管壳式换热器中间管板胀接工艺技术
- 格式:doc
- 大小:17.00 KB
- 文档页数:4
换热器管子与管板接头胀接工艺守则1总则本守则规定了压力容器管子与管板的胀接方法和技术要求;本守则适用于GB150、GB151及《固容规》涉及的强度胀、焊后胀,胀后焊结构的容器产品; 2胀接操作人员2.1 胀接操作人员必须经过有关部门技术培训,考试合格后方能上岗;2.2 胀接操作人员应掌握所用胀接设备的使用性能,熟悉产品图样、工艺文件及标准要求; 2.3 胀接操作人员应认真做好胀接场地的管理工作,对所用工、量、检具能正确使用和妥善保管;3. 胀接设备与胀管器3.1 胀接设备与胀管器应能满足胀接技术条件及有关标准要求;3.2 胀接设备一般有如下几种:a.无自动控制胀管率装置的机械式胀管机;b.液压驱动扭矩自动控制胀管率的胀管机;c.微机控制胀管率的机械式胀管机;d.液压橡胶柔性胀管机;上述胀接设备可视产品情况选择使用;3.3 胀管器可与相应胀接设备一同使用或直接用于手工胀接;3.3.1 胀管器按用途一般分为:a.12°~15°扳边胀管器;b.90°扳边胀管器;c.无扳边胀管器;3.3.2 胀管器按胀柱数量一般分为:a.3个胀柱胀管器;b.5个胀柱胀管器;应优先选用5胀柱胀管器;3.3.3 90°扳边胀管器一般有普通90°扳边胀管器与90°无声扳边胀管器之分;应优先选用无声扳边胀管器;取1个试样;b样坯切取位置及方向应符合GB2975的规定;c硬度测试可在切取的试样上进行,亦可在管板和胀接管端上直接进行;测试前,应将测点处的氧化皮、锈蚀、油污清除掉,使之露出金属光泽;d当在试样上进行时,试验方法、试样尺寸及表面要求应符合GB231的规定;e当在管板和胀接管端上直接进行时,管子测点数量为每台锅炉按胀接管子总数的3%选取,且不少于15点;每根管端上最多不超过3点,测点位置应在距管端50mm范围内;管板测点数量为每个管板取3点,测点均匀分布;4.5胀接管端需做退火处理时,应符合下列要求:a退火可采用电加热,亦可采用火焰直接加热;当采用火焰加热时其燃料可采用焦炭、木炭、锯末,但不得用煤炭做燃料直接加热;b加热时应缓缓升温,平均温升不超过15℃/min,退火温度控制在600~650℃(无论用何种方法加热,都不得将管端加热至650℃以上),保温10~15min,保温后管端应埋于干燥的石棉灰或硅藻土或石灰粉中缓冷,埋入深度不小于350mm,冷却至室温后方可取出;c加热退火时必须配有温控装置或仪器,不得目测估量;d管端退火长度应控制在100~150mm;两端可同时加热;当管子一端加热时,应用木塞将管子的另一端堵住,以防空气在管内流动;加热过程中应旋转管子,使管端加热均匀;4.6胀接前须按下列要求对胀接管端进行清理:a管端外表面应用半自动双头磨管机或机械洗管机等除锈磨光,磨光长度不小于两倍的管板厚度mm;除锈磨光后的表面不应有起皮、凹痕、裂纹和纵向沟槽等缺陷,磨光后的最小管端外径应符合GB8163规定;管端内表面应无严重锈蚀和铁屑等杂物并清除毛刺;b除锈磨光后的胀接管子应及时胀接,如不能及时装配胀接,则应妥善保管以防再次生锈;如生锈应重新打磨,打磨后的管端最小外径仍须符合GB8163规定;5.胀接管孔的技术要求5.1 用汽油或四氟化碳等溶剂清洗管孔壁上的油污,再用细纱布沿孔壁圆周方向打磨残留锈蚀,并除去管孔边缘毛刺;打磨后管孔壁的表面粗糙度不得大于Ra12.5;5.2 清理后的管孔壁不得有纵向刻痕,个别管孔允许有一条螺旋形或环向刻痕,刻痕深度不得超过0.5mm,宽度不得超过1mm,刻痕至管孔边缘的距离不得小于4mm;5.3 胀接管孔尺寸应符合图纸工艺要求;5.4 如管孔直径超差,其超差数值不得超过规定偏差值的50%;当管孔总数不大于500个时,超差孔数不得超过管孔总数的2%,且不得超过5个;当管孔总数大于500个时,超差孔数不得超过管孔总数的1%,且不得超过10个;对于超差管孔在管板上应作出明显标记;6.