变频器工作原理
- 格式:doc
- 大小:33.00 KB
- 文档页数:6
变频器工作原理一、概述变频器是一种电力电子器件,用于改变电源电压和频率以控制电动机的转速。
它通过将输入电源的直流电转换为可调节的交流电,实现对电动机速度的精确控制。
本文将详细介绍变频器的工作原理。
二、变频器的组成1. 整流器:变频器的输入电源为交流电,首先需要将交流电转换为直流电。
整流器通常采用整流桥电路,将交流电转换为直流电,并通过滤波电路平滑输出。
2. 逆变器:逆变器将直流电转换为可调节的交流电。
逆变器通常采用PWM(脉宽调制)技术,通过控制开关管的导通时间比例,可以调节输出交流电的电压和频率。
3. 控制电路:控制电路是变频器的核心部分,负责监测电机的转速和负载情况,并根据设定的转速要求,控制逆变器输出的电压和频率。
控制电路通常采用微处理器或DSP(数字信号处理器)芯片,具有高精度的控制能力。
4. 保护电路:变频器还配备了多种保护电路,以保证电机和变频器本身的安全运行。
常见的保护功能包括过流保护、过压保护、欠压保护、过载保护等。
三、变频器的工作原理变频器的工作原理可以分为以下几个步骤:1. 采样与检测:变频器通过传感器采集电机的转速和负载情况,并将这些数据传输给控制电路。
控制电路根据采集到的数据进行计算和分析,判断电机的运行状态。
2. 控制算法:控制电路根据设定的转速要求,通过控制逆变器输出的电压和频率来调节电机的转速。
控制算法可以根据电机的负载情况和转速要求,自动调整输出电压和频率的大小。
3. 逆变器输出:根据控制算法的指令,逆变器将直流电转换为可调节的交流电,并输出给电机。
逆变器通过控制开关管的导通时间比例,调节输出交流电的电压和频率。
4. 保护功能:变频器还具备多种保护功能,以保证电机和变频器本身的安全运行。
当电机出现过流、过压、欠压或过载等异常情况时,保护电路会及时切断电源,以避免损坏电机和变频器。
四、变频器的应用变频器广泛应用于各种电动机驱动系统中,例如风机、水泵、压缩机、输送带等。
变频器工作原理及应用一、变频器的定义变频器是一种电子器件,用于控制交流电动机电能的变频调速设备,通过改变电机的输入电压、频率实现电机的调速并控制其运行。
在工业生产中,变频器被广泛应用于各种设备的调速控制和能效优化。
二、变频器的工作原理变频器主要由整流器、滤波器、逆变器和控制系统组成。
其工作原理如下:1.整流器当市电供电时,整流器将交流电转换为直流电并存储在电容器中,以备逆变器的使用。
2.滤波器滤波器用于净化整流器输出的直流电,消除电压的脉动以保证电压平稳。
3.逆变器逆变器是变频器的核心部件,将直流电转换为有可调频率和电压的交流电,控制电机的转速。
4.控制系统控制系统通过监测电机的运行状态、用户的输入信号以及内部参数,调整逆变器输出的频率和电压,实现对电机的精准控制。
三、变频器的应用1.电梯行业变频器在电梯控制系统中起到了关键作用,通过调整电梯电机的转速,实现快速运行、平稳停靠,提升了乘坐舒适度和安全性。
2.工业生产在各种生产设备中广泛使用变频器,通过调节设备的运行速度,实现生产过程的自动化控制,节约能源并提高生产效率。
3.空调系统变频器在空调系统中用于调节压缩机的转速,根据室内温度实时调整冷凝器的工作状态,提供舒适的室内环境并节约能源。
4.风力发电在风力发电系统中,变频器将风机输出的不稳定交流电转换为稳定的电网接入电能,提高了发电效率并实现了大规模清洁能源供应。
结语变频器作为一种重要的电气设备,其工作原理和应用领域非常广泛。
随着科技的发展和产业的进步,变频器在能效优化、设备控制等方面的应用将会越来越重要,为工业生产和生活带来更多便利和效益。
变频器工作原理1. 引言变频器是一种用于调节电机转速的设备,广泛应用于工业生产和家用电器等领域。
本文将详细介绍变频器的工作原理,包括基本原理、主要组成部分和工作流程。
2. 基本原理变频器的基本原理是通过改变电源输入电压的频率和幅值来调节电机的转速。
当电源输入电压的频率和幅值发生变化时,电机的转速也会相应改变。
变频器通过控制电源输出的频率和幅值,实现对电机转速的精确调节。
3. 主要组成部分3.1 整流器变频器的整流器将交流电源转换为直流电源,提供给后续的逆变器使用。
