最优解问题的解法(校本教材)
- 格式:doc
- 大小:229.99 KB
- 文档页数:4
求线性规划问题的最优解:121212123max 2322124 16.. 5 15,,0z x x x x x s t x x x x =++≤⎧⎪≤⎪⎨≤⎪⎪≥⎩ 方法1:图解法。
(P15 图1-3)方法2:求出所有的基可行解,然后比较目标值的大小得到最优解。
(P14表1-1)方法3:单纯形法。
第一步,将模型转化为标准型。
12345123142512345max 2300022 12 (1)4 16 (2).. 5 15 (3),,,,0z x x x x x x x x x x s t x x x x x x x =++++++=⎧⎪+=⎪⎨+=⎪⎪≥⎩ 221004001005001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭秩A=3 第二步,求初始基可行解。
取()345100 010001B P P P ⎛⎫ ⎪== ⎪ ⎪⎝⎭作为初始基矩阵,345, , x x x 为基变量,12, x x 为非基变量,令12=0,x x =得到初始基可行解()(0)0,0,12,16,15X =,目标值(0)0.z =第三步,对初始基可行解()(0)0,0,12,16,15X =进行最优性检验。
基可行解()(0)0,0,12,16,15X =对应的目标值为(0)0z =,因为12023z x x =++,只要1>0x 或者2 0x >,目标值都会比(0)0z =大,即12or x x 之一作为基变量,目标值都会增大,故初始基可行解()(0)0,0,12,16,15X=不是最优解。
第四步,作基变换,求目标值比(0)0z =更大的基可行解。
① 确定换入基变量。
由第三步可知,12, x x 都可作为换入基变量,一般地,{}121122*********, 0,0. max ,z x x x x σσσσσσσ=++=++≥≥=。
2 x 作为换入基变量。
这里12,σσ称为基可行解(0)X 非基变量12, x x 的检验数。
线性规划中求整点最优解的两种常用方法简单的线性规划是新教材的新增加内容,它在人们的生活和生产实践中有着广泛的应用,因此,它必将成为高考的一个新亮点,而在线性规划中,求整点最优解的问题是一个难点,下面介绍两种常用的方法.1、平移求解法步骤:1、作出可行域(若是实际问题,则首先应根据题意列出线性约束条件,找出线性目标函数);2、找出最优解(当最优解不是整数解时,过最优解作与线性目标函数平行的直线);3、平移直线族(在平面直角坐标系中,打出网格,在可行域内,平移步骤2中所作的直线,最先经过的整点即为所求的整点最优解). 【范例引导】例1、要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截得三种规格今需要A 、B 、C 三种规格的成品分别为15、18、27块,问各截这两种钢板多少张可得所需三种规格成品,且使所用钢板张数最少.解:设需截第一种钢板x 张,第二种钢板y 张,则⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥+≥+≥+0027*******y x y x y x y x 目标函数为:y x z +=.作出可行域,由⎪⎪⎩⎪⎪⎨⎧==⇒⎩⎨⎧=+=+539518152273y x y x y x ,所以A ⎪⎭⎫ ⎝⎛539,518.此时,5211=+y x ,因为A 点不是整点,它是非整点最优解,用平移求解法,打出网格,将平行直线族y x t +=中的5211=+y x 向右上方平移,由图可知,在可行域中最先经过的整点是B (3,9)和C (4,8),它们是所求的最优整点解,此时.12=+y x答:要截得所需三种规格的钢板,且使所截两种钢板的张数最少的方法有两种,一种是截第一种钢板3张、第二种钢板9张;二是截第一种钢板4张、第二种钢板8张. 2、调整优值法步骤:1、求出非整点的最优解及最优值(即对应最优解的目标函数值);2、借助不定方程的知识调整最优值;3、筛选出符合条件的最优解. 【范例引导】例2、用“调整优值法” 解例1 .