胀接前对胀接设备的检查6.1 胀管器,胀杆锥度及胀珠胀杆转动灵活;6.2 液压驱动胀管设备和微机控制胀管设备其控制系统应准确灵敏、性能良好;6.3 胀管器先检查外观,然后用涂色法检查接触面(接触面应大于80%),合格后涂以润滑脂待用;7.穿管7.1 穿管前应先按图样核对管板的装配位置;7.2 按照每个胀接面管子、管孔总数的15%,随机测量管孔直径d、管端壁厚t,计算出d、t的算术平均值并做好记录(参见附录A表A1);7.3 根据超差管孔的直径选配管子,选配后的最大间隙不超过管子直径的3%;7.4 管子的两个胀接端穿入管孔时应能自由伸入,管子必须装正,不得歪斜;当发现有卡住,偏斜等现象时,不得强行插入,应取出管子,按大样矫正后,再行插入;7.5 穿管时应超穿一定距离,以再次清理胀接管端或管孔壁上因穿管留下的锈屑污物,清理后,退回正确位置;7.6 管子与管板胀接时,可先穿基准管,基准管找正后,采用预胀或其他方法加以固定;7.7 胀接管端伸出长度应符合图样要求;7.8 对于管端伸出长度超过要求的管子,应用机械(齐头机)方法去除超长部分,并清除毛刺;8.胀接技术要求8.1 试胀8.1.1 正式胀接前应进行试胀,以检查胀管器的质量、管材的胀接性能和确定最佳胀管率;8.1.2 试胀用管子的材质、规格应与产品胀接管子相同,试胀用板的材质、厚度及管孔间距、管孔尺寸、加工质量等均应与产品的管板相同;8.1.3 试胀件尺寸规格及数量按照产品图纸管板的厚度,孔的大小、排列做试胀板一块,开孔12~16个;8.1.4 试胀管子的胀接管端硬度应符合4.5规定;当管端退火时,应按4.6随炉退火,退火后的管端应按要求进行清理;8.1.5 试胀管子与管孔一一对应,编号入座,用油漆在试胀板上做出孔位编号,用游标卡尺逐一测量试胀管壁厚t、管孔直径d值,并作好记录(参见附录A表A2);8.1.6 在胀管率H为1%~2.1%范围内,选用不同的胀管率数值,计算出相应的胀口内径d1值,然后对各个胀口进行试胀,实测胀口内径并作好记录(参见附录A 表A2);8.2 胀接8.2.1 根据试胀所确定的最佳胀管率进行正式胀接;胀接时应在管端内壁涂少许润滑脂,再插入胀管器;胀接过程中,严防油污、水及灰尘渗入胀接面间;8.2.2 胀接时一般采用反阶式胀接顺序,见图4;管子与管板胀接可在管子穿妥后再按图4进行胀接;管子与管板胀接时,为防止油污流进胀接面间,亦可采用错列式胀接顺序,见图5;不足2个时,允许超胀2个;8.3 胀管率的间接控制方法8.3.1 采用液压柔性胀接时控制胀接压力;8.3.2 采用液压驱动机械胀管或微机控制机械胀管时,控制胀接扭矩;采用普通机械胀管时,使用胀管限位器控制胀杆进入胀口的相对位置;8.4 胀口质量要求8.4.1 管端内表面不应有粗糙、剥落、刻痕、裂纹等;8.4.2 12°~15°扳边后管端不应有裂纹;8.4.3 90°扳边后边缘不应有超过2mm长的细小裂纹;8.4.4 胀口处应无偏挤(单边);8.4.5 胀口的内径圆度公差大于0.15mm时,其超差数量在同一胀接面处不得超过胀接总数的10%;9.水压试验、补胀和换管技术要求9.1 胀接管子全部胀妥后,进行胀口及管板的内部清理,并检查管子有无堵塞;9.2 水压试验前应拆除本体组装设施或临时支架;9.3 水压试验按图纸、工艺及《固定式容规》进行;9.4 水压试验检查应在试验压力降至工作压力时进行,检查胀口有无漏水(漏水是指水珠向下流)、水印(指仅有水迹)和泪水(指水压试验期间不向下流的水珠);如发现上述缺陷,应在相应管端处分别作出标记;9.5 对水压试验漏水的胀口或超过允许数量的泪水、水印的胀口应在卸压放水后随即进行补胀,同时还应对其邻近的一些胀口稍加补胀以免受到影响而松弛;补胀前应测量胀口内径;确定合适的补胀量,以免超胀;9.6 同一漏水胀口,补胀次数不宜多于2次,补胀后应重新进行水压试验,对补胀后仍有漏水且胀管率已超过2.8%的管子应予换管重胀(在割除不合格的胀接管子时,必须注意不损伤管孔壁);补胀、重胀后的胀管率应符合8.2.9要求;9.7 应有专人负责记录胀接及水压试验结果(参见附录A表A3),以作为验收依据并备案;10.