高等数学十五套试卷及答案
- 格式:pdf
- 大小:6.72 MB
- 文档页数:35
高等数学期末试题(含答案) 高等数学检测试题一。
选择题(每题4分,共20分)1.计算 $\int_{-1}^1 xdx$,答案为(B)2.2.已知 $2x^2y=2$,求$\lim\limits_{(x,y)\to(0,0)}\frac{x^4+y^2}{x^2y}$,答案为(D)不存在。
3.计算 $\int \frac{1}{1-x}dx$,答案为(D)$-2(x+\ln|1-x|)+C$。
4.设 $f(x)$ 的导数在 $x=a$ 处连续,且 $\lim\limits_{x\to a}\frac{f'(x)}{x-a}=2$,则 $x=a$ 是 $f(x)$ 的(A)极小值点。
5.已知 $F(x)$ 的一阶导数 $F'(x)$ 在 $\mathbb{R}$ 上连续,且 $F(0)=0$,则 $\frac{d}{dx}\int_0^x F'(t)dt$ 的值为(D)$-F(x)-xF'(x)$。
二。
填空:(每题4分,共20分)1.$\iint\limits_D dxdy=1$,若 $D$ 是平面区域 $\{(x,y)|-1\leq x\leq 1,1\leq y\leq e\}$,则 $\iint\limits_D y^2x^2dxdy$ 的值为(未完成)。
2.$\lim\limits_{x\to\infty}\frac{\left(\cos\frac{\pi}{n}\right)^2+\left(\cos\frac{2\pi}{n}\right)^2+\cdots+\left(\cos\frac{(n-1)\pi}{n}\right)^2}{n\pi}$ 的值为(未完成)。
3.设由方程 $xyz=e$ 确定的隐函数为 $z=z(x,y)$,则$\frac{\partial z}{\partial x}\bigg|_{(1,1)}$ 的值为(未完成)。
4.设 $D=\{(x,y)|x^2+y^2\leq a^2\}$,若$\iint\limits_D\sqrt{a^2-x^2-y^2}dxdy=\pi$,则 $D$ 的面积为(未完成)。
福建卷---------------------------------------------------2-18页新课标1-------------------------------------------------18-33 新课标2-------------------------------------------------33-47 重庆卷-------------------------------------------------47-62湖北卷-------------------------------------------------62-75天津卷-------------------------------------------------75-85安徽卷------------------------------------------------86-98北京卷-------------------------------------------------98-111 广东卷-------------------------------------------------111-121 湖南卷-------------------------------------------------121-136 江苏卷-------------------------------------------------136-152 山东卷-------------------------------------------------152-168 陕西卷-------------------------------------------------168-184 四川卷-------------------------------------------------184-195 上海卷-------------------------------------------------195-204 浙江卷-------------------------------------------------205-216第I 卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若(1)(23)i i a bi ++-=+(,,a b R i ∈是虚数单位),则,a b 的值分别等于( ) A .3,2- B .3,2 C .3,3- D .1,4- 【答案】A 【解析】试题分析:由已知得32i a bi -=+,所以3,2a b ==-,选A . 考点:复数的概念.2.若集合{}22M x x =-≤<,{}0,1,2N =,则MN 等于( )A .{}0B .{}1C .{}0,1,2D {}0,1 【答案】D考点:集合的运算.3.下列函数为奇函数的是( ) A .y x = B .x y e = C .cos y x = D .x x y e e -=-【答案】D 【解析】试题分析:函数y x =和x y e =是非奇非偶函数; cos y x =是偶函数;x x y e e -=-是奇函数,故选D .考点:函数的奇偶性.4.阅读如图所示的程序框图,阅读相应的程序.若输入x 的值为1,则输出y 的值为( ) A .2 B .7 C .8 D .128【答案】C 【解析】试题分析:由题意得,该程序表示分段函数2,2,9,2x x y x x ⎧≥=⎨-<⎩,则(1)918f =-=,故选C .考点:程序框图. 5.若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于( ) A .2 B .3 C .4 D .5 【答案】C考点:基本不等式. 6.若5sin 13α=-,且α为第四象限角,则tan α的值等于( ) A .125 B .125- C .512 D .512-【答案】D 【解析】试题分析:由5sin 13α=-,且α为第四象限角,则212cos 1sin 13αα=-=,则sin tan cos ααα= 512=-,故选D .考点:同角三角函数基本关系式.7.设(1,2)a =,(1,1)b =,c a kb =+.若b c ⊥,则实数k 的值等于( ) A .32-B .53-C .53D .32【答案】A考点:平面向量数量积.8.如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0).且点C 与点D 在函数1,0()11,02x x f x x x +≥⎧⎪=⎨-+<⎪⎩的图像上.若在矩形ABCD 内随机取一点,则该点取自阴影部分的概率等于( ) A .16 B .14 C .38 D .12xyOBCDAF【答案】B考点:古典概型.9.某几何体的三视图如图所示,则该几何体的表面积等于( ) A .822+ B .1122+ C .1422+ D .151112【答案】B 【解析】试题分析:由三视图还原几何体,该几何体是底面为直角梯形,高为2的直四棱柱,且底面直角梯形的两底分别为12,,直角腰长为1,斜腰为2.底面积为12332⨯⨯=,侧面积为则其表面积为 2+2+4+22=8+22,所以该几何体的表面积为1122+,故选B .考点:三视图和表面积.10.变量,x y 满足约束条件02200x y x y mx y +≥⎧⎪-+≥⎨⎪-≤⎩,若2z x y =-的最大值为2,则实数m 等于( )A .2-B .1-C .1D .2 【答案】C 【解析】x–1–2–3–41234–1–2–3–4123BOC试题分析:将目标函数变形为2y x z =-,当z 取最大值,则直线纵截距最小,故当0m ≤时,不满足题意;当0m >时,画出可行域,如图所示, 其中22(,)2121mB m m --.显然(0,0)O 不是最优解,故只能22(,)2121m B m m --是最优解,代入目标函数得4222121m m m -=--,解得1m =,故选C . 考点:线性规划.11.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A . 3(0,]2 B .3(0,]4C .3[,1)2 D .3[,1)4【答案】A考点:1、椭圆的定义和简单几何性质;2、点到直线距离公式. 12.“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的( )A .充分而不必要条件B .必要而不充分条件C . 充分必要条件D .既不充分也不必要条件 【答案】B考点:导数的应用.第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.13.某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______. 【答案】25 【解析】试题分析:由题意得抽样比例为45190020=,故应抽取的男生人数为15002520⨯=. 考点:分层抽样.14.若ABC ∆中,3AC =,045A =,075C =,则BC =_______.【答案】2 【解析】试题分析:由题意得018060B A C =--=.由正弦定理得sin sin AC BC B A =,则sin sin AC ABC B=, 所以232232BC ⨯==.考点:正弦定理.15.若函数()2()x af x a R -=∈满足(1)(1)f x f x +=-,且()f x 在[,)m +∞单调递增,则实数m 的最小值等于_______. 【答案】1 【解析】试题分析:由(1)(1)f x f x +=-得函数()f x 关于1x =对称,故1a =,则1()2x f x -=,由复合函数单调性得()f x 在[1,)+∞递增,故1m ≥,所以实数m 的最小值等于1. 考点:函数的图象与性质.16.若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于________. 【答案】9考点:等差中项和等比中项.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)等差数列{}n a 中,24a =,4715a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.【答案】(Ⅰ)2n a n =+;(Ⅱ)2101. 【解析】试题分析:(Ⅰ)利用基本量法可求得1,a d ,进而求{}n a 的通项公式;(Ⅱ)求数列前n 项和,首先考虑其通项公式,根据通项公式的不同特点,选择相应的求和方法,本题2nn b n =+,故可采取分组求和法求其前10项和.试题解析:(I )设等差数列{}n a 的公差为d .由已知得()()11143615a d a d a d +=⎧⎪⎨+++=⎪⎩,解得131a d =⎧⎨=⎩.所以()112n a a n d n =+-=+.考点:1、等差数列通项公式;2、分组求和法. 18.(本题满分12分)全网传播的融合指数是衡量电视媒体在中国网民中影响了的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.组号分组 频数 1 [4,5) 2 2 [5,6) 8 3 [6,7) 7 4[7,8]3(Ⅰ)现从融合指数在[4,5)和[]7,8内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[]7,8的概率;(Ⅱ)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数. 