解:由⎪⎪⎩⎪⎪⎨⎧==⇒⎩⎨⎧=+=+539518152273y x y x y x ,所以A ⎪⎭⎫ ⎝⎛539,518,因为A 点不是整点,它是非整点最优解,此时,5211=+=y x t = 11.4不是整数,因而需要对t 进行调整,由于y x ,为整数,所以t 为整数,而与11.4最靠近的整数是12,故取t =12,即12=+y x ,将x y -=12代入到线性约束条件,解得:5.43≤≤x ,取4,3==x x 得整点的最优解为:B (3,9)和C (4,8),此时.12=+y x例3、已知y x ,满足不等式组:⎪⎪⎩⎪⎪⎨⎧∈∈≥≥≤+≤+Ny N x y x y x y x ;0;040356056(*)求y x z 150200+=的最大值. 解:根据约束条件画出可行域,由⎩⎨⎧=+=+40356056y x y x 得非整点最优解)760,720(,此时,711857760150720200=⋅+⋅=z 也是非整数.因为y x z 150200+=)34(50y x +=,又y x ,为整数,所以z 一定是50的倍数.令y x z 150200+==1850,则)437(31x y -=,代入到(*)式中得3212≤≤x ,故当3=x 时,325=y 为非整数解.令y x z 150200+==1800,则)436(31x y -=,代入到(*)式中得:40≤≤x ,经计算(0,12),(3,8)为其整数解,此时,1800=z . 【名师小结】在一定的约束条件下使某目标达到最大值或最小值的问题称为数学规划,而当约束条件和目标函数都是一次的(又称线性的),我们称这种规划问题为线性规划.例如,如何分配有限的资源以达到某种既定的目标(如利润最大,支付最小等),称为资源分配问题,而许多资源分配问题可以归结为线性规划模型来处理. 在解线性规划应用问题时的一般步骤为:(1)审题;(2)设出所求的未知数;(3)列出约束条件,建立目标函数;(4)作出可行域;(5)找出最优解. 【误区点拨】1、对于整点解问题,其最优解不一定是离边界点最近的整点,而先要过边界点作目标函数By Ax t +=的图象,则最优解是在可行域内离直线By Ax t +=最近的整点;2、熟练掌握二元一次不等式所表示的平面区域是解决线性问题的基础,因此,正确地作出可行域是我们解题的关键;3、一般的线性规划问题,其约束条件是平面上的一个多边形闭区域,或者是向某一方向无限延展的半闭区域,而目标函数必在边界取最值,且是边界的顶点处取最值,但不一定有最优整数解,这一点一定要注意. 【反馈训练】1、设y x ,满足⎪⎪⎩⎪⎪⎨⎧∈∈>>≤+<+zy z x y x y x y x ,0,01141023,求y x u 45+=的最大值. 2怎样搭配价格最低?3、有一化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料或1车皮乙种肥料需要的主要原料和产生的利润分别是:磷酸盐4吨,硝酸盐18吨,利润10000元或磷酸盐1吨,硝酸盐15吨,利润5000元.工厂现有库存磷酸盐10吨,硝酸盐66吨,应生产甲、乙肥料各多少车皮可获得最大的利润?4、某工厂有甲、乙两种产品,计划每天各生产不少于15吨,已知生产甲产品1吨需煤9吨,电力4千瓦,劳动力3个;乙产品4吨需煤9吨,电力5千瓦,劳动力10个.甲产品1吨利润7万元,甲产品1吨利润12万元,但每天用煤不超过300吨,电力不超过200千瓦,劳动力只有300个,问每天生产甲、乙两种产品各多少,能使利润总额达到最大? 【参考答案】1、最优整数解为(2,1),=m an u 14;2、10片A 和3片B 搭配价格最低为1.6元.3、最后归结为在约束条件⎪⎩⎪⎨⎧≥≥≤+≤+0,0661518104y x y x y x 下,求目标函数y x u 500010000+=的整数解问题,答案是生产甲、乙肥料各2车皮时可获得最大的利润30000元.4、最后归结为在约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+≤+.15,15,300103,20054,30049y x y x y x y x 下,求目标函数y x u 127+=的整数解问题,答案是甲、乙两种产品各20吨、24吨,利润总额达到最大428元.。
初中最优化问题的解法教案教学目标:1. 理解最优化问题的概念和意义;2. 学会使用图解法求解最优化问题;3. 能够应用最优化问题解决实际生活中的问题。
教学重点:1. 最优化问题的概念和意义;2. 图解法的步骤和应用。
教学难点:1. 最优化问题的理解和应用;2. 图解法的操作和理解。
教学准备:1. 教学PPT;2. 练习题。
教学过程:一、导入(5分钟)1. 引入最优化问题的概念,让学生思考在日常生活中遇到的最优化问题;2. 引导学生思考如何解决这些问题。