贴胀(或称“轻胀”、“预胀”)技术要求10.1 贴胀宜在需贴胀的管子焊接后进行,也可在焊接前进行;10.2 当图样要求贴胀或要求用胀接方法消除管子与孔壁间隙时,应采用与前述相同的胀接设备和操作方法,使管子外壁紧贴管孔内壁,并有一定的胀紧力,以消除管子与管孔间的间隙; 10.3 当采用手工贴胀时,应胀至感到扭矩明显增大时止;当采用机械或液压驱动贴胀时,应胀至负载明显时止;10.4 前部管子贴胀完毕后,应仔细检查外观质量,并应用小手锤轻击接近管孔的管段,监听贴胀质量(贴胀紧密时,其声音沉闷;而未贴紧时,声音较清脆);注:贴胀的目的仅是为了消除管子与管孔的间隙及降低焊接应力;因此,在执行本守则时,当对管子按规定进行材质、外观质量检验并合格后,对管子和管板的硬度检查、试胀、胀管率、扳边、记录、检查胀接质量的水压试验等要求均可免去;附录A胀接用数值记录表( 参考件)A1 胀接前各胀接面15%的管子、管孔数值测量记录表,见表A1;注:1.管板管孔:水平—纵向;垂直—环向;2.每个胀接面要分别测量、计算算术平均值;A2 试胀用数值记录表,见表A2注:Hj—最佳胀管率;d1j—最佳胀管率时的胀口内径;A3 胀接后数值记录表,见表A3注:管板管孔:水平—纵向;垂直,。
胀管通用工艺规程一、胀接说明1 胀接胀接是换热管与管板的主要联接形式之一,它是利用胀管器伸入换热管管头内,挤压管子端部,使管端直径扩大产生塑性变形,同时保持管板处在弹性变形范围内。
当取出胀管器后,管板孔弹性变形,管板对管子产生一定的挤紧压力,使管子与管板孔周边紧紧地贴合在一起,达到密封和固定连接的目的。
由于管板与管子的胀接消除了弹性板与塑性管头之间的间隙,可有效地防止壳程介质的进入而造成的缝隙腐蚀。
当使用温度高于300℃时,材料的蠕变会使挤压残余应力逐渐消失,连接的可靠性难以保证。
因此,在这种工况下,或预计拉脱力较大时,可采用管板孔开槽的强度胀接。
胀接又分为贴胀和强度胀。
2 胀管率胀管率是换热管胀接后,管子直径扩大比率。
贴胀与强度胀的主要区别在于对管子胀管率 (管子直径扩大比率) 的控制不同,对冷换设备换热管来说,强度胀要求的胀管率H为1~2.1%,而贴胀要求的胀管率H为0.3~0.7%。
3 贴胀贴胀是轻度胀接的俗称,贴胀是为消除换热管与管板孔之间的缝隙,以防止壳程介质进入缝隙而造成的间隙腐蚀。
由于贴胀时胀管器给管子的胀紧力较小,管子径向变形量也就比较小。
因此换热管与管板孔之间的相对运动的摩擦力就比较小,所以它不能承受较大的拉脱力,且不能保证连接的可靠性,仅起密封作用。
贴胀时,管孔不需要开槽。
4 强度胀强度胀是指管板与换热管连接处的密封性和抗拉脱强度均由胀接接头来保证的连接方式。
强度胀接的管板孔要求开胀管槽,一般开两道胀管槽。
以使管子材料在胀接时嵌入胀管槽内,由此来增加其拉脱力。
特别是当使用温度高于300℃时,材料的蠕变会使挤压残余应力逐渐消失,连接的可靠性下降,甚至发生管子与管板松脱,这时采用强度胀接,其抗拉脱力就比贴胀要大得多。
胀管前应用砂轮磨掉表面污物和锈皮,直至呈现金属光泽,清理锈蚀长度应不小于管板厚度的2倍。
管板硬度应比管子硬度高HB20~30,以免胀接时管板孔产生塑性变形,影响胀接的紧密性。
1 胀管工艺规程编制审核2管子与管板“焊、胀”连接工艺一、原理及适用条件本工艺的实施步骤是焊-胀。
它巧妙地运用胀接过程的超压过载技术通过对管与管板的环形焊缝进行复胀造成应变递增而应力不增加即让该区域处于屈服状态在焊缝的拉伸残余应力场中留下一个压缩残余应力体系。
