计产品规格SCA2110-D03 SCA2110-D03引脚 Sca2110-D03 2轴加速度计,数字SPI接口ADXL105 ADXL105引脚的高精度61克到65克单轴iMEMS加速度计与模拟输入KXPS5-2050 KXPS5-2050引脚±2g的三轴加速度计产品规格AIS326DQ的AIS326DQ引脚MEMS惯性传感器的3轴,带有数字输出的低g加速度计SCA3000-E04 SCA3000-E04 超低功耗引脚 SCA3000-E04 3轴加速度计,数字SPI接口? BU-23173-000 BU-23173-000引脚 BU系列加速BU-23173-000ADXL210E ADXL210E引脚低成本?10 G双轴加速度计,占空比MXD6125Q MXD6125Q引脚超高的性能为±1g双轴加速度计的数字输出KXR94-2353 KXR94-2353引脚±2g的三轴数字加速度计产品规格MXA2500J MXA2500J引脚超低成本,1.0 G绝对值输出的双轴加速度计,SCC1300-D04 SCC1300-D04引脚 Scc1300-D04组合的陀螺仪和3轴加速度计,数字SPI接口? 2010-002 2010-002引脚数字加速计模块MXP7205VW MXP7205VW引脚低成本±5 G带SPI接口的双轴加速度计MXR9150G MXR9150G引脚低成本±5克三成比例的输出三轴加速度计KXTE9-1050 KXTE9-1050引脚±2g的三轴数字加速度计产品规格KXSS5-3028 KXSS5-3028引脚为±3克三轴加速度计产品规格2260-002 2260-002引脚的模拟加速计模块KXP74-1050 KXP74-1050引脚±2g的三轴数字加速度计产品规格SCA3000-E02 SCA3000-E02引脚 SCA3000-E02的3轴加速度计,数字I 2 C接口超低功耗? 2440-002 2440-002引脚三轴模拟加速计模块KXPB5-2050 KXPB5-2050引脚±2 G三轴加速度计产品规格SCA830-D05 SCA830-D05引脚SCA830-D05单轴加速度计,数字SPI接口ADXL190 ADXL190引脚低成本6100 G单轴加速度计的模拟输出MXC62020GP MXC62020GP引脚低功耗,薄型±2 G双I 2 C接口的三轴加速度计KXPS5-4457 KXPS5-4457引脚±3G的三轴加速度计产品规格CMA3000-D01 CMA3000-D01引脚 CMA3000-D01的3轴超低功耗加速度计,数字SPI和I 2 C接口MXR7305VF MXR7305VF引脚改进的低成本±5 G双成比例的模拟输出三轴加速度计MXR6150M MXR6150M引脚薄型,低功耗±5g的双轴加速度计,按比例输出KXSD9-1026 KXSD9-1026引脚±2g的三轴数字加速度计产品规格SCA2120-D07 SCA2120-D07引脚 Sca2120-D07 2轴加速度计,数字SPI接口MXD202 MXD202引脚低成本,2.0G,双数字输出三轴加速度计SCA3060-D02 SCA3060-D02引脚 Sca3060-D02数位式低功率加速度计非安全关键汽车应用? 2210-002 2210-002引脚的模拟加速计模块KXD94 KXD94引脚 KXD94系列加速计和倾斜计SCA3000-D01 SCA3000-D01引脚SCA3000-D01低功耗3轴加速度计,数字SPI接口KXTE9-4100 KXTE9-4100引脚±2g的三轴数字加速度计产品规格ML8953 ML8953 的3轴加速度计的数字量输出引脚数据KXR94-2283 KXR94-2283引脚,多项数据表为±2G三轴的加速度计产品规格2420-002 2420-002引脚三轴数字加速计模块KXP94 KXP94引脚 Kxp94系列加速度计和倾角传感器SCA2120-D05 SCA2120-D05引脚 Sca2120-D05 2轴加速度计,数字SPI接口ADXL05 ADXL05引脚 61 G 65 G的单芯片加速度计与信号调理2470-002 2470-002引脚三轴模拟加速计模块KXPS5-1050 KXPS5-1050引脚±2g的三轴加速度计产品规格AIS226DS AIS226DS引脚 MEMS惯性传感器的2轴,低g加速度计的数字量输出SCA810-D01 SCA810-D01引脚 Sca810-D01单轴加速度计,数字SPI接口BU-23842-000 BU-23842-000引脚BU系列加速BU-23842-000MMA7455 MMA7455 MMA7455引脚 3轴加速度计模块ADXL50 ADXL50引脚单片加速度传感器与信号调理MXD6025Q MXD6025Q引脚超低噪声,低失调漂移±1 G双数字输出三轴加速度计KXR94-2050 