【答案】(Ⅰ)910;(Ⅱ)6.05.解法一:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,至少有1家融合指数在[]7,8内的基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,共9个.所以所求的概率910P =. (II )这20家“省级卫视新闻台”的融合指数平均数等于28734.55.56.57.5 6.0520202020⨯+⨯+⨯+⨯=.解法二:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,没有1家融合指数在[]7,8内的基本事件是:{}12,B B ,共1个. 所以所求的概率1911010P =-=.(II )同解法一.考点:1、古典概型;2、平均值. 19.(本小题满分12分)已知点F 为抛物线2:2(0)E y px p =>的焦点,点(2,)A m 在抛物线E 上,且3AF =. (Ⅰ)求抛物线E 的方程;(Ⅱ)已知点(1,0)G -,延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.【答案】(Ⅰ)24y x =;(Ⅱ)详见解析. 【解析】试题分析:(Ⅰ)利用抛物线定义,将抛物线上的点到焦点距离和到准线距离相互转化.本题由3AF =可得232p+=,可求p 的值,进而确定抛物线方程;(Ⅱ)欲证明以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.可证明点F 到直线GA 和直线GB 的距离相等(此时需确定两条直线方程);也可以证明GF GF ∠A =∠B ,可转化为证明两条直线的斜率互为相反数.试题解析:解法一:(I )由抛物线的定义得F 22pA =+. 因为F 3A =,即232p+=,解得2p =,所以抛物线E 的方程为24y x =. (II )因为点()2,m A 在抛物线:E 24y x =上,所以22m =±,由抛物线的对称性,不妨设()2,22A .由()2,22A ,()F 1,0可得直线F A 的方程为()221y x =-.由()22214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1,22⎛⎫B - ⎪⎝⎭. 又()G 1,0-,所以()G 22022213k A -==--,()G 20221312k B --==---, 所以G G 0k k A B +=,从而GF GF ∠A =∠B ,这表明点F 到直线G A ,G B 的距离相等, 故以F 为圆心且与直线G A 相切的圆必与直线G B 相切. 解法二:(I )同解法一.(II )设以点F 为圆心且与直线G A 相切的圆的半径为r . 因为点()2,m A 在抛物线:E 24y x =上,所以22m =±,由抛物线的对称性,不妨设()2,22A .由()2,22A ,()F 1,0可得直线F A 的方程为()221y x =-.由()22214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1,22⎛⎫B - ⎪⎝⎭. 又()G 1,0-,故直线G A 的方程为223220x y -+=,从而2222428917r +==+.又直线G B 的方程为223220x y ++=,所以点F 到直线G B 的距离2222428917d r +===+. 这表明以点F 为圆心且与直线G A 相切的圆必与直线G B 相切. 考点:1、抛物线标准方程;2、直线和圆的位置关系. 20.(本题满分12分)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO =OB =.(Ⅰ)若D 为线段AC 的中点,求证C A ⊥平面D P O ; (Ⅱ)求三棱锥P ABC -体积的最大值; (Ⅲ)若2BC =,点E 在线段PB 上,求CE OE +的最小值.【答案】(Ⅰ)详见解析;(Ⅱ)13;(Ⅲ)262+.【解析】试题分析:(Ⅰ)要证明C A ⊥平面D P O ,只需证明AC 垂直于面D P O 内的两条相交直线.首先由PO 垂直于圆O 所在的平面,可证明C PO ⊥A ;又C OA =O ,D 为C A 的中点,可证明C D A ⊥O ,进而证明结论;(Ⅱ)三棱锥P ABC -中,高1PO =,要使得P ABC -体积最大,则底面ABC 面积最大,又2AB =是定值,故当AB 边上的高最大,此时高为半径,进而求三棱锥P ABC -体积;(Ⅲ)将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,此时线段'OC 的长度即为CE OE +的最小值. 试题解析:解法一:(I )在C ∆AO 中,因为C OA =O ,D 为C A 的中点, 所以C D A ⊥O .又PO 垂直于圆O 所在的平面, 所以C PO ⊥A . 因为D OPO =O ,所以C A ⊥平面D P O .(II )因为点C 在圆O 上,所以当C O ⊥AB 时,C 到AB 的距离最大,且最大值为1. 又2AB =,所以C ∆AB 面积的最大值为12112⨯⨯=. 又因为三棱锥C P -AB 的高1PO =, 故三棱锥C P -AB 体积的最大值为111133⨯⨯=. (III )在∆POB 中,1PO =OB =,90∠POB =,所以22112PB =+=.同理C 2P =,所以C C PB =P =B .在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,如图所示.当O ,E ,C '共线时,C E +OE 取得最小值. 又因为OP =OB ,C C ''P =B , 所以C 'O 垂直平分PB , 即E 为PB 中点. 从而2626C C 222+''O =OE +E =+=, 亦即C E +OE 的最小值为262+. 解法二:(I )、(II )同解法一.(III )在∆POB 中,1PO =OB =,90∠POB =,所以45∠OPB =,22112PB =+=.同理C 2P =.所以C C PB =P =B ,所以C 60∠PB =.在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,如图所示. 当O ,E ,C '共线时,C E +OE 取得最小值.所以在C '∆O P 中,由余弦定理得:()2C 12212cos 4560'O =+-⨯⨯⨯+212312222222⎛⎫=+-⨯-⨯ ⎪ ⎪⎝⎭23=+. 从而26C 232+'O =+=. 所以C E +OE 的最小值为262+. 考点:1、直线和平面垂直的判定;2、三棱锥体积. 21.(本题满分12分) 已知函数()2103sincos 10cos 222x x xf x =+. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2. (ⅰ)求函数()g x 的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数0x ,使得()00g x >. 【答案】(Ⅰ)2π;(Ⅱ)(ⅰ)()10sin 8g x x =-;(ⅱ)详见解析. 【解析】试题分析:(Ⅰ)首先利用证明二倍角公式和余弦降幂公式将()f x 化为()10sin 56f x x π⎛⎫=++ ⎪⎝⎭,然后利用2T πω=求周期;(Ⅱ)由函数()f x 的解析式中给x 减6π,再将所得解析式整体减去a 得()g x 的解析式为()10sin 5g x x a =+-,当sin x 取1的时,()g x 取最大值105a +-,列方程求得13a =,从而()g x 的解析式可求;欲证明存在无穷多个互不相同的正整数0x ,使得()00g x >,可解不等式()00g x >,只需解集的长度大于1,此时解集中一定含有整数,由周期性可得,必存在无穷多个互不相同的正整数0x .试题解析:(I )因为()2103sincos 10cos 222x x xf x =+ 53sin 5cos 5x x =++10sin 56x π⎛⎫=++ ⎪⎝⎭.所以函数()f x 的最小正周期2πT =. (II )(i )将()f x 的图象向右平移6π个单位长度后得到10sin 5y x =+的图象,再向下平移a (0a >)个单位长度后得到()10sin 5g x x a =+-的图象.又已知函数()g x 的最大值为2,所以1052a +-=,解得13a =. 所以()10sin 8g x x =-.(ii )要证明存在无穷多个互不相同的正整数0x ,使得()00g x >,就是要证明存在无穷多个互不相同的正整数0x ,使得010sin 80x ->,即04sin 5x >. 由4352<知,存在003πα<<,使得04sin 5α=. 由正弦函数的性质可知,当()00,x απα∈-时,均有4sin 5x >. 因为sin y x =的周期为2π,所以当()002,2x k k παππα∈++-(k ∈Z )时,均有4sin 5x >. 因为对任意的整数k ,()()00022213k k πππαπαπα+--+=->>,所以对任意的正整数k ,都存在正整数()002,2k x k k παππα∈++-,使得4sin 5k x >. 亦即存在无穷多个互不相同的正整数0x ,使得()00g x >. 考点:1、三角函数的图像与性质;2、三角不等式. 22.(本小题满分14分)已知函数2(1)()ln 2x f x x -=-.(Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)证明:当1x >时,()1f x x <-;(Ⅲ)确定实数k 的所有可能取值,使得存在01x >,当0(1,)x x ∈时,恒有()()1f x k x >-.【答案】(Ⅰ) 150,2⎛⎫+ ⎪ ⎪⎝⎭;(Ⅱ)详见解析;(Ⅲ)(),1-∞. 【解析】试题分析:(Ⅰ)求导函数()21x x f x x-++'=,解不等式'()0f x >并与定义域求交集,得函数()f x 的单调递增区间;(Ⅱ)构造函数()()()F 1x f x x =--,()1,x ∈+∞.欲证明()1f x x <-,只需证明()F x 的最大值小于0即可;(Ⅲ)由(II )知,当1k =时,不存在01x >满足题意;当1k >时,对于1x >, 有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意;当1k <时,构造函数()()()G 1x f x k x =--,()0,x ∈+∞,利用导数研究函数()G x 的形状,只要存在01x >,当0(1,)x x ∈时()0G x >即可.试题解析:(I )()2111x x f x x x x-++'=-+=,()0,x ∈+∞.由()0f x '>得2010x x x >⎧⎨-++>⎩解得1502x +<<.故()f x 的单调递增区间是150,2⎛⎫+ ⎪ ⎪⎝⎭. (II )令()()()F 1x f x x =--,()0,x ∈+∞.则有()21F x x x-'=.当()1,x ∈+∞时,()F 0x '<, 所以()F x 在[)1,+∞上单调递减,故当1x >时,()()F F 10x <=,即当1x >时,()1f x x <-. (III )由(II )知,当1k =时,不存在01x >满足题意.当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意. 