两种残余应力相互叠加的结果使其拉伸残余应力的峰值大减二次应变又引起应力的重新分布结果起到调整和均化应力场的效果最终将残余应力的峰值削弱到预定限度以下。
本工艺适用于管子与管板的胀、焊并用连接型列管式换热器的工厂或现场加工。
管板厚度范围为16100mm材质为碳钢者就符合GB150-98第二章2.2条的规定若采用16Mn时就分别符合GB3247—88和GBI51—99中的有关规定换热管束应符合GB8163、GB9948-88、GB6479-86、GB5310-85的规定。
二、焊、胀工艺一准备工作1、对换热管和管板的质量检查1管子内外表面不允许有重皮、裂纹、砂眼及凹痕。
管端头处不得有纵向沟纹横向沟纹深度不允许大于壁厚的1/10。
管子端面应与管子轴线垂直其不垂直度不大于外径的2。
2换热管的允许偏差应符合表1-1要求。
3管孔表面粗糙度Ra不大于12.5μm表面不允许纵向或螺旋状刻痕。
管孔壁面不得有毛刺、铁屑、油污。
4管孔的直径允许偏差应符合表1-2规定。
3 换热管的允许偏差表1-1 Ⅰ级换热器Ⅱ级换热器材料标准外径×厚度mm 外径偏差mm ?诤衿 頼m 外径偏差mm 壁厚偏差mm19×2 25×2 25×2.5 ±0.2 ±0.4 32×3 38×3 45×3 ±0.3 12 10 ±0.45 15 10 碳钢GB8163-87 57×3.5 ±0.8 ±10 ±1 12 10 抽查区域应不小于管板中心角60。
管板与换热管的连接方式主要胀接、焊接、胀焊结合;
胀接分强度胀和贴胀两种,胀接的方法主要有机械滚胀法、液压胀管、爆破胀管,胀接是利用电动或风动等动力使心轴旋转并挤入管内迫使管子扩张产生塑性变形而与管板贴合,为了提高胀管的质量,管端材料的硬度应比管板低;若单一使用胀接,一般使用条件为压力不超过4MPa,温度不超过350℃;带槽孔的结构用于抗拉脱能力与密封性要求高的场合,管板中开的环形小槽深为~,管子材料被胀挤进槽内,可防止介质外泄,管板厚度小于30mm 时,槽数为1,厚度大于30mm时,槽数为2;液压胀、爆破胀具有劳动强度低、密封性能好,一般推荐在高温高压的工况下采用液压胀和爆破胀;
焊接分强度焊和密封焊两种,焊接加工简单、连接强度好,在高温高压时能保证连接处的紧密性与抗拉脱能力,管子与薄管板的固定更应采用焊接方法;当连接处焊接之后,管板与管子中存在的残余热应力与应力集中,在运行时可能引起应力腐蚀与疲劳破坏,此外,管子与管板孔之间的间隙中存在的不流动的液体与间隙外的液体有着浓度上的差别,还容易产生间隙腐蚀,目前在工况要求较高的场合推荐采用内孔焊;
采用胀焊结合的方法,不仅能提高连接处的抗疲劳性能,还可消除应力腐蚀和间隙腐蚀,提高使用寿命;
采用强度胀+密封焊的结合方式,胀接承受拉脱力,焊接保证紧密性,采用强度焊+贴胀的结合方式,焊接承受拉脱力,胀接消除管子与管板间的间隙;。
胀接通用工艺1. 总则:本通用工艺适用于管壳式换热器管板与管子的胀接。
2 胀管前准备2.1 管端及管板必须清理干净,不得有油渍污物、毛刺、铁屑、锈蚀等杂物;管孔表面不得有影响紧密性的缺陷,如贯通的纵向或螺旋状刻痕等。
2.2 测量管板厚度,检查所领的胀管器是否符合要求。
2.3 准备润滑油及冷却用油。
3 胀管长度3.1 胀接连接时,其胀接长度不得伸出管板背面(壳程侧),换热管的胀接部分与非胀接部分应圆滑过渡,不得有急剧的棱角。
4 胀管率ρ对于钢管和钢管板,ρ=12~18%为强度胀接;ρ=7~10%为紧密胀接;ρ=3~7%为贴合胀接,不能保证联接强度和严密度。
过大的ρ会使管壁加工硬化严重,甚至发生裂纹,胀接强度也会降低。
如果管子直径较大,管子的金属材料较软,且管板的金属材料较硬时,则选取较大的胀管率。