二、讲解最优化问题的概念和意义(10分钟)1. 讲解最优化问题的定义和特点;2. 解释最优化问题在实际生活中的应用和意义。
三、讲解图解法求解最优化问题(10分钟)1. 讲解图解法的步骤和原理;2. 通过示例讲解如何使用图解法求解最优化问题;3. 引导学生思考图解法的适用范围和局限性。
四、练习和应用(10分钟)1. 分发练习题,让学生独立完成;2. 引导学生思考如何将最优化问题应用到实际生活中;3. 让学生分享自己的应用实例和心得。
五、总结和反思(5分钟)1. 总结最优化问题的解法和应用;2. 引导学生反思自己在解决最优化问题时遇到的困难和解决方法;3. 鼓励学生继续探索和应用最优化问题。
教学延伸:1. 引导学生进一步学习其他最优化问题的解法,如动态规划、贪心算法等;2. 组织学生进行小组讨论和合作,解决更复杂的最优化问题;3. 鼓励学生参加数学竞赛和相关活动,提高自己的数学水平。
教学反思:本节课通过讲解最优化问题的概念和意义,以及图解法的步骤和应用,使学生能够理解和掌握最优化问题的解法,并能够将其应用到实际生活中。
在教学过程中,要注意引导学生思考和探索,培养学生的逻辑思维和解题能力。
同时,也要注意让学生了解图解法的适用范围和局限性,避免在实际应用中出现错误。
在教学延伸环节,可以组织学生进行小组讨论和合作,提高学生的合作能力和解决问题的能力。
最优解模型解法最优解模型解法是一种常见的优化问题解决方法,主要用于在给定的限制下,找出使目标函数取得最优值的变量取值。
下面我们将从理论与实践两个方面,介绍最优解模型解法的基本概念、应用场景、求解方法等。
一、理论基础1.1 最优化问题的形式化定义最优化问题的一般形式是:max f(x),s.t. g(x)≤0, h(x)=0其中,f(x)为目标函数,x为自变量,g(x)和h(x)分别为不等式约束和等式约束。
目标是在限制条件下,求出最大(最小)化的目标值。
这个过程就是优化过程。
1.2最优解的定义最优解是指满足约束条件的最优值,分为全局最优解和局部最优解。
全局最优解是在所有可行解中的最佳解,而局部最优解则由某些条件限制下的最佳解。
1.3 模型分类最优解模型可以分为线性规划、整数规划、非线性规划、动态规划等。
其中,线性规划最为常见,主要是因为它具有优秀的求解工具和求解算法。
二、应用场景2.1 生产计划与调度通过最优解模型,可以优化生产计划与调度,最大化效益,最小化成本。
例如,工厂生产问题中,可以通过最优化问题求解最佳的生产计划,以达到最高的效率和最低的成本。
2.2 物流调度物流调度中的最优化问题,可以使用最优解模型来解决。
例如,通过线性规划模型,可有效规划运输路径,提高效率和降低成本。
2.3 金融领域在金融领域中,最优解模型可以应用于投资组合优化、金融风险控制等领域。
例如,投资组合优化中,可以使用最优解模型优化投资组合,并达到最优效果。
三、求解方法3.1 线性规划模型线性规划模型是最常见的最优解模型。
其目标函数和约束函数都是线性规划函数,可以使用单纯性算法或内点算法求解。
3.2 整数规划模型整数规划模型是在线性规划模型的基础上,增加了整数约束条件。
整数约束条件使问题更为复杂,但是较小的整数问题可以使用穷举法求解。
3.3 非线性规划模型非线性规划模型的约束和/或目标函数是非线性的。
求解方法包括黄金分割法、拟牛顿法等。
最优解问题(解析版)在优化问题中,我们经常遇到一个重要的概念,即最优解。
最优解是指在给定的约束条件下,能够最大化或最小化目标函数的解。
解决最优解问题的关键在于找到满足约束条件的解,并确定其中哪一个是最佳的。
问题分析解决最优解问题的第一步是进行问题分析,了解问题的背景和目标。
首先,我们需要明确问题的约束条件和目标函数。
约束条件是指解决该问题时必须遵守的条件,目标函数是我们要最大化或最小化的数学表达式。
接下来,我们需要确定问题的求解方法。
最优解问题通常可以分为离散和连续两种类型。
离散问题的解空间是有限的,而连续问题的解空间则是无限的。
解决方法针对离散问题,我们可以使用穷举法或动态规划等方法来寻找最优解。
穷举法是一种简单直接的方法,它遍历所有可能的解,并通过比较目标函数的值来确定最优解。
动态规划则是通过将问题分解为子问题,并利用子问题的最优解来推导出整体的最优解。
对于连续问题,我们可以使用数值优化方法来求解最优解。
数值优化方法通过迭代计算来逐步逼近最优解。
常用的数值优化方法包括梯度下降法和牛顿法等。
结论最优解问题是优化问题中的一个重要概念,解决最优解问题需要进行问题分析,并选择合适的求解方法。
对于离散问题,可以使用穷举法或动态规划;对于连续问题,可以使用数值优化方法。