当1k <时,令()()()G 1x f x k x =--,()0,x ∈+∞,则有()()2111G 1x k x x x k x x-+-+'=-+-=.由()G 0x '=得,()2110x k x -+-+=.解得()2111402k k x ---+=<,()2211412k k x -+-+=>.当()21,x x ∈时,()G 0x '>,故()G x 在[)21,x 内单调递增. 从而当()21,x x ∈时,()()G G 10x >=,即()()1f x k x >-, 综上,k 的取值范围是(),1-∞. 考点:导数的综合应用.2015年普通高等学校招生全国统一考试(新课标1卷)文数一、选择题:每小题5分,共60分1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为(A ) 5 (B )4 (C )3 (D )2 【答案】D 【解析】试题分析:由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,故A ∩B={8,14},故选D. 考点:集合运算2、已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =(A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)【答案】A考点:向量运算3、已知复数z 满足(1)1z i i -=+,则z =( )(A ) 2i -- (B )2i -+ (C )2i - (D )2i +【答案】C 【解析】试题分析:∴(1)1z i i -=+,∴z=212(12)()2i i i i i i ++-==--,故选C. 考点:复数运算4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )(A )310 (B )15 (C )110 (D )120【答案】C 【解析】试题分析:从1,2,3,4,51,2,3,4,5中任取3个不同的数共有10种不同的取法,其中的勾股数只有3,4,5,故3个数构成一组勾股数的取法只有1种,故所求概率为110,故选C. 考点:古典概型5、已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB =(A ) 3 (B )6 (C )9 (D )12【答案】B考点:抛物线性质;椭圆标准方程与性质6、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛【答案】B 【解析】试题分析:设圆锥底面半径为r ,则12384r ⨯⨯==163r =,所以米堆的体积为211163()5433⨯⨯⨯⨯=3209,故堆放的米约为3209÷1.62≈22,故选B.考点:本题主要考查圆锥的性质与圆锥的体积公式7、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) (A )172 (B )192(C )10 (D )12 【答案】B 【解析】试题分析:∵公差1d =,844S S =,∴11118874(443)22a a +⨯⨯=+⨯⨯,解得1a =12,∴1011199922a a d =+=+=,故选B. 考点:等差数列通项公式及前n 项和公式8、函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈(B )13(2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈ (D )13(2,2),44k k k Z -+∈ 【答案】D【解析】 试题分析:由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D. 考点:三角函数图像与性质9、执行右面的程序框图,如果输入的0.01t =,则输出的n =( )(A ) 5 (B )6 (C )10 (D )12【答案】C考点:程序框图10、已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ ,且()3f a =-,则(6)f a -= (A )74-(B )54- (C )34- (D )14- 【答案】A【解析】试题分析:∵()3f a =-,∴当1a ≤时,1()223a f a -=-=-,则121a -=-,此等式显然不成立, 当1a >时,2log (1)3a -+=-,解得7a =,∴(6)f a -=(1)f -=117224---=-,故选A. 考点:分段函数求值;指数函数与对数函数图像与性质11、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2(C )4 (D )8【答案】B【解析】试题分析:由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B.考点:简单几何体的三视图;球的表面积公式;圆柱的测面积公式12、设函数()y f x =的图像与2x a y +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A ) 1- (B )1 (C )2 (D )4【答案】C【解析】试题分析:设(,)x y 是函数()y f x =的图像上任意一点,它关于直线y x =-对称为(,y x --),由已知知(,y x --)在函数2x a y +=的图像上,∴2y a x -+-=,解得2log ()y x a =--+,即2()log ()f x x a =--+,∴22(2)(4)log 2log 41f f a a -+-=-+-+=,解得2a =,故选C. 考点:函数对称;对数的定义与运算二、填空题:本大题共4小题,每小题5分13、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .【答案】6【解析】试题分析:∵112,2n n a a a +==,∴数列{}n a 是首项为2,公比为2的等比数列, ∴2(12)12612n n S -==-,∴264n =,∴n=6. 考点:等比数列定义与前n 项和公式14. 已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a = . 【答案】1【解析】试题分析:∵2()31f x ax '=+,∴(1)31f a '=+,即切线斜率31k a =+,又∵(1)2f a =+,∴切点为(1,2a +),∵切线过(2,7),∴273112a a +-=+-,解得a =1.考点:利用导数的几何意义求函数的切线;常见函数的导数;15. 若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为 .【答案】4【解析】试题分析:作出可行域如图中阴影部分所示,作出直线0l :30x y +=,平移直线0l ,当直线l :z =3x +y 过点A 时,z 取最大值,由2=021=0x y x y +-⎧⎨-+⎩解得A (1,1),∴z =3x +y 的最大值为4.考点:简单线性规划解法 16. 已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,()0,66A ,当APF ∆周长最小时,该三角形的面积为 . 【答案】126考点:双曲线的定义;直线与双曲线的位置关系;最值问题 三、解答题17. (本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =. (I )若a b =,求cos ;B(II )若90B =,且2,a =求ABC ∆的面积. 【答案】(I )14(II )1 【解析】试题分析:(I )先由正弦定理将2sin 2sin sin B A C =化为变得关系,结合条件a b =,用其中一边把另外两边表示出来,再用余弦定理即可求出角B 的余弦值;(II )由(I )知22b ac =,根据勾股定理和即可求出c ,从而求出ABC ∆的面积.试题解析:(I )由题设及正弦定理可得22b ac =.又a b =,可得2b c =,2a c =, 由余弦定理可得2221cos 24a cb B ac +-==. (II )由(1)知22b ac =.因为B =90°,由勾股定理得222a c b +=.故222a c ac +=,得2c a ==.所以D ABC 的面积为1. 考点:正弦定理;余弦定理;运算求解能力18. (本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -的体积为63,求该三棱锥的侧面积. 【答案】(I )见解析(II )3+25试题解析:(I )因为四边形ABCD 为菱形,所以AC ^BD ,因为BE ^平面ABCD ,所以AC ^BE ,故AC ^平面BED.又AC Ì平面AEC ,所以平面AEC ^平面BED(II )设AB=x ,在菱形ABCD 中,由ÐABC=120°,可得AG=GC=32x ,GB=GD=2x . 因为AE ^EC ,所以在Rt D AEC 中,可得EG=32x . 由BE ^平面ABCD ,知D EBG 为直角三角形,可得BE=22x . 由已知得,三棱锥E-ACD 的体积3116632243E ACD V AC GD BEx -=醋?=.故x =2 从而可得AE=EC=ED=6.所以D EAC 的面积为3,D EAD 的面积与D ECD 的面积均为5.故三棱锥E-ACD 的侧面积为3+25.考点:线面垂直的判定与性质;面面垂直的判定;三棱锥的体积与表面积的计算;逻辑推理能力;运算求解能力19. (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i =数据作了初步处理,得到下面的散点图及一些统计量的值. x y w 21()n i i x x =-∑ 21()n i i w w =-∑ 1()()n i i i x x y y =--∑ 1()()n i i i w w y y =--∑ 46.6 56.3 6.8 289.8 1.6 1469 108.8表中w 1 =x 1, ,w =181n i i w =∑(I )根据散点图判断,y a bx =+与y c d x =+,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =- ,根据(II )的结果回答下列问题: (i )当年宣传费90x =时,年销售量及年利润的预报值时多少?(ii )当年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据11(,)u v ,22(,)u v ,……,(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:121()()=()ni ii n ii u u v v u u β==---∑∑,=v u αβ-【答案】(Ⅰ)y c d x =+适合作为年销售y 关于年宣传费用x 的回归方程类型(Ⅱ)100.668y x =+(Ⅲ)46.24【解析】试题分析:(Ⅰ)由散点图及所给函数图像即可选出适合作为拟合的函数;(Ⅱ)令w x =,先求出建立y 关于w 的线性回归方程,即可y 关于x 的回归方程;(Ⅲ)(ⅰ)利用y 关于x 的回归方程先求出年销售量y 的预报值,再根据年利率z 与x 、y 的关系为z=0.2y-x 即可年利润z 的预报值;(ⅱ)根据(Ⅱ)的结果知,年利润z 的预报值,列出关于x 的方程,利用二次函数求最值的方法即可求出年利润取最大值时的年宣传费用.