其值可按下式计算:ρ=(d K-d N-e)/Do×100%式中:d K——管子胀接后的内径d N——管子胀接前的内径e—胀接前管子与管板的间隙(即管子胀前外径)Do—胀接前管板孔径5 胀接过程5.1 为减少管板胀后变形,推荐按梅花状的顺序定位胀。
5.2 对大直径,(D N>1000)特别是薄管板,为避免胀后变形,在定位胀前,将两管板保持与管子垂直,测量四点,其中两管板间距之差不得超过:D N<1000时2mm;D N≥1000时3mm。
两管板按上述要求调好后,靠近中心处临时用拉杆若干根将两管板拉紧,再按上述步骤胀接。
5.3 胀接过程中允许施用润滑油,但一定要防止润滑油带入管板孔内。
5.4 胀管时,一旦过胀,发现管子胀裂,需更换管子,管子抽出后,修磨管板孔。
管孔最大直径应不大于Do+1㎜。
5.5 管子全部胀完后,应逐根检查管口是否有漏胀。
如果管头超差应用钻头锪到允许范围,见下表6 胀管质量要求:6.1 胀口内壁光滑平整,无凹陷擦伤、重皮、起毛。
6.2 胀口扩大部分的过渡区应无明显棱角,不准出现裂纹。
管壳式换热器制造有效液压贴胀工艺生产运行部黄科达摘要介绍管壳式换热器制造进程中常经常使用到的一种有效的液压贴胀工艺。
关键词管壳式管热器液压贴胀工艺Abstract Present a way of practical light hydraulic expansion jointing which is used frequently in the manufacture of the tube and shell heat exchanger.Key words: tube and shell heat exchanger, light hydraulic expansion jointing1 绪论在炼厂及化工厂中要用到许多管壳式换热器,随着工业的进展,换热器的工作压力、温度和容量不断提高。
换热器上管子和管板的连接部位多、要求简单节省、连接靠得住,因此液压胀管工艺取得大力进展。
我公司承制的广西石化271-E110换热器,换热管与管板的连接采纳强度焊加贴胀。
换热管管板厚度50mm,胀接长度32mm,但由于我公司只有一台液压胀管机,故只能采纳液压贴胀工艺。
2 胀接设备和胀接原理胀接设备用的是吴江市长江特种工具厂生产的型号为YZJ- A—5型300MPa液压胀管机,它有一个用来安装液压胀头的胀管头,实施胀接的时候,把液压胀头装在那个胀管头上,然后插入换热管内,在管热管和液压胀头间形成一个很小的间隙,实际胀接的时候高压水流被压入液压胀头中,使得液压胀头的胶体部位膨胀,进而使换热管发生弹性和塑性变形,在换热管胀大的进程中管子外径贴到管板孔内表面,管板也要发生弹性和塑性变形。
当液压胀管机的压力释放后,由于管板的弹性恢复比管子要多,因此在连接处就有牢靠、均匀的结合。
3 液压胀接的优势液压胀接,较之于机械胀接,具有效率高、胀接均匀、操作简单方便等优势。
只是液压胀接对管板孔的尺寸误差、粗糙度,管孔的尺寸误差、粗糙度等阻碍胀接的因素要求较高,因此,要用好液压胀接技术就必需做好相关的工作。
管壳式换热器的胀接工艺管板和换热管都是换热器的主要受压元件,两者之间的连接处是换热器的关键部位。
胀接是实现换热管与管板连接的一种方法,胀接质量的好坏对换热器的正常运行起着关键的作用。
因此,换热管与管板之间的胀接工艺技术就显得非常重要。
1胀接形式及胀接方法胀接形式按胀紧度可分为贴胀和强度胀。
贴胀是为消除换热管与管板孔之间缝隙的轻度胀接,其作用是可以消除缝隙腐蚀和提高焊缝的抗疲劳性能。
强度胀是为保证换热管与管板连接的密封性能及抗拉脱强度的胀接。
贴胀后胀接接头的抗拉脱力应达到1MPa以上,强度胀后胀接接头的抗拉脱力应达到4MPa以上。
胀接方法按胀接工艺的不同可分为机械胀、爆炸胀、液压胀和脉冲胀等。
机械胀是用滚珠进行胀管的,具有操作简单方便、制造成本低等优点,因而得到了广泛应用。
