6-03 定积分的计算方法
- 格式:ppt
- 大小:2.24 MB
- 文档页数:45
定积分的计算方法总结引言定积分是微积分中重要的概念之一,它可以用于求取曲线下的面积、求解物理问题中的积分以及解决各种与变化量有关的问题。
本文将总结定积分计算的常用方法,包括基本定积分公式、换元积分法和分部积分法。
基本定积分公式基本定积分公式是计算定积分时最基础也是最常用的方法之一。
以下为常见的基本定积分公式:1.$\\int x^m dx = \\frac{1}{m+1}x^{m+1}$,其中m为常数,m eq−1。
2.$\\int \\frac{1}{x} dx = \\ln|x|$,其中x为正实数。
3.$\\int e^x dx = e^x$。
4.$\\int \\sin x dx = -\\cos x$。
5.$\\int \\cos x dx = \\sin x$。
6.$\\int \\tan x dx = -\\ln|\\cos x|$。
换元积分法换元积分法是一种常用的定积分计算方法,它通过引入一个新的变量来简化被积函数的形式。
具体步骤如下:1.选择一个适当的变量代换,通常选择与题目给定的被积函数中具有根号、三角函数等特殊形式相关的变量。
2.根据选择的变量代换,将被积函数中的所有变量都用新的变量表示。
3.计算新的被积函数的导数,并将被积函数转换为对新变量的积分。
4.计算新的积分。
以下是换元积分法的一个例子:求解定积分$\\int 2x(x^2+1)^3 dx$。
解:设u=x2+1,则du=2xdx。
将被积函数中的所有x用u表示,则原积分变为$\\int u^3 du$。
计算新的积分得$\\frac{1}{4}u^4 + C$,其中C为常数。
最后,将u替换回x得到最终结果$\\frac{1}{4}(x^2+1)^4 + C$。
分部积分法分部积分法是解决定积分问题中的另一种常用方法,它是利用乘积的导数公式来简化积分计算的步骤。
具体步骤如下:1.选择一个适当的分部积分公式。
分部积分公式为$\\int u dv = uv -\\int v du$。
定积分的计算方法摘要定积分是积分学中的一个基本问题,计算方法有很多,常用的计算方法有四种:( 1)定义法、( 2)牛顿—莱布尼茨公式、 ( 3)定积分的分部积分法、 ( 4)定积分的换元积分法。
以及其他特殊方法和技巧。
本论文通过经典例题分析探讨定积分计算方法,并在系统总结中简化计算方法!并注重在解题中用的方法和技巧。
关键字:定积分,定义法,莱布尼茨公式,换元法Calculation method of definite integralAbstractthe integral is the integral calculus is a fundamental problem, its calculation method isa lot of, (1)definition method, (2)Newton - Leibniz formula, (3)integral subsection integralmethod, (4) substitute method.This paper, by classic examples definite integral analysis method, and in the system of simplified, summarized the approximate calculation method! And pay attention to problem in using the methods and skills.Key words:definite integral ,definition method, Newton - Leibniz, substitute method目录1 绪论1.1 定积分的定义1.2 定积分的性质2 常用计算方法2.1 定义法2.2 牛顿-莱布尼茨公式2.3 定积分的分部积分法2.4 定积分的换元积分法4 总结致谢目录3 简化计算方法错误! 未定义书签。