考点:非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用意识20. (本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点.(I )求k 的取值范围;(II )12OM ON ⋅=,其中O 为坐标原点,求MN .【答案】(I )4747,33骣-+琪琪桫(II )2 【解析】试题分析:(I )设出直线l 的方程,利用圆心到直线的距离小于半径列出关于k 的不等式,即可求出k 的取值范围;(II )设1122M(,y ),N(,y )x x ,将直线l 方程代入圆的方程化为关于x 的一元二次方程,利用韦达定理将1212,x x y y 用k 表示出来,利用平面向量数量积的坐标公式及12OM ON ⋅=列出关于k 方程,解出k ,即可求出|MN|.试题解析:(I )由题设,可知直线l 的方程为1y kx =+.因为l 与C 交于两点,所以2|231|11k k -+<+. 解得474733k -+<<. 所以k 的取值范围是4747,33骣-+琪琪桫. (II )设1122M(,y ),N(,y )x x .将1y kx =+代入方程()()22231x y -+-=,整理得22(1)-4(1)70k x k x +++=, 所以1212224(1)7,.11k x x x x k k ++==++ ()()21212121224(1)OM ONy 1181k k x x y k x x k x x k +?+=++++=++, 由题设可得24(1)8=121k k k+++,解得=1k ,所以l 的方程为1y x =+. 故圆心在直线l 上,所以|MN |2=.考点:直线与圆的位置关系;设而不求思想;运算求解能力21. (本小题满分12分)设函数()2ln x f x e a x =-.(I )讨论()f x 的导函数()f x '的零点的个数;(II )证明:当0a >时()22ln f x a a a≥+. 【答案】(I )当0a £时,()f x ¢没有零点;当0a >时,()f x ¢存在唯一零点.(II )见解析【解析】试题分析:(I )先求出导函数,分0a £与0a >考虑()f x '的单调性及性质,即可判断出零点个数;(II )由(I )可设()f x ¢在()0+¥,的唯一零点为0x ,根据()f x '的正负,即可判定函数的图像与性质,求出函数的最小值,即可证明其最小值不小于22lna a a+,即证明了所证不等式. 试题解析:(I )()f x 的定义域为()0+¥,,()2()=20x a f x e x x ¢->. 当0a £时,()0f x ¢>,()f x ¢没有零点;当0a >时,因为2x e 单调递增,a x -单调递增,所以()f x ¢在()0+¥,单调递增.又()0f a ¢>,当b 满足04a b <<且14b <时,(b)0f ¢<,故当0a >时,()f x ¢存在唯一零点. (II )由(I ),可设()f x ¢在()0+¥,的唯一零点为0x ,当()00x x Î,时,()0f x ¢<; 当()0+x x 违,时,()0f x ¢>.故()f x 在()00x ,单调递减,在()0+x ¥,单调递增,所以当0x x =时,()f x 取得最小值,最小值为0()f x . 由于0202=0x a e x -,所以00022()=2ln 2ln 2a f x ax a a a x a a++?. 故当0a >时,2()2lnf x a a a ?. 考点:常见函数导数及导数运算法则;函数的零点;利用导数研究函数图像与性质;利用导数证明不等式;运算求解能力.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号22. (本小题满分10分)选修4-1:几何证明选讲如图AB 是O 直径,AC 是O 切线,BC 交O 与点E.(I )若D 为AC 中点,求证:DE 是O 切线;(II )若3OA CE = ,求ACB ∠的大小.【答案】(Ⅰ)见解析(Ⅱ)60° 【解析】 试题分析:(Ⅰ)由圆的切线性质及圆周角定理知,AE ⊥BC ,AC ⊥AB ,由直角三角形中线性质知DE=DC ,OE=OB ,利用等量代换可证∠DEC+∠OEB=90°,即∠OED=90°,所以DE 是圆O 的切线;(Ⅱ)设CE=1,由3OA CE =得,AB=23,设AE=x ,由勾股定理得212BE x =-,由直角三角形射影定理可得2AE CE BE =,列出关于x 的方程,解出x ,即可求出∠ACB 的大小. 试题解析:(Ⅰ)连结AE ,由已知得,AE ⊥BC ,AC ⊥AB , 在Rt △AEC 中,由已知得DE=DC ,∴∠DEC=∠DCE , 连结OE ,∠OBE=∠OEB ,∵∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°, ∴∠OED=90°,∴DE 是圆O 的切线. ……5分(Ⅱ)设CE=1,AE=x ,由已知得AB=23,212BE x =-, 由射影定理可得,2AE CE BE =,∴2212x x =-,解得x =3,∴∠ACB =60°. ……10分考点:圆的切线判定与性质;圆周角定理;直角三角形射影定理 23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (I )求12,C C 的极坐标方程.(II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积. 【答案】(Ⅰ)cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=(Ⅱ)12【解析】试题分析:(Ⅰ)用直角坐标方程与极坐标互化公式即可求得1C ,2C 的极坐标方程;(Ⅱ)将将=4πθ代入22cos 4sin 40ρρθρθ--+=即可求出|MN|,利用三角形面积公式即可求出2C MN 的面积. 试题解析:(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.……5分 (Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得23240ρρ-+=,解得1ρ=22,2ρ=2,|MN|=1ρ-2ρ=2,因为2C 的半径为1,则2C MN 的面积o 121sin 452⨯⨯⨯=12. 考点:直角坐标方程与极坐标互化;直线与圆的位置关系 24. (本小题满分10分)选修4-5:不等式选讲 已知函数()12,0f x x x a a =+--> . (I )当1a = 时求不等式()1f x > 的解集;(II )若()f x 图像与x 轴围成的三角形面积大于6,求a 的取值范围. 【答案】(Ⅰ)2{|2}3x x <<(Ⅱ)(2,+∞)(Ⅱ)由题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩,所以函数()f x 的图像与x 轴围成的三角形的三个顶点分别为21(,0)3a A -,(21,0)B a +,(,+1)C a a ,所以△ABC 的面积为22(1)3a +. 由题设得22(1)3a +>6,解得2a >.所以a 的取值范围为(2,+∞). ……10分考点:含绝对值不等式解法;分段函数;一元二次不等式解法一、选择题:本大题共12道小题,每小题5分,共60分. 1.已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B =( )A .()1,3-B .()1,0-C .()0,2D .()2,3 【答案】A考点:集合运算. 2. 若为a 实数,且2i3i 1ia +=++,则a =( ) A .4- B .3- C .3 D .4 【答案】D 【解析】试题分析:由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D. 考点:复数运算.3. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关 【答案】 D考点:柱形图4. 已知()1,1=-a ,()1,2=-b ,则(2)+⋅=a b a ( ) A .1- B .0 C .1 D .2 【答案】C 【解析】试题分析:由题意可得22=a ,3,⋅=-a b 所以()222431+⋅=+⋅=-=a b a a a b .故选C.考点:向量数量积.5. 设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .11 【答案】A 【解析】试题解析:13533331a a a a a ++==⇒=,()15535552a a S a +===.故选A. 考点:等差数列6. 一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )1A.8 1B.7 1C.6 1D.5【答案】D 【解析】试题分析:截去部分是正方体的一个角,其体积是正方体体积的16,所以截去部分体积与剩余部分体积的比值为15,故选D.考点:三视图7. 已知三点(1,0),(0,3),(2,3)A B C,则△ABC外接圆的圆心到原点的距离为()5 A. 321B.325C.34D.3【答案】B考点:直线与圆的方程.8. 右边程序框图的算法思路于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b分别为14,18,则输出的a为()A.0B.2C.4D.14【答案】B 【解析】试题分析:由题意输出的a 是18,14的最大公约数2,故选B. 考点:1. 更相减损术;2.程序框图. 9.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A.2B.1 1C.2 1D.8【答案】C 【解析】试题分析:由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒= ,故2112a a q == ,选C.考点:等比数列.10. 已知B A ,是球O 的球面上两点,︒=∠90AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( )A.π36B. π64C.π144D. π256 【答案】C考点:球与几何体的切接.11. 如图,长方形的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠= ,将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则的图像大致为( )A .B .C .D .【答案】B考点:函数图像12. 设函数21()ln(1||)1f x x x=+-+,则使得()(21)f x f x >-成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭ B .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫-⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】试题分析:由21()ln(1||)1f x x x =+-+可知()f x 是偶函数,且在[)0,+∞是增函数,所以 ()()()()121212113f x f x f x f x x x x >-⇔>-⇔>-⇔<< .故选A.考点:函数性质二、填空题:本大题共4小题,每小题5分,共20分。