2胀管器的选用胀管器的种类,有三槽直筒式、五槽直筒式、轴承式、调节式、翻边式。
它的选用主要根据换热管的内径、管板厚度、胀接长度及胀接特点而确定。
3换热管与管板硬度的测定换热管与管板材料应有适当的硬度差,管板硬度应当大于换热管的硬度,其差值最好达到HB30以上,否则胀接后管子的回弹量接近或大于管板的回弹量而造成胀接接头不紧。
胀接的原理是胀接时硬度较低的管子产生塑性变形,而硬度较高的管板产生弹性变形,胀接后塑性变形的管子受到弹性回复的管板孔壁的挤压而使管子和管板紧密地结合在一起。
因此在胀管之前应首先测定管子与管板的硬度差是否匹配。
如果两者硬度值相差很小时应对管子端部进行退火热处理。
管子端部退火热处理长度一般为管板厚度加100mm。
4试胀正式胀接之前应进行试胀。
试胀的目的是验证胀管器质量的好坏,验证预定的管子与管板孔的结构是否合理,检验胀接部位的外观质量及接头的紧密性能,测试胀接接头的抗拉脱力,寻找合适的胀管率,以便制定出合理的产品胀接工艺。
试胀应在试胀工艺试板上进行。
试板应与产品管板的材料、厚度、管孔大小一致,试板上孔的数量应不少于5个,其管孔的排列形式见图1所示。
xxxxxx有限公司换热器管板与换热管机械胀接工艺规程1、主题内容与适用范围本工艺规定了“管板”“折流板”“管子”的胀前预处理、胀接方法和胀接密封效果的检验及泄漏处理以及胀后清理的工艺方法。
本工艺适用于管壳式换热器中钢制管板和铜制换热管的机械强度胀接。
2、胀前预处理2.1管板、折流板、换热管胀前应用钢玉砂布清除孔口周边及管口内外边缘的锐边和毛刺。
2.2管板、折流板表面和有油迹的管子应做脱脂处理,对油脂浓重部位,用丙酮或四氯化碳喷射或刷洗,然后用无油压缩气体吹干。
2.3孔内和胀槽边缘有毛刺的管板孔,须用相应尺寸的铰刀铰光,然后用无油压缩气体吹净切削。
2.45钢制折流板、拉杆、定距管应喷砂去除表面氧化层或用钢玉砂布除锈,也可用HP-2金属清洗剂作化学除锈钝化处理。
有色材料折流板脱脂用四氯化碳或洗涤剂溶液进行清洗晾干。
2.5凡经加工的管件,如翅片管、U形管、螺旋管应按图纸要求逐根进行压力试验,不漏为合格。
2.6管件长度要按设计或工艺尺寸下料,不留余量,锯口用专用刀具或锉刀去毛刺、倒角。
2.7管子两端即按设计及工艺文件要求范围内应用管端磨光机或180目以上细钢玉砂布做抛光处理,然后用无油压缩气体吹除磨料粉末。
2.8管板、管子在预处理过程中应用木质工位器具保护,避免磕碰划伤。
2.9所有经预处理后的零件,均用塑料布覆盖防尘。
3、胀接方法3.1接管应尽量采用带有扭矩控制仪的电动或风动胀管机。
3.2按管子规格和管板厚度选择合适规格的胀管器。
胀接中一般用洗涤剂溶液润滑,胀后及时清洗掉管子材质的颗粒物以减少胀管工具的损坏,并注意检查胀针和胀杆的磨损情况,必要时及时调换。
若发生断杆卡壳情况,应慎重从胀接前端用笔管径小一定尺寸的、硬度合适的圆钢通入管内将断杆和胀套、胀针一起打出,切忌损伤管内壁,造成内漏的质量事故。
3.3为了避免管端和管孔的抛光面再次被氧化,施胀与清理的时间间隔不得超过24小时。
3.4先胀4~5根管子掌握适当胀大量(参看3.5)。
引言概述换热器通用胀接工艺是一种常用的换热器连接工艺,用于将换热器管束与壳体有效连接,确保换热器的正常运行。
本文将对换热器通用胀接工艺进行详细介绍,包括工艺原理、工艺步骤、工艺优点及适用范围。
正文内容1.工艺原理1.1胀接原理换热器通用胀接工艺是通过利用金属材料的可塑性,在管束与壳体之间形成一定的力学连接,实现换热器部件之间的良好密封和传热效果。
胀接工艺利用管束内放置胀接管,通过在管束两端施加一定的胀接力,使得管束与壳体之间产生形变,从而实现紧密连接。
1.2胀接原理的基本要求胀接工艺的基本要求是确保换热器的密封性、传热效果以及结构强度。