求定积分的四种方法本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March定积分的四种求法定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例题分析定积分计算的几种常用方法. 一、定义法例1 用定义法求230x dx ⎰的值. 分析:用定义法求积分可分四步:分割,以曲代直,作和,求极限. 解:(1)分割:把区间[0,2] 分成n 等分,则△x =2n. (2)近似代替:△32()i i i S f x x n ξ⎛⎫=∆=∆ ⎪⎝⎭(3)求和:33111222n n n i i i i i i S x n n n ===⎛⎫⎛⎫⎛⎫∆≈∆=• ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑. (4)取极限:S=3332242lim n n n n n n →∞⎡⎤⎛⎫⎛⎫⎛⎫+++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦ =443332244221lim 12lim[(1)]4n n n n n n n →∞→∞⎡⎤+++=⨯+⎣⎦ =224(21)lim n n n n→∞++==4. ∴230x dx ⎰=4.. 评注:本题运用微积分的基本定理法来求非常简单.一般地,其它方法计算定积分比较困难时,用定义法,应注意其四个步骤中的关键环节是求和,体现的思想方法是先分后合,以直代曲. 二、微积分基本定理法例2 求定积分221(21)x x dx ++⎰的值. 分析:可先求出原函数,再利用微积分基本定理求解.解:函数y =221x x ++的一个原函数是y =323x x x ++.所以.221(21)x x dx ++⎰=3221()|3x x x ++=81421133⎛⎫⎛⎫++-++ ⎪ ⎪⎝⎭⎝⎭=193. 评注:运用微积分基本定理计算定积分的关键是找到被积函数的原函数.三、几何意义法例3求定积分11dx -⎰的值. 分析:利用定积分的意义是指曲边梯形的面积,只要作出图形就可求出.解:11dx -⎰表示圆x 2+y 2=1在第一、二象限的上半圆的面积. 因为2S π=半圆,又在x 轴上方.所以11dx -⎰=2π. 评注:利用定积分的几何意义解题,被积函数图形易画,面积较易求出.四、性质法例4 求下列定积分: ⑴44tan xdx ππ-⎰;⑵22sin 1x x dx x ππ-+⎰. 分析:对于⑴用微积分的基本定理可以解决,而⑵的原函数很难找到,几乎不能解决.若运用奇偶函数在对称区间的积分性质,则能迎刃而解.解:由被积函数tan x 及22sin 1x x x +是奇函数,所以在对称区间的积分值均为零.所以⑴ 44tan xdx ππ-⎰=0; ⑵22sin 1x x dx x ππ-+⎰=0. 评注:一般地,若f (x )在[-a ,a ]上连续,则有性质:①当f (x )为偶函数时,()a a f x dx -⎰=20()a f x dx ⎰;②当f (x )为奇函数时,()aa f x dx -⎰=0.小结通过这几个例题分析,让我明白并牢固记住了如何求定积分的方法,懂得在什么情况该用何种方法解决问题;它有非常重要的意义,并且应用也非常广泛,因此掌握此四种方法可以为学好其他比如物理学应用打下良好的基础。
定积分的基本计算方法定积分是微积分中的重要概念,它在各个领域都有着广泛的应用。
在学习定积分的基本计算方法之前,我们首先需要了解定积分的定义和性质。
定积分是对一个区间上的函数进行积分运算,其结果表示该函数在该区间上的“累积效应”。
定积分的计算方法包括定积分的基本性质、定积分的几何意义、定积分的计算公式等内容。
首先,定积分的基本性质是其线性性和可加性。
即定积分具有线性运算和可加性,这使得我们可以通过分段函数的积分来计算复杂函数的定积分。
其次,定积分的几何意义是曲线下面积的计算。
对于给定的函数$f(x)$,其在区间$[a,b]$上的定积分$\int_{a}^{b}f(x)dx$表示函数曲线与$x$轴之间的面积。
这一性质使得定积分在几何和物理问题中有着广泛的应用。
定积分的计算公式包括基本积分公式、换元积分法、分部积分法等。