2015至2017理科数学真题及答案解析全国卷12015年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数z 满足1+z1z -=i ,则|z|=(A )1 (B (C (D )2 2.sin20°cos10°-con160°sin10°=(A)-(B (C )12- (D )123.设命题P :∃n ∈N ,2n >2n ,则⌝P 为(A )∀n ∈N, 2n >2n (B )∃ n ∈N, 2n ≤2n (C )∀n ∈N, 2n ≤2n (D )∃ n ∈N, 2n =2n4.投篮测试中,每人投3次,至少投中2次才能通过测试。
已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为 (A )0.648 (B )0.432 (C )0.36 (D )0.3125.已知M (x 0,y 0)是双曲线C :2212x y -= 上的一点,F 1、F 2是C 上的两个焦点,若1MF •2MF <0,则y 0的取值范围是(A )(-3,3) (B )(-6,6)(C )(3-3) (D )(3-,3)(A )5 (B ) 6 (C )7 (D )810.25()x x y ++的展开式中,52x y 的系数为 (A )10 (B )20 (C )30 (D )6011.圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。
高考衣食住用行衣:高考前这段时间,提醒同学们出门一定要看天气,否则淋雨感冒,就会影响考场发挥。
穿着自己习惯的衣服,可以让人在紧张时产生亲切感和安全感,并能有效防止不良情绪产生。
食:清淡的饮食最适合考试,切忌吃太油腻或者刺激性强的食物。
如果可能的话,每天吃一两个水果,补充维生素。
另外,进考场前一定要少喝水!住:考前休息很重要。
好好休息并不意味着很早就要上床睡觉,根据以往考生的经验,太早上床反而容易失眠。
考前按照你平时习惯的时间上床休息就可以了,但最迟不要超过十点半。
用:出门考试之前,一定要检查文具包。
看看答题的工具是否准备齐全,应该带的证件是否都在,不要到了考场才想起来有什么工具没带,或者什么工具用着不顺手。
行:看考场的时候同学们要多留心,要仔细了解自己住的地方到考场可以坐哪些路线的公交车?有几种方式可以到达?大概要花多长时间?去考场的路上有没有修路堵车的情况?考试当天,应该保证至少提前20分钟到达考场。
2015年普通高等学校招生全国统一考试数学试题(江苏卷,含解析)一、填空题:本大题共14个小题,每小题5分,共70分.1.已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A Y 中元素的个数为_______. 【答案】5 【解析】试题分析:{123}{245}{12345}5A B ==U U ,,,,,,,,,个元素考点:集合运算2.已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________. 【答案】6考点:平均数3.设复数z 满足234z i =+(i 是虚数单位),则z 的模为_______. 【答案】5 【解析】试题分析:22|||34|5||5||5z i z z =+=⇒=⇒= 考点:复数的模4.根据如图所示的伪代码,可知输出的结果S 为________.【答案】7 【解析】试题分析:第一次循环:3,4S I ==;第二次循环:5,7S I ==;第三次循环:7,10S I ==;结束循环,输出7.S =考点:循环结构流程图5.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________. 【答案】5.6S ←1 I ←1 While I <10 S ←S +2 I ←I +3 End While Print S(第4题图)考点:古典概型概率6.已知向量a =)1,2(,b=)2,1(-, 若m a +n b =)8,9(-(R n m ∈,), n m -的值为______. 【答案】3- 【解析】试题分析:由题意得:29,282,5, 3.m n m n m n m n +=-=-⇒==-=- 考点:向量相等 7.不等式224x x-<的解集为________.【答案】(1,2).- 【解析】试题分析:由题意得:2212x x x -<⇒-<<,解集为(1,2).- 考点:解指数不等式与一元二次不等式 8.已知tan 2α=-,()1tan 7αβ+=,则tan β的值为_______. 【答案】3 【解析】试题分析:12tan()tan 7tan tan() 3.21tan()tan 17αβαβαβααβα++-=+-===++- 考点:两角差正切公式9. 现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个。
2015年全国各地高考数学试题及解答分类大全(导数及其应用)一、选择题:1.(2015安徽文)函数32f x ax bx cx d的图像如图所示,则下列结论成立的是()(A)a>0,b<0,c>0,d>0 (B)a>0,b<0,c<0,d>0(C)a<0,b<0,c<0,d>0 (D)a>0,b>0,c>0,d<02.(2015福建理)若定义在R上的函数f x满足01f,其导函数f x满足1f x k,则下列结论中一定错误的是()A.11fk kB.111fk kC.1111fk kD.111kfk k【答案】C考点:函数与导数.3.(2015福建文)“对任意(0,)2x,sin cos k x x x ”是“1k ”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】 B考点:导数的应用.4.(2015全国新课标Ⅰ卷理)设函数()f x =(21)x e x ax a ,其中a 1,若存在唯一的整数x 0,使得0()f x 0,则a 的取值范围是()A.[-,1) B. [-,) C. [,)D. [,1)【答案】D 【解析】试题分析:设()g x =(21)x e x ,yax a ,由题知存在唯一的整数0x ,使得0()g x 在直线yaxa 的下方.因为()(21)xg x e x ,所以当12x时,()g x <0,当12x 时,()g x >0,所以当12x时,max [()]g x =12-2e ,当0x时,(0)g =-1,(1)30g e,直线y axa 恒过(1,0)斜率且a ,故(0)1ag ,且1(1)3g ea a ,解得32e≤a <1,故选D.考点:导数的综合应用5.(2015全国新课标Ⅱ卷理)设函数'()f x 是奇函数()()f x xR 的导函数,(1)0f ,当0x 时,'()()0xf x f x ,则使得()0f x 成立的x 的取值范围是()A .(,1)(0,1)B .(1,0)(1,)C .(,1)(1,0)D .(0,1)(1,)【答案】A 【解析】试题分析:记函数()()f xg x x,则''2()()()xf x f x g x x,因为当0x 时,'()()0xf x f x ,故当0x时,'()0g x ,所以()g x 在(0,)单调递减;又因为函数()()f x x R 是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)单调递减,且(1)(1)0g g .当01x 时,()0g x ,则()0f x ;当1x 时,()0g x ,则()0f x ,综上所述,使得()0f x 成立的x 的取值范围是(,1)(0,1),故选A .考点:导数的应用、函数的图象与性质.6.(2015陕西理)对二次函数2()f x axbx c (a 为非零常数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是()A .-1是()f x 的零点 B .1是()f x 的极值点C .3是()f x 的极值 D. 点(2,8)在曲线()yf x 上【答案】A考点:1、函数的零点; 2、利用导数研究函数的极值.二、填空题:1.(2015安徽理)设30x ax b,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是 .(写出所有正确条件的编号)①3,3a b ;②3,2ab;③3,2ab;④0,2ab;⑤1,2ab.与最值;函数零点问题考查时,要经常性使用零点存在性定理.2. (2015湖南理)20(1)x dx.【答案】0.【考点定位】定积分的计算.【名师点睛】本题主要考查定积分的计算,意在考查学生的运算求解能力,属于容易题,定积分的计算通常有两类基本方法:一是利用牛顿-莱布尼茨定理;二是利用定积分的几何意义求解.3、(2015全国新课标Ⅰ卷文)已知函数31f x axx 的图像在点1,1f 的处的切线过点2,7,则a .4. (2015全国新课标Ⅱ卷文)已知曲线ln y xx 在点1,1处的切线与曲线221y axa x 相切,则a= .【答案】8 【解析】试题分析:由11y x可得曲线ln y xx 在点1,1处的切线斜率为2,故切线方程为21y x ,与221y axa x 联立得220axax ,显然0a ,所以由2808aa a .考点:导数的几何意义.5、(2015陕西文)函数xy xe 在其极值点处的切线方程为____________.【答案】1ye考点:导数的几何意义.6.(2015陕西理)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为.【答案】1.2【解析】试题分析:建立空间直角坐标系,如图所示:原始的最大流量是11010222162,设抛物线的方程为22xpy (0p ),因为该抛物线过点5,2,所以2225p ,解得254p ,所以2252x y ,即2225y x ,所以当前最大流量是5323535522224022255255257575753xdxxx,故原始的最大流量与当前最大流量的比值是16 1.2403,所以答案应填: 1.2.考点:1、定积分;2、抛物线的方程;3、定积分的几何意义.7.(2015陕西理)设曲线xy e 在点(0,1)处的切线与曲线1(0)yx x上点p 处的切线垂直,则p的坐标为.【答案】1,1【解析】试题分析:因为xy e ,所以xye ,所以曲线xye 在点0,1处的切线的斜率011x k ye,设的坐标为00,x y (00x ),则01y x ,因为1yx,所以21yx,所以曲线1yx在点处的切线的斜率0221x x k yx,因为121k k ,所以2011x,即201x ,解得01x ,因为00x ,所以01x ,所以01y ,即的坐标是1,1,所以答案应填:1,1.考点:1、导数的几何意义;2、两条直线的位置关系.8、(2015四川文)已知函数f (x )=2x,g (x )=x 2+ax (其中a ∈R ).对于不相等的实数x 1,x 2,设m =1212()()f x f x x x ,n =1212()()g x g x x x ,现有如下命题:①对于任意不相等的实数x 1,x 2,都有m>0;②对于任意的a 及任意不相等的实数x 1,x 2,都有n >0;③对于任意的a ,存在不相等的实数x 1,x 2,使得m =n ;④对于任意的a ,存在不相等的实数x 1,x 2,使得m =-n .其中真命题有___________________(写出所有真命题的序号).