在进行胀接前,需要进行严格的材料选择和设计计算。
一方面,胀接材料需要具备较好的抗腐蚀性能和耐高温性能,以适应不同工况下的换热器应用。
另一方面,根据换热器的工作压力和温度等参数,合理设计胀接力的大小,确保胀接的牢固性和可靠性。
2.工艺步骤2.1前期准备换热器通用胀接工艺需要进行一系列的前期准备工作。
首先是对换热器的设计进行分析和评估,确定胀接的适用性和可行性。
其次是根据设计要求选取合适的胀接材料,并对材料进行检测和验收。
然后进行胀接工艺的参数计算和工艺方案设计。
最后是制定胀接施工方案,并准备必要的工艺设备和工具。
2.2胀接施工在施工过程中,首先需要对换热器进行清洗和检查,确保管束表面光洁无污染。
接下来将胀接管按照设计要求放置于管束两端,并进行包封和固定。
然后通过工艺设备施加一定的胀接力,使得胀接管与管束和壳体发生变形,实现胀接连接。
胀接力的施加需要控制力量和速度,避免过度胀接导致破裂或松动。
2.3检测和验收胀接施工完成后,需要进行严格的检测和验收。
主要包括外观检查、胀接质量检测和尺寸测量。
外观检查主要是检查管束与壳体之间的连接是否紧密,无裂纹、变形等缺陷。
胀接质量检测可采用无损检测方法,如超声波、放射线等,检测胀接处的内部质量。
尺寸测量则是对管束直径、壳体孔径等尺寸进行测量,确保符合设计要求。
管壳式换热器中间管板胀接工艺技术
作者:蓝景华
来源:《科技创新与应用》2014年第01期
摘要:文章旨在结合管壳式换热器中间管板胀接的相关工艺技术进行探讨。
在结合中间胀接技术的原理及特点的基础上,从工艺评定试验方案、样品焊接装配以及其工艺试验等方面进行详细阐述,希望能够提供人们一些意见参考。
关键词:中间管板胀接;中央空调;管壳式换热器
1 中间胀接技术的原理及特点
1.1 基本原理
气动胀管机驱动深孔胀管器挤压中间管板处铜管,在胀管器的滚珠不断挤压下,铜管受挤压壁厚减薄,内径增大,外壁与管板孔内壁及密封槽达到牢固再紧密的接触,胀接后管板处于弹性状态,铜管发生塑性变形残留压应力,达到胀接密封效果。
1.2 中间胀接技术的特点
包括:(1)能够应用于深度胀接的换热器,解决传统胀接带来的复杂设计问题。
(2)胀接稳定性好,可靠性高,相互系统窜气量少。
(3)在中央空调多系统螺杆机组上,可大幅降低生产成本。
2 工艺评定试验方案
2.1 准备试验样件
制造由壳体、管板、换热管等零件组成的换热器样件(如图1),样件用于模拟产品在正常生产状态下的中间胀接,其结构形状与产品完全一致,作为确定胀接参数、气密检验和解剖检验,及拉脱力检验的工艺评定使用。
图1 双系统换热器试验样件
2.2 制定检验操作标准
试验前要做好资料准备、工艺方案、编制实验记录表格,如胀接记录,试压报告等。
同时对胀接人员和质检人员进行培训,确保胀接人员熟悉胀接工艺操作过程,质检人员必须会使用测量工具,熟悉填写各项记录。
3 样品焊接装配
根据设计及图纸要求,加工和焊接装配与产品相似管壳式换热器,对于组对换热器样件提出两种方案,一是组对中管板与两节筒体后,先穿铜管再组对左右管板;二是组对中管板、两节筒体和左右管板好后,再穿铜管,但必须保证3块管板孔同轴。
考虑现场生产条件不同,可以综合选择哪种方案更适合生产。
此外,还要求样件中间管板厚度不得少于产品的厚度,管孔加工技术要求参数与产品一致,且管板在组对焊接前,管板油污,杂质要清洗干净,尤其是中间管板要提前清洗,中间管板与两节壳体组对焊时,须有工装保护中间管板不受焊接飞溅污染。
4 工艺试验
4.1 试验工艺流程
具体流程如下:(1)胀前测量铜管内外径和壁厚并记录,要求铜管外表不得有重皮、裂纹等缺陷,胀接管端有麻点等缺陷时,缺陷深度不得超过管子公称壁厚的10%。
(2)测量拉伸样件和试验管板的管孔内径,并进行管孔编号和参数记录,清洗管板孔管子,管板孔不得有纵向刻痕、大量螺旋纹等。