KXR94-2050引脚±2g的三轴加速度计产品规格MPXY8300 MPXY8300引脚根部分号码汽车压力范围卡车轮胎压力范围压力范围压力传感器精度* Z-轴加速度计测量范围Z-轴加速度计精度X轴加速度计测量范围X轴加速度计精度AcceleMXA2500G MXA2500G引脚改进,超低噪声1.7克双轴加速度计具有绝对的输出SCC1300-D02 SCC1300-D02引脚 Scc1300-D02组合的陀螺仪和3轴加速度计,数字SPI接口? ADXL210 ADXL210引脚低成本?10 G双轴加速度计,占空比1221L-002 1221L-002引脚的低噪声模拟加速度计引脚 1.5克MMA7368L MMA7368L三轴低g微机械加速度计LIS2L06AL LIS2L06AL引脚MEMS惯性传感器的2轴- + / - 2g/6g超小型线性加速度计ADXL327 ADXL327引脚小尺寸,低功耗,3轴±2 g加速度计MMA7330L MMA7330L引脚4克,12克三轴低g微机械加速度计MMA7341LC MMA7341LC引脚 3G,11克三轴低g微机械加速度计4203 4203引脚型号4203加速度计MMA2300 MMA2300引脚表面贴装微机械加速度计MLX90308 MLX90308引脚可编程的通用传感器接口MMA1220KEG MMA1220KEG引脚低g微机械加速度计LIS3L02AS5 LIS3L02AS5引脚 MEMS惯性传感器3轴- ?2g/6g 线性加速度计MMA3201D MMA3201D引脚表面贴装微机械加速度计MMA6261Q MMA6261Q的引脚 Mma6261q加速度传感器MMA8452Q MMA8452Q,,引脚 3轴,12-bit/8-bit,,数字加速度计3031-050 3031-050引脚型号3031加速度计4610-020-060 4610-020-060引脚型号4610加速度计MMAS40G10D MMAS40G10D引脚微机械加速度计SCA610-CAHH1G SCA610-CAHH1G引脚SCA610-cahh1g 1轴模拟测斜仪MAX1459 MAX1459引脚 MAX1459 2线,4-20mA的智能信号调理KXRB5-2050 KXRB5-2050引脚,多项数据表为±2G三轴的加速度计ADXL335 ADXL335引脚小尺寸,低功耗,3轴±3 g加速度计MMA1270KEG MMA1270KEG引脚飞思卡尔半导体技术资料MMA2204KEG MMA2204KEG引脚表面贴装微机械加速度计LIS2L01 LIS2L01引脚,多项数据表的惯性传感器2axis/1g线性加速度计MMA2204D MMA2204D引脚表面贴装微机械加速度计HMR3400 HMR3400引脚数字罗盘解决方案QA-1400 QA-1400引脚加速度计具有成本效益级惯性传感器ADXL213 ADXL213引脚低成本±1.2克双轴加速度计4655-020 4655-020引脚型号4655加速度计4801A 0010 4801A-0010引脚型号4801a加速度计MMA1212 MMA1212引脚表面贴装微机械加速度计BMA145 BMA145引脚 Bma145数据表B Bma145三轴模拟加速度传感器LIS344AL的LIS344AL引脚MEMS惯性传感器的3轴超小型线性加速度计ADXL150 ADXL150引脚 65克到650克,低噪声,低功耗,单/双通道轴的iMEMS?加速度计MMA2260D和 MMA2260D引脚 1.5克X-轴微机械加速度计MMA2301KEG MMA2301KEG引脚表面贴装微机械加速度计LIS352AX的 LIS352AX引脚 MEMS惯性传感器的3轴- ±2g的绝对模拟输出加速度计1203-1000-10-072X 1203-1000-10-072X引脚型号1203加速度计MMA1212D MMA1212D引脚表面贴装微机械加速度计MLX90308CAB MLX90308CAB引脚可编程传感器接口52M30-2000-360 52M30-2000-360引脚型号52m30加速度计ADXL323 ADXL323引脚小尺寸,低功耗,2轴±3 GI MEMS加速度计MLX90308CCC MLX90308CCC引脚可编程传感器接口MMA7341L MMA7341L引脚 3G,11克三轴低g微机械加速度计LIS2L02AQ LIS2L02AQ引脚惯性传感器2axis - 2g/6g线性加速度计ADXL345 ADXL345引脚三轴±2/4/8/16g数字加速度计MMA2244EG MMA2244EG引脚低g微机械加速度计MMA6341L MMA6341L引脚 3G,11克两轴低g微机械加速度计LIS302SG LIS302SG引脚 MEMS运动传感器的3轴- ?2G模拟输出短笛加速度计4000A-020-060 4000A-020-060引脚型号4000A加速度计MMA1201P