【答案】①④【解析】对于①,因为 f '(x)=2x ln 2>0恒成立,故①正确对于②,取a =-8,即g'(x)=2x -8,当x 1,x 2<4时n <0,②错误对于③,令 f '(x)=g'(x),即2x ln2=2x +a 记h(x)=2x ln2-2x ,则h'(x)=2x (ln2)2-2【考点定位】本题主要考查函数的性质、函数的单调性、导数的运算等基础知识,考查函数与方程的思想和数形结合的思想,考查分析问题和解决能提的能力.【名师点睛】本题首先要正确认识m ,n 的几何意义,它们分别是两个函数图象的某条弦的斜率,因此,借助导数研究两个函数的切线变化规律是本题的常规方法,解析中要注意“任意不相等的实数x 1,x 2”与切线斜率的关系与差别,以及“都有”与“存在”的区别,避免过失性失误.属于较难题. 9. (2015天津文)已知函数ln ,0,f x ax x x,其中a 为实数,f x 为f x 的导函数,若13f ,则a 的值为.【答案】3 【解析】试题分析:因为1ln f xa x ,所以13f a .考点:导数的运算法则.10.(2015天津理)曲线2y x与直线y x 所围成的封闭图形的面积为.【答案】16【解析】试题分析:两曲线的交点坐标为(0,0),(1,1),所以它们所围成的封闭图形的面积11223111236Sx xdxxx.考点:定积分几何意义.三、解答题:1.(2015安徽文)已知函数)0,0()()(2ra r xax x f (Ⅰ)求)(x f 的定义域,并讨论)(x f 的单调性;(Ⅱ)若400ra ,求)(x f 在),0(内的极值.2.(2015安徽理)设函数2()f x xax b .(Ⅰ)讨论函数(sin )f x 在(,)22内的单调性并判断有无极值,有极值时求出极值;(Ⅱ)记2000()f x xa xb ,求函数0(sin )(sin )f x f x 在[]22,上的最大值D ;(Ⅲ)在(Ⅱ)中,取0a b ,求24azb满足D 1时的最大值.3.(2015北京文)设函数2ln 2xf xk x ,0k .(Ⅰ)求f x 的单调区间和极值;(Ⅱ)证明:若f x 存在零点,则f x 在区间1,e 上仅有一个零点.【答案】(1)单调递减区间是(0,)k ,单调递增区间是(,)k ;极小值(1ln )()2k k f k ;(2)证明详见解析.所以,()f x 的单调递减区间是(0,)k ,单调递增区间是(,)k ;()f x 在x k 处取得极小值(1ln )()2k k f k .(Ⅱ)由(Ⅰ)知,()f x 在区间(0,)上的最小值为(1ln )()2k k f k .因为()f x 存在零点,所以(1ln )02k k ,从而ke .当k e 时,()f x 在区间(1,)e 上单调递减,且()0f e ,所以x e 是()f x 在区间(1,]e 上的唯一零点.当ke 时,()f x 在区间(0,)e 上单调递减,且1(1)02f ,()02e kf e ,所以()f x 在区间(1,]e 上仅有一个零点. 综上可知,若()f x 存在零点,则()f x 在区间(1,]e 上仅有一个零点.考点:导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和最值、函数零点问题.4.(2015北京理)已知函数1ln1xf x x.(Ⅰ)求曲线y f x 在点00f ,处的切线方程;(Ⅱ)求证:当01x,时,323xf xx;(Ⅲ)设实数k 使得33xf x k x对01x,恒成立,求k 的最大值.【答案】(Ⅰ)20x y ,(Ⅱ)证明见解析,(Ⅲ)k 的最大值为 2. 试题解析:(Ⅰ)212()ln,(1,1),(),(0)2,(0)011xf x x f x f f xx,曲线yf x 在点00f ,处的切线方程为20xy;(Ⅱ)当01x ,时,323xf xx,即不等式3()2()03x f x x,对(0,1)x 成立,设331()ln2()ln(1)ln(1)2()133xxxF x xx x xx,则422()1xF x x,当01x ,时,()0F x ,故()F x 在(0,1)上为增函数,则()(0)0F x F ,因此对(0,1)x ,3()2()3xf x x成立;(Ⅲ)使33xf x k x成立,01x ,,等价于31()ln()013xx F x k xx,01x,;422222()(1)11kxkF x k x xx ,当[0,2]k 时,()0F x ,函数在(0,1)上位增函数,()(0)0F x F ,符合题意;当2k时,令42()0,(0,1)k F x x k,x 0(0,)x 0x 0(,1)x ()F x -+()F x 极小值()(0)F x F ,显然不成立,综上所述可知:k 的最大值为 2.考点:1.导数的几何意义;2.利用导数研究函数的单调性,证明不等式;3.含参问题讨论.5.(2015福建文)已知函数2(1)()ln 2x f x x.(Ⅰ)求函数f x 的单调递增区间;(Ⅱ)证明:当1x 时,1f xx ;(Ⅲ)确定实数k 的所有可能取值,使得存在1x ,当0(1,)xx 时,恒有1f xk x .【答案】(Ⅰ)150,2;(Ⅱ)详见解析;(Ⅲ),1.【解析】(Ⅰ)求导函数21xx f xx,解不等式'()0f x 并与定义域求交集,得函数f x 的单调递增区间;(Ⅱ)构造函数F 1x f x x ,1,x .欲证明1f x x ,只需证明()F x 的最大值小于0即可;(Ⅲ)由(II )知,当1k 时,不存在01x 满足题意;当1k时,对于1x ,有11f x x k x ,则1f xk x ,从而不存在01x 满足题意;当1k 时,构造函数G1x f x k x ,0,x,利用导数研究函数()G x 的形状,只要存在1x ,当0(1,)xx 时()0G x 即可.试题解析:(I )2111xx f xx xx ,0,x.由0f x 得2010x xx 解得1502x.故f x的单调递增区间是150,2.(II )令F 1x f xx ,0,x .则有21F x xx.当1,x 时,F 0x,所以F x 在1,上单调递减,故当1x 时,F F 10x,即当1x 时,1f x x .(III )由(II )知,当1k时,不存在01x 满足题意.当1k 时,对于1x ,有11f x x k x ,则1f xk x ,从而不存在01x 满足题意.当1k时,令G 1xf x k x ,0,x,则有2111G 1xk x xx kxx.由G0x 得,2110xk x .解得2111402kk x ,2211412k k x .当21,xx 时,G 0x ,故G x 在21,x 内单调递增.从而当21,xx 时,G G 10x,即1f xk x ,综上,k 的取值范围是,1.考点:导数的综合应用.6.(2015福建理)已知函数f()ln(1)x x ,(),(k ),g x kx R(Ⅰ)证明:当0x x x 时,f();(Ⅱ)证明:当1k 时,存在00x ,使得对0(0),xx 任意,恒有f()()x g x ;(Ⅲ)确定k 的所以可能取值,使得存在0t ,对任意的(0),x,t 恒有2|f()()|x g x x .【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)=1k .【解析】试题分析:(Ⅰ)构造函数()f()ln(1),(0,),F x x x x x x只需求值域的右端点并和0比较即可;(Ⅱ)构造函数G()f()()ln(1),(0,),x x g x x kx x即()0G x ,求导得1()1+G x kx(1k)1+kx x,利用导数研究函数()G x 的形状和最值,证明当1k时,存在00x ,使得()0G x 即可;(Ⅲ)由(Ⅰ)知,当1k 时,对于(0,),x+()f()g x x x ,故()f()g x x ,则不等式2|f()()|x g x x 变形为2k ln(1)x x x ,构造函数2M()k ln(1),[0)x xx x x ,+,只需说明()0M x ,易发现函数()M x 在22(k 2)8(k 1)0)4k x (,递增,而(0)0M ,故不存在;当1k 时,由(Ⅱ)知,存在00x ,使得对任意的任意的0(0),xx ,恒有f()()x g x ,此时不等式变形为2ln(1)k x xx ,构造2N()ln(1)k ,[0)x x x x x,+,易发现函数()N x 在2(+2(k +2)8(1k)0)4k x )(,递增,而(0)0N ,不满足题意;当=1k 时,代入证明即可.试题解析:解法一:(1)令()f()ln(1),(0,),F x x xx x x则有1()11+1+x F x xx当(0,),x ()0F x ,所以()F x 在(0,)上单调递减;故当0x 时,()(0)0,F x F 即当0x时,x x f().(2)令G()f()()ln(1),(0,),x x g x x kx x则有1(1k)()1+1+kx G x kx x当0kG ()0x ,所以G()x 在[0,)上单调递增, G()(0)0x G 故对任意正实数0x 均满足题意.当01k 时,令()0,x G 得11=10k x kk.取01=1x k,对任意0(0,),x x 恒有G ()0x ,所以G()x 在0[0,x )上单调递增, G()(0)0x G ,即f()()x g x .综上,当1k 时,总存在00x ,使得对任意的0(0),x x ,恒有f()()x g x .(3)当1k 时,由(1)知,对于(0,),x +()f()g x x x ,故()f()g x x ,|f()()|()()k ln(1)x g x g x f x x x ,令2M()k ln(1),[0)x xx x x,+,则有21-2+(k-2)1M ()k2=,11x x k x x xx故当22(k 2)8(k 1)0)4k x (,时,M ()0x ,M()x 在22(k 2)8(k 1)[0)4k,上单调递增,故M()M(0)0x ,即2|f()()|x g x x ,所以满足题意的t 不存在.当1k 时,由(2)知存在00x ,使得对任意的任意的0(0),xx ,恒有f()()x g x .此时|f()()|f()()ln(1)k x g x x g x x x ,令2N()ln(1)k ,[0)x x x x x ,+,则有2'1-2-(k+2)1()2=,11x x k N x k x xx故当2(+2(k +2)8(1k)0)4k x )(,时,N ()0x ,M()x 在2(2)(k 2)8(1k)[0)4k ,上单调递增,故N()(0)0x N ,即2f()()x g x x ,记0x 与2(2)(k 2)8(1k)4k 中较小的为1x ,则当21(0)|f()()|xx x g x x ,时,恒有,故满足题意的t 不存在.当=1k ,由(1)知,(0,),x 当+|f()()|()()ln(1)x g x g x f x x x ,令2H()ln(1),[0)x x x x x,+,则有21-2H ()12=,11xxx x xx当0x 时,H ()0x ,所以H()x 在[0+,)上单调递减,故H()(0)0x H ,故当0x 时,恒有2|f()()|x g x x ,此时,任意实数t 满足题意.综上,=1k .解法二:(1)(2)同解法一.(3)当1k 时,由(1)知,对于(0,),x +()f()g x x x ,,故|f()()|()()k ln(1)k (k 1)x g x g x f x x x xxx ,令2(k 1),01x x xk 解得,从而得到当1k 时,(0,1)xk 对于恒有2|f()()|x g x x ,所以满足题意的t 不存在.当1k时,取11k+1=12k kk ,从而由(2)知存在00x ,使得0(0),xx 任意,恒有1f()()x k xkx g x .此时11|f()()|f()()(k)2k x g x x g x k xx ,令21k 1k ,022x x x解得,此时2f()()x g x x ,记0x 与1-k2中较小的为1x ,则当21(0)|f()()|x x x g x x ,时,恒有,故满足题意的t 不存在.当=1k ,由(1)知,(0,),x 当+|f()()|()()ln(1)x g x g x f x x x ,令2M()ln(1),[0)x x x x x ,+,则有212M ()12,11xxx xxx当0x 时,M ()0x ,所以M()x 在[0+,)上单调递减,故M()M(0)0x ,故当0x 时,恒有2|f()()|x g x x ,此时,任意实数t 满足题意综上,=1k .考点:导数的综合应用.7.(2015广东理)设1a ,函数a ex x f x)1()(2。