整流器通常采用整流桥电路,将交流电源的正负半周分别整流为直流电压。
3.2 逆变器逆变器是变频器的核心部分,它将直流电源通过PWM(脉宽调制)技术转换为可调节频率和幅值的交流电源。
逆变器通过控制PWM波形的占空比和频率,实现对电机转速的精确调节。
3.3 控制器控制器是变频器的智能部分,负责接收用户输入的指令,并根据指令控制逆变器的输出。
控制器通常采用微处理器或数字信号处理器(DSP)作为核心芯片,具有高速运算和精确控制的能力。
3.4 保护装置保护装置是变频器的重要组成部分,用于监测电机和变频器的工作状态,并在异常情况下采取相应的保护措施。
常见的保护装置包括过流保护、过压保护、欠压保护、过载保护等。
4. 工作流程变频器的工作流程可以分为以下几个步骤:4.1 输入电源检测变频器在启动时首先检测输入电源的电压和频率,以确保输入电源符合变频器的工作要求。
4.2 控制指令接收控制器接收用户输入的转速指令,并进行解析和处理。
根据指令的要求,控制器调整逆变器的输出频率和幅值。
4.3 逆变器输出控制控制器将处理后的控制指令发送给逆变器,逆变器根据指令调整PWM波形的占空比和频率,控制电机的转速。
4.4 保护装置监测保护装置不断监测电机和变频器的工作状态,如发现异常情况(如过载、过流等),及时采取保护措施,避免设备损坏。
4.5 输出电压反馈变频器通过电压反馈装置监测电机的输出电压,并将反馈信息发送给控制器。
变频器工作原理一、引言变频器是一种电力电子器件,广泛应用于工业生产中的电机调速控制系统中。
本文将详细介绍变频器的工作原理。
二、工作原理1. 交流电源输入变频器通过交流电源供电,通常为三相交流电源。
交流电源经过整流和滤波后,得到稳定的直流电源。
2. 逆变器逆变器是变频器的核心部件,它将直流电源转换为可调频率和可调幅度的交流电源。
逆变器由多个功率开关器件(如IGBT)组成,通过控制这些开关器件的开关状态,可以调节输出电压的频率和幅度。
3. 控制单元控制单元是变频器的大脑,它负责接收用户输入的控制信号,并根据这些信号来控制逆变器的输出。
控制单元通常由一块微处理器芯片组成,它可以根据用户的需求来调整电机的转速。
4. 反馈回路为了实现精确的电机转速控制,变频器通常配备了反馈回路。
反馈回路通过传感器(如编码器)来监测电机的转速,并将实际转速信息反馈给控制单元。
控制单元根据反馈信息来调整逆变器的输出,使电机的实际转速与设定值保持一致。
5. 保护功能变频器还具有多种保护功能,以保证电机和变频器的安全运行。
例如,过电流保护可以防止电机过载;过温保护可以防止电机过热;短路保护可以防止电路短路等。
三、应用领域变频器广泛应用于各个领域的电机调速控制系统中。
以下是一些常见的应用领域:1. 工业生产变频器在工业生产中被广泛应用于各种设备的调速控制,如风机、水泵、压缩机等。
通过调整电机的转速,可以实现对设备的精确控制,提高生产效率。
2. 交通运输变频器在电动车辆和铁路交通中的应用越来越广泛。
通过控制电机的转速,可以实现对车辆的平稳加速和减速,提高能源利用率。
3. 新能源领域随着新能源的快速发展,变频器在太阳能发电和风力发电等领域的应用也越来越重要。
通过控制电机的转速,可以实现对发电设备的最佳工作状态,提高能源利用效率。
四、优势和挑战变频器具有以下优势:1. 节能高效:通过调整电机的转速,可以根据实际需求来调节能量的消耗,提高能源利用效率。
变频器工作原理
变频器是一种可以改变电源频率的电气装置。
它通过改变输入电源的频率,从而控制输出电源的频率,以满足不同的应用需求。
变频器的工作原理如下:
1. 输入电源转换:变频器通过整流电路将交流输入电源转换为直流电压。
2. 直流电压转换:变频器使用直流-交流转换器将直流电压转换为调制的中频交流电压。
3. 逆变:经过调制的电压通过逆变器转换为可调节频率和幅值的交流电源。
4. 控制电路:变频器的控制电路根据系统需求对逆变器进行控制,以实现输出频率和幅值的调节。
5. 输出滤波:变频器通过滤波电路对逆变器输出的电压进行滤波,以减小输出波形的谐波成分。
6. 输出:经过滤波的电压通过输出端口提供给外部负载,实现对负载的供电。
总之,变频器通过转换电源频率和幅值,实现对输出电源的控制,适应不同的应用需求。