MMA1201P引脚微机械加速度计ADXL193 ADXL193引脚单轴,高g,公司的iMEMS加速度计MMA7660FC MMA7660FC引脚 3轴方向/运动检测传感器LIS3L02AQ3 LIS3L02AQ3引脚 MEMS惯性传感器的3轴- 2G /6克线性加速度计ADW22035 ADW22035引脚精度±18 G Single-/dual-axis iMEMS加速度计MMA7360L MMA7360L引脚 1.5G,6克三轴低g微机械加速度计MAX1166 MAX1166引脚低功耗,16位模拟数字转换器,并行接口MMA6851QR2 MMA6851QR2引脚单轴SPI惯性传感器NJU7029 NJU7029引脚低噪声,轨至轨输出双通道CMOS运算放大器4602-010-060 4602-010-060引脚型号4602加速度计MMA6270Q MMA6270Q引脚 R1.5 G - 6 G双三轴低g微机械加速度计SCA610-C23H1A SCA610-C23H1A引脚的 SCA610-c23h1a单轴模拟加速度计ADIS16355, ADIS16355引脚三轴惯性传感器ADXL312 ADXL312引脚三轴,±1.5g/3g/6g/12g数字加速度计MMA2202KEG MMA2202KEG引脚表面贴装微机械加速度计LIS3L02AQ LIS3L02AQ引脚惯性传感器3轴- 2g/6g线性加速度计MMA2202D MMA2202D引脚表面贴装微机械加速度计BU1511KV2 BU1511KV2引脚事件数据记录系统LSIQA3000-030 QA3000-030引脚的 Q-Flex QA-3000加速度计ADS8201 ADS8201引脚 2.2V至5.5V,低功耗,12位,100ksps时,与PGA和SPI?接口的8通道数据采集系统3058-010-P 3058-010-P引脚型号3058加速度计4623-025-060 4623-025-060引脚型号4623加速度计XMMA1000P XMMA1000P引脚微机械加速度计LIS244AL LIS244AL引脚 MEMS运动传感器的2轴- ?2克超小型线性加速度计KXPS5 KXPS5引脚加速度计和倾角传感器ADIS16354 ADIS16354引脚高精度三轴惯性传感器MMA7261QT和 MMA7261QT引脚 2.5G - 10G三轴低g微机械加速度计MMA6222AKEG MMA6222AKEG引脚模拟双轴微机械加速度计“惯性传感器LIS3L02AS LIS3L02AS引脚 3轴- 2g/6g线性加速度计MMA1210D MMA1210D引脚表面贴装微机械加速度计HMC1055 HMC1055引脚 3轴罗盘传感器集QA-700 QA-700引脚加速度计的经济温度补偿传感器ADXL320 ADXL320引脚小而薄的±5 G iMEMS加速度计834M1-2000, 834M1-2000引脚型号834m1加速度计MMA2260 MMA2260引脚 1.5克X-轴微机械加速度计LIS332AR LIS332AR引脚 MEMS运动传感器的3轴±2 G模拟输出超小型加速度计LIS3LV02DL LIS3LV02DL引脚 MEMS惯性传感器的3轴-2G /??6克数字输出低电压,线性加速度计MMA1270D MMA1270D引脚低g微机械加速度计MMA2244KEG MMA2244KEG引脚低g微机械加速度计LIS33DE LIS33DE引脚 MEMS运动传感器的3轴- ±2克/±8G智能数字输出“纳米”加速度1207F-1000 1207F-1000引脚型号1207f加速度计MMA1200D MMA1200D引脚表面贴装微机械加速度计邢树村整理:TEL:189********。
mems加速度计参数
MEMS加速度计是一种微型机电系统,用于测量物体的加速度。
它由微型机械结构、传感器和信号处理器组成。
以下是常见的MEMS 加速度计参数:
1. 测量范围:表示MEMS加速度计可以测量的加速度范围,通常以重力加速度g为单位,例如±2g、±4g、±8g等。
2. 灵敏度:表示MEMS加速度计在单位加速度下输出的电压变化量,通常以mV/g为单位,例如200mV/g。
3. 分辨率:表示MEMS加速度计可以测量的最小加速度变化量,通常以mg为单位,例如1mg。
4. 器件带宽:表示MEMS加速度计可以测量加速度信号的频率范围,通常以Hz为单位,例如100Hz。
5. 器件噪声:表示MEMS加速度计在无加速度信号时输出的电压噪声水平,通常以mg为单位,例如0.1mg。
6. 线性度:表示MEMS加速度计输出与实际加速度之间的误差程度,通常以百分数或mg为单位,例如±0.2%FS或±2mg。
MEMS加速度计是一种常见的传感器,广泛应用于汽车、手机、游戏机、医疗器械等领域。
了解其参数可以帮助工程师选择适合的加速度计,以满足不同应用的需求。
- 1 -。