高等数学统考卷 1112届附答案一、选择题(每题1分,共5分)1. 下列函数中,哪个函数是奇函数?A. y = x^3B. y = x^2C. y = x^4D. y = |x|A. 积分的上下限互换,积分值不变B. 被积函数乘以常数,积分值也乘以该常数C. 积分区间可加性D. 积分中值定理3. 下列极限中,哪个是正确的?A. lim(x→0) (sin x) / x = 0B. lim(x→0) (1 cos x) / x^2 = 1C. lim(x→∞) (1 / x) = 0D. lim(x→∞) (x^2 1) / x = 1A. ∫∫(x^2 + y^2) dxdyB. ∫∫xy dxdyC. ∫∫x dxdyD. ∫∫y dxdy5. 下列级数中,哪个是收敛的?A. 1 + 1/2 + 1/3 + 1/4 + …B. 1 1/2 + 1/3 1/4 + …C. 1 + 2/3 + 4/9 + 8/27 + …D. 1 + 1/2 + 1/4 + 1/8 + …二、判断题(每题1分,共5分)1. 高斯公式可以用来计算曲面积分。
()2. 泰勒公式可以用来近似计算函数值。
()3. 无穷小量相乘仍为无穷小量。
()4. 拉格朗日中值定理是罗尔定理的推广。
()5. 偏导数连续必可微。
()三、填空题(每题1分,共5分)1. 函数f(x) = e^x 在x = 0处的导数值为______。
2. 曲线y = x^3 在点(1, 1)处的切线方程为______。
3. 若f(x, y) = x^2 + y^2,则f_x(1, 2) =______。
4. 设A为矩阵,若|A| = 0,则A为______矩阵。
5. 空间曲线r(t) = (cos t, sin t, t) 在t = π/2处的切线方向向量为______。
四、简答题(每题2分,共10分)1. 简述罗尔定理的内容。
2. 解释复合函数求导法则。
3. 举例说明什么是隐函数。
2015年高考数学试卷一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(浙江卷)数学(理科)1.(5分)(2015•原题)已知集合P={x|x2﹣2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=()A .[0,1)B.(0,2] C.(1,2)D.[1,2]2.(5分)(2015•原题)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A .8cm3B.12cm3C.D.3.(5分)(2015•原题)已知{a n}是等差数列,公差d不为零,前n项和是S n,若a3,a4,a8成等比数列,则()A .a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>04.(5分)(2015•原题)命题“∀n∈N*,f(n)∈N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>n B.∀n∈N*,f(n)∉N*或f(n)>n C.∃n0∈N*,f(n0)∉N*且f(n0)>n0D.∃n0∈N*,f(n0)∉N*或f(n0)>n05.(5分)(2015•原题)如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是()A .B.C.D.6.(5分)(2015•原题)设A,B是有限集,定义:d(A,B)=card(A∪B)﹣card(A∩B),其中card(A)表示有限集A中的元素个数()命题①:对任意有限集A,B,“A≠B”是“d(A,B)>0”的充分必要条件;命题②:对任意有限集A,B,C,d(A,C)≤d(A,B)+d(B,C)A.命题①和命题②都成立B.命题①和命题②都不成立C.命题①成立,命题②不成立D.命题①不成立,命题②成立7.(5分)(2015•原题)存在函数f(x)满足,对任意x∈R都有()A .f(sin2x)=sinxB.f(sin2x)=x2+xC.f(x2+1)=|x+1|D.f(x2+2x)=|x+1|8.(5分)(2015•原题)如图,已知△ABC,D是AB的中点,沿直线CD将△ACD折成△A′CD,所成二面角A′﹣CD﹣B的平面角为α,则()A .∠A′DB≤αB.∠A′DB≥αC.∠A′CB≤αD.∠A′CB≥α二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)(2015•原题)双曲线=1的焦距是,渐近线方程是.10.(6分)(2015•原题)已知函数f(x)=,则f(f(﹣3))= ,f(x)的最小值是.11.(6分)(2015•原题)函数f(x)=sin2x+sinxcosx+1的最小正周期是,单调递减区间是.12.(4分)(2015•原题)若a=log43,则2a+2﹣a= .13.(4分)(2015•原题)如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是.14.(4分)(2015•原题)若实数x,y满足x2+y2≤1,则|2x+y﹣2|+|6﹣x﹣3y|的最小值是.15.(6分)(2015•原题)已知是空间单位向量,,若空间向量满足,且对于任意x,y∈R,,则x0= ,y0= ,|= .三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)(2015•原题)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知A=,b2﹣a2=c2.(1)求tanC的值;(2)若△ABC的面积为3,求b的值.17.(15分)(2015•原题)如图,在三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1﹣BD﹣B1的平面角的余弦值.18.(15分)(2015•原题)已知函数f(x)=x2+ax+b(a,b∈R),记M(a,b)是|f(x)|在区间[﹣1,1]上的最大值.(1)证明:当|a|≥2时,M(a,b)≥2;(2)当a,b满足M(a,b)≤2时,求|a|+|b|的最大值.19.(15分)(2015•原题)已知椭圆上两个不同的点A,B关于直线y=mx+对称.(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).20.(15分)(2015•原题)已知数列{a n}满足a1=且a n+1=a n﹣a n2(n∈N*)(1)证明:1≤≤2(n∈N*);(2)设数列{a n2}的前n项和为S n,证明(n∈N*).2015年高考数学试卷(理科)答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分2015年普通高等学校招生全国统一考试(原题卷)数学(理科)1.(5分)考点:交、并、补集的混合运算.专题:集合.分析:求出P中不等式的解集确定出P,求出P补集与Q的交集即可.解答:解:由P中不等式变形得:x(x﹣2)≥0,解得:x≤0或x≥2,即P=(﹣∞,0]∪[2,+∞),∴∁R P=(0,2),∵Q=(1,2],∴(∁R P)∩Q=(1,2),故选:C.点评:此题考查了交、并、补集的混合运算,熟练掌握运算法则是解本题的关键.2.(5分)考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.点评:本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:由a3,a4,a8成等比数列,得到首项和公差的关系,即可判断a1d和dS4的符号.解答:解:设等差数列{a n}的首项为a1,则a3=a1+2d,a4=a1+3d,a8=a1+7d,由a3,a4,a8成等比数列,得,整理得:.∵d≠0,∴,∴,=<0.故选:B.点评:本题考查了等差数列和等比数列的性质,考查了等差数列的前n项和,是基础题.4.(5分)考点:命题的否定.专题:简易逻辑.分析:根据全称命题的否定是特称命题即可得到结论.解答:解:命题为全称命题,则命题的否定为:∃n0∈N*,f(n0)∉N*或f(n0)>n0,故选:D.点评:本题主要考查含有量词的命题的否定,比较基础.5.(5分)考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:根据抛物线的定义,将三角形的面积关系转化为的关系进行求解即可.解答:解:如图所示,抛物线的准线DE的方程为x=﹣1,过A,B分别作AE⊥DE于E,交y轴于N,BD⊥DE于E,交y轴于M,由抛物线的定义知BF=BD,AF=AE,则|BM|=|BD|﹣1=|BF|﹣1,|AN|=|AE|﹣1=|AF|﹣1,则===,故选:A点评:本题主要考查三角形的面积关系,利用抛物线的定义进行转化是解决本题的关键.6.(5分)考点:复合命题的真假.专题:集合;简易逻辑.分析:命题①根据充要条件分充分性和必要性判断即可,③借助新定义,根据集合的运算,判断即可.解答:解:命题①:对任意有限集A,B,若“A≠B”,则A∪B≠A∩B,则card(A∪B)>card(A∩B),故“d(A,B)>0”成立,若d(A,B)>0”,则card(A∪B)>card(A∩B),则A∪B≠A∩B,故A≠B成立,故命题①成立,命题②,d(A,B)=card(A∪B)﹣card(A∩B),d(B,C)=card(B∪C)﹣card(B∩C),∴d(A,B)+d(B,C)=card(A∪B)﹣card(A∩B)+card(B∪C)﹣card(B∩C)=[card (A∪B)+card(B∪C)]﹣[card(A∩B)+card(B∩C)]≥card(A∪C)﹣card(A∩C)=d(A,C),故命题②成立,故选:A点评:本题考查了,元素和集合的关系,以及逻辑关系,分清集合之间的关系与各集合元素个数之间的关系,注意本题对充要条件的考查.集合的元素个数,体现两个集合的关系,但仅凭借元素个数不能判断集合间的关系,属于基础题.7.(5分)考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:利用x取特殊值,通过函数的定义判断正误即可.解答:解:A.取x=0,则sin2x=0,∴f(0)=0;取x=,则sin2x=0,∴f(0)=1;∴f(0)=0,和1,不符合函数的定义;∴不存在函数f(x),对任意x∈R都有f(sin2x)=sinx;B.取x=0,则f(0)=0;取x=π,则f(0)=π2+π;∴f(0)有两个值,不符合函数的定义;∴该选项错误;C.取x=1,则f(2)=2,取x=﹣1,则f(2)=0;这样f(2)有两个值,不符合函数的定义;∴该选项错误;D.