通过合理的解决方法和对约束条件的准确把握,我们可以找到最优解,从而达到问题的最优化目标。
注意:以上内容为一般情况下的解决方法,具体问题的最优解求解可能需要根据特定情况进行调整和优化。
最优化方法求解技巧最优化问题是数学领域中的重要课题,其目标是在给定一组约束条件下寻找使目标函数取得最大(或最小)值的变量取值。
解决最优化问题有多种方法,下面将介绍一些常用的最优化方法求解技巧。
1. 直接搜索法:直接搜索法是一种直接计算目标函数值的方法。
它的基本思路是在给定变量范围内,利用迭代计算逐步靠近最优解。
常用的直接搜索法包括格点法和切线法。
- 格点法:格点法将搜索区域均匀划分成若干个小区域,然后对每个小区域内的点进行计算,并选取最优点作为最终解。
格点法的优点是简单易行,但对于复杂的问题,需要大量的计算和迭代,时间复杂度较高。
- 切线法:切线法是一种基于目标函数的一阶导数信息进行搜索的方法。
它的基本思路是沿着目标函数的负梯度方向进行迭代搜索,直到找到最优解为止。
切线法的优点是收敛速度较快,但对于非光滑问题和存在多个局部最优点的问题,容易陷入局部最优。
2. 数学规划法:数学规划法是一种将最优化问题转化为数学模型的方法,然后借助已有的数学工具进行求解。
常用的数学规划法包括线性规划、非线性规划、整数规划等。
- 线性规划:线性规划是一种求解目标函数为线性函数、约束条件为线性等式或线性不等式的优化问题的方法。
常用的线性规划求解技巧包括单纯形法和内点法。
线性规划的优点是求解效率高,稳定性好,但只能处理线性问题。
- 非线性规划:非线性规划是一种求解目标函数为非线性函数、约束条件为非线性等式或非线性不等式的优化问题的方法。
常用的非线性规划求解技巧包括牛顿法、拟牛顿法、遗传算法等。
非线性规划的优点是可以处理更广泛的问题,但由于非线性函数的复杂性,求解过程相对较复杂和耗时。
- 整数规划:整数规划是一种在变量取值为整数的前提下求解优化问题的方法,是线性规划和非线性规划的扩展。
由于整数规划的复杂性,常常利用分支定界法等启发式算法进行求解。
3. 近似法:近似法是一种通过近似的方法求解最优化问题的技巧,常用于处理复杂问题和大规模数据。
习题二包括题目: P36页5(1)(4)5(4)习题三包括题目:P61页1(1)(2);3;5; 6;14;15(1) 1(1)(2)的解如下3题的解如下5,6题14题解如下14。
设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T -处的牛顿方向。
解:已知 (1)(4,6)T x =-,由题意得121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----⎛⎫∇= ⎪+++-----⎝⎭∴ (1)1344()56g f x -⎛⎫=∇=⎪⎝⎭21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------⎛⎫∇= ⎪+--------+--⎝⎭∴ (1)2(1)1656()()564G x f x --⎛⎫=∇=⎪-⎝⎭(1)11/8007/400()7/4001/200G x --⎛⎫= ⎪--⎝⎭∴ (1)(1)11141/100()574/100d G x g -⎛⎫=-=⎪-⎝⎭15(1)解如下15. 用DFP 方法求下列问题的极小点(1)22121212min353x x x x x x ++++ 解:取 (0)(1,1)T x=,0H I =时,DFP 法的第一步与最速下降法相同2112352()156x x f x x x ++⎛⎫∇= ⎪++⎝⎭, (0)(1,1)T x =,(0)10()12f x ⎛⎫∇= ⎪⎝⎭(1)0.07800.2936x -⎛⎫= ⎪-⎝⎭, (1)1.3760() 1.1516f x ⎛⎫∇= ⎪-⎝⎭以下作第二次迭代(1)(0)1 1.07801.2936x xδ-⎛⎫=-= ⎪-⎝⎭, (1)(0)18.6240()()13.1516f x f x γ-⎛⎫=∇-∇= ⎪-⎝⎭0110111011101T T T TH H H H H γγδδδγγγ=+-其中,111011126.3096,247.3380T T T H δγγγγγ===11 1.1621 1.39451.3945 1.6734T δδ⎛⎫= ⎪⎝⎭ , 01101174.3734113.4194113.4194172.9646T TH H γγγγ⎛⎫== ⎪⎝⎭所以10.74350.40560.40560.3643H -⎛⎫= ⎪-⎝⎭(1)(1)1 1.4901()0.9776d H f x -⎛⎫=-∇= ⎪⎝⎭令 (2)(1)(1)1xx d α=+ , 利用(1)(1)()0df x d d αα+=,求得 10.5727α=- 所以 (2)(1)(1)0.77540.57270.8535x x d ⎛⎫=-= ⎪-⎝⎭ , (2)0.2833()0.244f x ⎛⎫∇= ⎪-⎝⎭以下作第三次迭代(2)(1)20.85340.5599xx δ⎛⎫=-= ⎪-⎝⎭ , (2)(1)2 1.0927()()0.9076f x f x γ-⎛⎫=∇-∇= ⎪⎝⎭22 1.4407T δγ=- , 212 1.9922T H γγ= 220.72830.47780.47780.3135T δδ-⎛⎫=⎪-⎝⎭1221 1.39360.91350.91350.5988T H H γγ-⎛⎫= ⎪-⎝⎭所以22122121222120.46150.38460.38460.1539T T T T H H H H H δδγγδγγγ-⎛⎫=+-= ⎪-⎝⎭(2)(2)20.2246()0.1465d H f x ⎛⎫=-∇= ⎪-⎝⎭令 (3)(2)(2)2xxdα=+ , 利用(2)(2)()0df x d d αα+=,求得 21α= 所以 (3)(2)(2)11xx d ⎛⎫=+= ⎪-⎝⎭, 因为 (3)()0f x ∇=,于是停止(3)(1,1)T x =-即为最优解.习题四包括题目: P95页 3;4;8;9(1);12选做;13选做 3题解如下3.考虑问题21),(2)(min 21x x x f sx x -=∈,其中{}{}.10,1),(1),(2121222121≤≤≤≤+=x x x x x x x x S T T(1)画出此问题的可行域和等值线的图形;(2)利用几何图形求出此问题的最优解及最优值;(3)分别对点,)1,0(,)0,0(,)1,1(,)0,1(4321T T T T x x x x -==-==指出哪些约束是紧约束和松约束。
最优解问题的解法——简单的线性规划
1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念; 2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题
3.培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力
教学重点:用图解法解决简单的线性规划问题. 教学难点:准确求得线性规划问题的最优解 授课类型:新授课 课时安排:1课时
教 具:多媒体、实物投影仪 教学过程:
一、复习引入: 1.二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)
由于对在直线Ax +By +C =0同一侧的所有点(x ,y ),把它的坐标(x ,y )代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点)
2.先分别作出x =1,x -4y +3=0,3x +5y -25=0三条直线,再找出不等式组所表示的平面区域
(即三直线所围成的封闭区域).再作直线0l :2x +y =0 然后,作一组与直线的平行的直线:
l :2x +y =t ,t ∈R (或平行移动直线0l ),从而观察t 值的变化:]12,3[2∈+=y x t
二、讲解新课:
1. 请同学们来看这样一个问题:
设t =2x +y ,式中变量x 、y 满足下列条件⎪⎩
⎪
⎨⎧≥≤+-≤-1255334x y x y x 求t 的最大值和最小值
分析:从变量x 、y 所满足的条件来看,变量x 、y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域ABC.
作一组与直线的平行的直线:l :2x +y =t ,t ∈R (或平行移动直线0l ),从而观察t 值的变化:
]12,3[2∈+=y x t
从图上可看出,点(0,0)不在以上公共区域内,当x =0,y =0时,t =2x +y =0.
点(0,0)在直线0l :2x +y =0上.作一组与直线0l 平行的直线(或平行移动直线0l )l :2x +y =t ,t ∈R .可知,当l 在0l 的右上方时,直线l 上的点(x ,y )满足2x +y >0,即t >0.而且,直线l 往右平移时,t 随之增大(引导学生一起观察此规律).