其中,基本积分公式是我们计算定积分的基础,而换元积分法和分部积分法则是在计算复杂函数的定积分时常用的方法。
在实际应用中,我们经常会遇到一些特殊的函数,如三角函数、指数函数、对数函数等。
针对这些特殊函数,我们需要掌握它们的定积分计算方法,以便能够准确地计算出定积分的值。
除了基本计算方法外,定积分还有一些重要的性质和定理,如定积分中值定理、定积分中的平均值定理等。
这些定理不仅有助于我们理解定积分的概念,还可以帮助我们在实际问题中进行定积分的计算和应用。
总之,定积分的基本计算方法是微积分学习的重要内容,它不仅有着理论上的重要性,还有着广泛的应用价值。
通过对定积分的基本计算方法的学习和掌握,我们可以更好地理解定积分的概念和性质,为将来的学习和工作打下坚实的基础。
定积分计算方法总结
定积分计算方法总结
导语:学习需要总结,只有总结,才能真正学有所成。
以下是定积分计算方法总结,供各位阅读和参考。
一、定积分的计算方法
1. 利用函数奇偶性
2. 利用函数周期性
3. 参考不定积分计算方法
二、定积分与极限
1. 积和式极限
2. 利用积分中值定理或微分中值定理求极限
3. 洛必达法则
4. 等价无穷小
三、定积分的估值及其不等式的应用
1. 不计算积分,比较积分值的大小
1) 比较定理:若在同一区间[a,b]上,总有
f(x)>=g(x),则 >= ()dx
2) 利用被积函数所满足的不等式比较之 a)
b) 当0<x<兀/2时,2/兀<<1
2. 估计具体函数定积分的值
积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m则
M(b-a)<= <=M(b-a)
3. 具体函数的定积分不等式证法
1) 积分估值定理
2) 放缩法
3) 柯西积分不等式
≤ %
4. 抽象函数的定积分不等式的证法
1) 拉格朗日中值定理和导数的有界性
2) 积分中值定理
3) 常数变易法
4) 利用泰勒公式展开法
四、不定积分计算方法
1. 凑微分法
2. 裂项法
3. 变量代换法
1) 三角代换
2) 根幂代换
3) 倒代换
4. 配方后积分
5. 有理化
6. 和差化积法
7. 分部积分法(反、对、幂、指、三)
8. 降幂法。
定积分的计算与应用于面积与体积的计算定积分是微积分中的重要概念之一,它不仅可以用于计算函数的面积,还可以应用于计算物体的体积。
在本文中,我们将介绍定积分的计算方法,并探讨其在面积与体积计算中的应用。
一、定积分的计算方法定积分的计算方法可以通过数学积分公式进行求解。
它是对函数曲线下方某一区间的面积进行求和的过程。
计算定积分需要确定被积函数的上下限范围,并通过适当的数值方法进行近似求解。
以计算函数y=f(x)在区间[a, b]上的定积分为例,可以使用不同方法进行计算。
其中,常用的方法包括积分定义法、几何法和数字积分法。
积分定义法是定积分计算的基本方法,它通过将函数曲线下方的面积拆分为无穷多个小矩形的面积之和来进行求解。
具体求解过程可以通过Riemann和黎曼和来进行,这里不再赘述。
几何法是一种直观的计算方法,它通过将函数曲线下方的面积分割为几个几何形状(如矩形、三角形等)的面积之和来进行计算。
对于简单的几何形状,可以使用基本几何公式进行计算,对于复杂的几何形状,则需要进行适当的近似。
数字积分法是一种数值计算方法,它通过将区间[a, b]分成若干小区间,并在每个小区间内取函数值的平均来进行计算。
其中,较为常用的数值积分法有矩形法、梯形法和辛普森法等。
二、定积分在面积计算中的应用定积分在计算函数曲线下方的面积时发挥着重要作用。
它可以用于求解曲线与坐标轴所围成的面积,并可以通过变量变换等方法应用于不同形状的曲线。
例如,我们可以通过定积分计算圆的面积。
设函数y=f(x)为圆的上半部分,区间[a, b]为圆弧的长度,根据定积分的定义,圆的面积可表示为:S = ∫[a, b]f(x)dx其中,函数f(x)可以表示为圆的方程。
通过适当的变量变换和曲线的参数化,我们可以求解出圆的面积。
同样地,定积分可以用于计算其他几何形状的面积,如正方形、三角形、椭圆等。
只要能够将几何形状表示为函数曲线的形式,就可以利用定积分进行计算。