令|x+1|=t,t≥0,则f(t2﹣1)=t;令t2﹣1=x,则t=;∴;即存在函数f(x)=,对任意x∈R,都有f(x2+2x)=|x+1|;∴该选项正确.故选:D.点评:本题考查函数的定义的应用,基本知识的考查,但是思考问题解决问题的方法比较难.8.(5分)考点:二面角的平面角及求法.专题:创新题型;空间角.分析:解:画出图形,分AC=BC,AC≠BC两种情况讨论即可.解答:解:①当AC=BC时,∠A′DB=α;②当AC≠BC时,如图,点A′投影在AE上,α=∠A′OE,连结AA′,易得∠ADA′<∠AOA′,∴∠A′DB>∠A′OE,即∠A′DB>α综上所述,∠A′DB≥α,故选:B.点评:本题考查空间角的大小比较,注意解题方法的积累,属于中档题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.(6分)双曲线的简单性质.考点:计算题;圆锥曲线的定义、性质与方程.专题:确定双曲线中的几何量,即可求出焦距、渐近线方程.分析:解解:双曲线=1中,a=,b=1,c=,答:∴焦距是2c=2,渐近线方程是y=±x.故答案为:2;y=±x.本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.点评:10.(6分)函数的值.考点:计算题;函数的性质及应用.专题:分根据已知函数可先求f(﹣3)=1,然后代入可求f(f(﹣3));由于x≥1时,f(x)=,析:当x<1时,f(x)=lg(x2+1),分别求出每段函数的取值范围,即可求解解答:解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.本题主要考查了分段函数的函数值的求解,属于基础试题.点评:11.(6分)两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.考点:专三角函数的求值.题:分由三角函数公式化简可得f(x)=sin(2x﹣)+,易得最小正周期,解不等析:式2kπ+≤2x﹣≤2kπ+可得函数的单调递减区间.解答:解:化简可得f(x)=sin2x+sinxcosx+1=(1﹣cos2x)+sin2x+1=sin(2x﹣)+,∴原函数的最小正周期为T==π,由2kπ+≤2x﹣≤2kπ+可得kπ+≤x≤kπ+,∴函数的单调递减区间为[kπ+,kπ+](k∈Z)故答案为:π;[kπ+,kπ+](k∈Z)点评:本题考查三角函数的化简,涉及三角函数的周期性和单调性,属基础题.12.(4分)考点:对数的运算性质.专题:函数的性质及应用.分析:直接把a代入2a+2﹣a,然后利用对数的运算性质得答案.解答:解:∵a=log43,可知4a=3,即2a=,所以2a+2﹣a=+=.故答案为:.点评:本题考查对数的运算性质,是基础的计算题.13.(4分)考点:异面直线及其所成的角.专题:空间角.分析:连结ND,取ND 的中点为:E,连结ME说明异面直线AN,CM所成的角就是∠EMC通过解三角形,求解即可.解答:解:连结ND,取ND 的中点为:E,连结ME,则ME∥AN,异面直线AN,CM所成的角就是∠EMC,∵AN=2,∴ME==EN,MC=2,又∵EN⊥NC,∴EC==,∴cos∠EMC===.故答案为:.点评:本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.14.(4分)考点:函数的最值及其几何意义.专题:不等式的解法及应用;直线与圆.分析:根据所给x,y的范围,可得|6﹣x﹣3y|=6﹣x﹣3y,再讨论直线2x+y﹣2=0将圆x2+y2=1分成两部分,分别去绝对值,运用线性规划的知识,平移即可得到最小值.解答:解:由x2+y2≤1,可得6﹣x﹣3y>0,即|6﹣x﹣3y|=6﹣x﹣3y,如图直线2x+y﹣2=0将圆x2+y2=1分成两部分,在直线的上方(含直线),即有2x+y﹣2≥0,即|2+y﹣2|=2x+y﹣2,此时|2x+y﹣2|+|6﹣x﹣3y|=(2x+y﹣2)+(6﹣x﹣3y)=x﹣2y+4,利用线性规划可得在A(,)处取得最小值3;在直线的下方(含直线),即有2x+y﹣2≤0,即|2+y﹣2|=﹣(2x+y﹣2),此时|2x+y﹣2|+|6﹣x﹣3y|=﹣(2x+y﹣2)+(6﹣x﹣3y)=8﹣3x﹣4y,利用线性规划可得在A(,)处取得最小值3.综上可得,当x=,y=时,|2x+y﹣2|+|6﹣x﹣3y|的最小值为3.故答案为:3.点本题考查直线和圆的位置关系,主要考查二元函数在可行域内取得最值的方法,属于中档题.评:15.(6分)空间向量的数量积运算;平面向量数量积的运算.考点:专创新题型;空间向量及应用.题:分由题意和数量积的运算可得<•>=,不妨设=(,,0),=(1,0,0),由析:已知可解=(,,t),可得|﹣(|2=(x+)2+(y﹣2)2+t2,由题意可得当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,由模长公式可得|.解解:∵•=||||cos<•>=cos<•>=,答:∴<•>=,不妨设=(,,0),=(1,0,0),=(m,n,t),则由题意可知=m+n=2,=m=,解得m=,n=,∴=(,,t),∵﹣()=(﹣x﹣y,,t),∴|﹣(|2=(﹣x﹣y)2+()2+t2=x2+xy+y2﹣4x﹣5y+t2+7=(x+)2+(y﹣2)2+t2,由题意当x=x0=1,y=y0=2时,(x+)2+(y﹣2)2+t2取最小值1,此时t2=1,故|==2故答案为:1;2;2点本题考查空间向量的数量积,涉及向量的模长公式,属中档题.评:三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(14分)余弦定理.考点:解三角形.专题:分(1)由余弦定理可得:,已知b2﹣a2=c2.可得,a=.利析:用余弦定理可得cosC.可得sinC=,即可得出tanC=.(2)由=×=3,可得c,即可得出b.解解:(1)∵A=,∴由余弦定理可得:,∴b2﹣a2=bc﹣c2,答:又b2﹣a2=c2.∴bc﹣c2=c2.∴b=c.可得,∴a2=b2﹣=,即a=.∴cosC===.∵C∈(0,π),∴sinC==.∴tanC==2.(2)∵=×=3,解得c=2.∴=3.点评:本题考查了正弦定理余弦定理、同角三角形基本关系式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.17.(15分)考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系,通过•=•=0及线面垂直的判定定理即得结论;(2)所求值即为平面A1BD的法向量与平面B1BD的法向量的夹角的余弦值的绝对值的相反数,计算即可.解答:(1)证明:如图,以BC中点O为坐标原点,以OB、OA、OA1所在直线分别为x、y、z轴建系.则BC=AC=2,A1O==,易知A1(0,0,),B(,0,0),C(﹣,0,0),A(0,,0),D(0,﹣,),B1(,﹣,),=(0,﹣,0),=(﹣,﹣,),=(﹣,0,0),=(﹣2,0,0),=(0,0,),∵•=0,∴A1D⊥OA1,又∵•=0,∴A1D⊥BC,又∵OA1∩BC=O,∴A1D⊥平面A1BC;(2)解:设平面A1BD的法向量为=(x,y,z),由,得,取z=1,得=(,0,1),设平面B1BD的法向量为=(x,y,z),由,得,取z=1,得=(0,,1),∴cos<,>===,又∵该二面角为钝角,∴二面角A1﹣BD﹣B1的平面角的余弦值为﹣.点评:本题考查空间中线面垂直的判定定理,考查求二面角的三角函数值,注意解题方法的积累,属于中档题.18.(15分)考点:二次函数在闭区间上的最值.专题:函数的性质及应用.分析:(1)明确二次函数的对称轴,区间的端点值,由a的范围明确函数的单调性,结合已知以及三角不等式变形所求得到证明;(2)讨论a=b=0以及分析M(a,b)≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,进一步求出|a|+|b|的求值.解答:解:(1)由已知可得f(1)=1+a+b,f(﹣1)=1﹣a+b,对称轴为x=﹣,因为|a|≥2,所以或≥1,所以函数f(x)在[﹣1,1]上单调,所以M(a,b)=max{|f(1),|f(﹣1)|}=max{|1+a+b|,|1﹣a+b|},所以M(a,b)≥(|1+a+b|+|1﹣a+b|)≥|(1+a+b)﹣(1﹣a+b)|≥|2a|≥2;(2)当a=b=0时,|a|+|b|=0又|a|+|b|≥0,所以0为最小值,符合题意;又对任意x∈[﹣1,1].有﹣2≤x2+ax+b≤2得到﹣3≤a+b≤1且﹣3≤b﹣a≤1,易知|a|+|b|=max{|a﹣b|,|a+b|}=3,在b=﹣1,a=2时符合题意,所以|a|+|b|的最大值为3.点评:本题考查了二次函数闭区间上的最值求法;解答本题的关键是正确理解M(a,b)是|f(x)|在区间[﹣1,1]上的最大值,以及利用三角不等式变形.19.(15分)考点:直线与圆锥曲线的关系.专题:创新题型;圆锥曲线中的最值与范围问题.分析:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).可得△>0,设线段AB的中点P(x0,y0),利用中点坐标公式及其根与系数的可得P,代入直线y=mx+,可得,代入△>0,即可解出.(2)直线AB与x轴交点横坐标为n,可得S△OAB=,再利用均值不等式即可得出.解答:解:(1)由题意,可设直线AB的方程为x=﹣my+n,代入椭圆方程,可得(m2+2)y2﹣2mny+n2﹣2=0,设A(x1,y1),B(x2,y2).由题意,△=4m2n2﹣4(m2+2)(n2﹣2)=8(m2﹣n2+2)>0,设线段AB的中点P(x0,y0),则.x0=﹣m×+n=,由于点P在直线y=mx+上,∴=+,∴,代入△>0,可得3m4+4m2﹣4>0,解得m2,∴或m.(2)直线AB与x轴交点纵坐标为n,∴S△OAB==|n|•=,由均值不等式可得:n2(m2﹣n2+2)=,∴S△AOB=,当且仅当n2=m2﹣n2+2,即2n2=m2+2,又∵,解得m=,当且仅当m=时,S△AOB取得最大值为.点评:本题考查了椭圆的定义标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、中点坐标公式、线段垂直平分线的性质、三角形面积计算公式、弦长公式、均值不等式的性质,考查了推理能力与计算能力,属于难题.20.(15分)考点:数列的求和;数列与不等式的综合.专题:创新题型;点列、递归数列与数学归纳法.分析:(1)通过题意易得0<a n≤(n∈N*),利用a n﹣a n+1=可得≥1,利用==≤2,即得结论;(2)通过=a n﹣a n+1累加得S n=﹣a n+1,利用数学归纳法可证明≥a n≥(n≥2),从而≥≥,化简即得结论.解答:证明:(1)由题意可知:0<a n≤(n∈N*),又∵a2=a1﹣=,∴==2,又∵a n﹣a n+1=,∴a n>a n+1,∴≥1,∴==≤2,∴1≤≤2(n∈N*);(2)由已知,=a n﹣a n+1,=a n﹣1﹣a n,…,=a1﹣a2,累加,得S n=++…+=a1﹣a n+1=﹣a n+1,易知当n=1时,要证式子显然成立;当n≥2时,=.下面证明:≥a n≥(n≥2).易知当n=2时成立,假设当n=k时也成立,则a k+1=﹣+,由二次函数单调性知:a n+1≥﹣+=≥,a n+1≤﹣+=≤,∴≤≤,即当n=k+1时仍然成立,故对n≥2,均有≥a n≥,∴=≥≥=,即(n∈N*).点评:本题是一道数列与不等式的综合题,考查数学归纳法,对表达式的灵活变形是解决本题的关键,注意解题方法的积累,属于难题.。