在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点B (5,2)的直线2l 所对应的t 最大,以经过点A (1,1)的直线1l 所对应的t 最小.所以: m ax t =2×5+2=12,min t =2×1+3=3
2. 目标函数, 线性目标函数线性规划问题,可行解,可行域, 最优解:
诸如上述问题中,不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.t =2x +y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于t =2x +y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数
另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示. 一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.例如:我们刚才研究的就是求线性目标函数z =2x +y 在线性约束条件下的最大值和最小值的问题,即为线性规划问题
那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解 三、讲解范例:
例1 已知x 、y 满足不等式组⎪⎪⎩⎪
⎪⎨⎧≥≥≤+≤+0
025023002y x y x y x ,试求z =300x +900y 的最大值时的整点的坐标,
及相应的z 的最大值
分析:先画出平面区域,然后在平面区域内寻找使z =300x +900y 取最大值时的整点解:如图所示平面区域AOBC ,点A (0,125),点B (150,0),点C 的坐标由方程组
⎪⎪⎩
⎪⎪⎨
⎧==⇒⎩⎨⎧=+=+3200
335025023002y x y x y x ,得C (3200,3350),令t =300x +900y ,即y =-90031t x +, 欲求z =300x +900y 的最大值,即转化为求截距
900
t
的最大值,从而可求t 的最大值,因直线y =-90031t x +与直线y =-31x 平行,故作与y =-3
1x 的平行线,当过点A (0,125)时,
对应的直线的截距最大,所以此时整点A 使z 取最大值,z m ax =300×0+900×125=112500
例2求z =600x +300y 的最大值,使式中的x ,y 满足约束条件⎪⎩
⎪
⎨⎧≥≥≤+≤+0,02502300
3y x y x y x 的整数值.
分析:画出约束条件表示的平面区域即可行域再解. 解:可行域如图所示:
四边形AOBC ,易求点A (0,126),B (100,0)由方程组:
⎪⎪⎩
⎪⎪⎨
⎧==⇒⎩⎨⎧=+=+5191
536925223003y x y x y x 得点C 的坐标为(69
53,915
1),因题设条件要求整点(x ,y )使z =600x +300y 取最大值,将点(69,91),(70,90)代入z =600x +300y ,可知当⎩⎨
⎧==90
70
y x 时,z 取最大值为z m ax =600×70+300×900=69000
例3 已知x 、y 满足不等式⎪⎩
⎪
⎨⎧≥≥≥+≥+0,01222y x y x y x ,求z =3x +y
的最小值
分析:可先找出可行域,平行移动直线l 0:3x +y =0,找出可行解,进而求出目标函数的最小值
解:不等式x +2y ≥2,表示直线x +2y =2上及右上方的点的集合;
不等式2x +y ≥1表示直线2x +y =1上及右上方的点的集合.
可行域如图所示:
作直线0l :3x +y =0,作一组与直线0l 平行的直线
l :3x +y =t ,(t ∈R )
∵x 、y 是上面不等式组表示的区域内的点的坐标.
由图可知:当直线l :3x +y =t 通过P (0,1)时,t 取到最小值1,即z m in =1. 评述:简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的: (1)寻找线性约束条件,线性目标函数;
(2)由二元一次不等式表示的平面区域做出可行域; (3)在可行域内求目标函数的最优解 四、课堂练习:
1.请同学们结合课本P 64练习1来掌握图解法解决简单的线性规划问题. (1)求z =2x +y 的最大值,使式中的x 、y 满足约束条件
⎪⎩
⎪
⎨⎧-≥≤+≤.1,1,y y x x y 解:不等式组表示的平面区域如图所示:
当x =0,y =0时,z =2x +y =0,点(0,0)在直线0l :2x +y =0上.作一组与直线0l 平行的直线,l :2x +y =t ,t ∈R .
可知,在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A (2,-1)的直线所对应的t 最大. 所以z m ax =2×2-1=3.
五、小结 :用图解法解决简单的线性规划问题的基本步骤:
1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域);
2.设t =0,画出直线0l
3.观察、分析,平移直线0l ,从而找到最优解
4.最后求得目标函数的最大值及最小值 六、课后作业:
1.某工厂用两种不同原料均可生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本为1500元,运费400元,可得产品100千克,如果每月原料的总成本不超过6000元,运费不超过2000元,那么此工厂每月最多可生产多少千克产品?
2.某工厂家具车间造A 、B 型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A 、B 型桌子分别需要1小时和2小时,漆工油漆一张A 、B 型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A 、B 型桌子分别获利润2千元和3千元,试问工厂每天应生产A 、B 型桌子各多少张,才能获得利润最大?
七、板书设计(略) 八、课后记:。