(3)选取铜管中间段再拉伸样件胀接,测量得到气动胀接的扭矩和减薄率,并把所得胀接接头做拉脱力实验。
(4)根据样件减薄率对应的扭矩、胀接紧固力和残留应图,在减薄率5~8范围选取合适的初始参数。
(5)利用初始参数对管壳式换热器样件进行胀接,检验胀后铜管的外观、测量胀后尺寸并做好记录。
(6)对管壳式换热器试验件进行气压肥皂检验和氦气检验,若无胀漏、外观成形好,作为代表实验理想值。
(7)根据实验理想值,力矩与减薄率图,分析确定最终的胀接参数。
4.2 试件胀接
试件胀接模拟产品真实状态,要求试件的材料,加工方法,技术参数必须与产品完全相符,其中拉伸样件开孔数量尽量不少于10个孔,管壳式样件需要2个,包括由中间管板、左右管板和壳体组成,以及由中间管板与右管板组成的管壳式换热器。
4.3 拉伸样件胀接
结合胀接经验,拉伸样件分别选取气动胀管机扭矩70、80、90、100、110、120kg.cm进行胀接,并测量每一个管孔胀后尺寸,计算出减薄率:
其中,de是铜管外径,di是铜管内径,dim是铜管胀后内径,df是管板孔内径。
扭矩与减薄率关系如下:
表 1 拉伸样件胀接参数
4.4管壳式样件胀接
根据图2、图3,可以知胀接紧固力达到一定程度后会下降,而且产生的残留压应力达到最大,因此考虑胀接采用铜管能补胀,且强度胀接减薄率为4%~8%,力矩为95kg·cm。
图2 紧固力与减薄率关系图3残留力与减薄率关系
胀接操作方法(图4):胀管头从右管板一边伸入铜管,抵达中间管板与铜管交界处胀接,测量2~3根铜管减薄率,试胀后,对各胀口进行比较全面检查,检查胀接部位是否有缺陷,胀接过度是否圆滑。
图4 胀接操作示意图
4.5 检验
胀接后进行气密检验、拉伸试验、解剖检验和氦气检验,检验密封质量和宏观分析,验证最佳胀接参数合理性。
(1)拉脱力检验
结果如表2。
拉脱力检验是为了检验最佳的参数是否满足最小拉脱力要求,根据不同拉脱参数对应扭矩绘成图5。
表2 拉伸试件的拉脱力实验值
(2)解剖检验
解剖试胀的样件(图6)切开后,检验胀口外观质量、密封槽、铜与钢接触等。
(3)气密检
胀后肥皂水气密检验:往壳程打入试验压力,往中间管板处胀口洒肥皂水,10min后无气泡冒出为合格;串气检测方法:一系统加压到气体试验压力,检测另一系统压力是否下降,并且手涂泡沫在注氟嘴上,如在规定20min内注氟嘴没有冒气泡和降压,或压强
发现铜管胀漏后,先分析是否存在过胀(欠胀)现象,并逐级增加力矩进行补胀,胀接减薄率应
(4)氦气检验
氦气检验:往一个系统冲入1.3MPa空气与0.2MPa氦气的混合气体,打置所需的压力,静置2h,从另一系统用氦气检测仪检测氦气的泄漏率,合格验收率?芨2.2×10-5mbar1/s,约3g/y。
4.6参数分析
结合图2、3、5,紧固力、残留力和拉伸力都会随扭矩(减薄率)的增大而上升,当达到波峰最大值后,则随扭矩(减薄率)的增加而下降,因此,最佳的扭矩需满足几个条件:
(1)最小拉脱力必须大于标准要求,根据试压压力计算出拉脱力≥13.4KN。
(2)最佳参数胀接铜管经过气密检验要求无发现有胀漏现象,胀口外观好,胀接应在减薄率4%~8%范围内选取合适胀接参数。
(3)工艺评定可以确认所需胀接参数T,当产品发生变化时,可在端面管板验证胀接力矩参数T0,考虑力矩随胀接长度而损失,因此,中间胀接扭矩取0.5~1%的补偿,即T=T0 +0.5~1%T0。
5 结束语
我公司采用6道密封槽进行管板设计,用于加强中间胀接密封性;并将中间胀接工艺技术广泛应用于多联机组和螺杆机组当中,目前大多数中央空调大机产品均有所推广使用。
参考文献
[1]全国锅炉压力容器标准化技术委员会.GB151-201管壳式换热器[C].北京:国家技术质量监督局,2012:70-71.
[2]汪雅芬.薄壁管胀接工艺及其应用[J].压力容器,2003,(07):15-16.。