它被广泛应用于电动机调速、电力系统的稳定控制等领域。
变频器的工作原理一、引言变频器是一种用于控制交流电动机转速的电子设备,广泛应用于工业生产中。
本文将详细介绍变频器的工作原理,包括基本原理、主要组成部分和工作过程。
二、基本原理变频器的基本原理是通过改变输入电源的频率来控制电机的转速。
传统的交流电源提供的电力是固定频率的,例如50Hz或60Hz,而变频器可以将输入电源的频率调节为不同的数值,从而改变电机的转速。
三、主要组成部分1. 整流器:变频器的输入电源通常为交流电,整流器用于将交流电转换为直流电。
整流器通常由整流桥电路组成,将交流电转换为直流电供给后续的逆变器使用。
2. 逆变器:逆变器是变频器的核心部件,它将直流电转换为可调频率的交流电。
逆变器通常由多个功率晶体管或IGBT组成,通过控制这些晶体管的开关状态,可以产生不同频率的交流电。
3. 控制单元:控制单元是变频器的大脑,它负责接收用户的指令,并根据指令控制逆变器的工作。
控制单元通常由微处理器和相关电路组成,可以实现多种功能,如速度控制、转矩控制等。
4. 过载保护装置:变频器通常配备过载保护装置,用于监测电机的负载情况。
当电机负载过大时,过载保护装置会自动切断电源,以保护电机和变频器不受损坏。
四、工作过程变频器的工作过程可以分为以下几个步骤:1. 输入电源经过整流器转换为直流电,并供给逆变器使用。
2. 控制单元接收用户的指令,根据指令控制逆变器的工作。
用户可以通过控制单元设置电机的转速、转矩等参数。
3. 逆变器根据控制单元的指令,控制功率晶体管或IGBT的开关状态,产生可调频率的交流电。
交流电的频率决定了电机的转速。
4. 变频器将调节后的交流电供给电机,电机根据输入的电源频率进行工作。
由于变频器可以调节输入电源的频率,因此可以实现电机的无级调速。
5. 过载保护装置实时监测电机的负载情况,当负载过大时,自动切断电源,保护电机和变频器。
五、应用范围变频器广泛应用于工业生产中,特别是需要对电机转速进行精确控制的领域。
变频器的工作原理一、引言变频器是一种电力电子设备,用于控制交流电机的转速和扭矩。
它通过改变电源电压和频率,实现对电机的精确控制。
本文将详细介绍变频器的工作原理。
二、工作原理1. 电源输入变频器通常由三相交流电源供电。
交流电源经过整流和滤波后,得到稳定的直流电压。
2. 逆变器逆变器是变频器的核心部件,它将直流电压转换为交流电压。
逆变器采用高频开关器件(如IGBT)来控制电流的流动。
通过调整开关器件的开关频率和占空比,逆变器可以产生不同频率和幅值的交流电压。
3. 控制单元控制单元是变频器的智能部分,它接收用户输入的控制信号,并根据设定的参数计算出逆变器的工作状态。
控制单元通常由微处理器和逻辑电路组成,它可以实现多种控制策略,如恒转矩控制、恒功率控制等。
4. 输出滤波器输出滤波器用于滤除逆变器产生的高频噪声,使输出电压更加纯净。
滤波器通常由电感和电容组成,可以有效地消除电磁干扰。
5. 反馈回路为了实现对电机的闭环控制,变频器通常需要接入反馈回路。
反馈回路可以监测电机的转速、电流等参数,并将这些信息反馈给控制单元。
控制单元根据反馈信号对逆变器的输出进行调整,以实现所需的控制效果。
6. 保护功能变频器通常具有多种保护功能,以保证设备和操作人员的安全。
常见的保护功能包括过流保护、过压保护、欠压保护、过载保护等。
当变频器检测到异常情况时,会自动切断电源或调整输出参数,以避免设备损坏。
7. 其他功能除了基本的转速和扭矩控制外,现代变频器还具有许多其他功能。
例如,它们可以实现多台电机的同步控制、运行数据的记录和分析、网络通信等。
三、应用领域变频器广泛应用于工业生产中的各种电机驱动系统。
它们可以用于风机、水泵、压缩机、输送机等各种设备。
变频器的精确控制能力可以提高设备的效率,降低能耗,延长设备寿命。
四、总结变频器是一种用于控制交流电机的电力电子设备。
它通过改变电源电压和频率,实现对电机的精确控制。
变频器由电源输入、逆变器、控制单元、输出滤波器、反馈回路、保护功能等组成。
变频器的工作原理是什么?
变频器是一种能将电源稳定输出不同频率的电子设备。
它的工作原理可以概括为一种将输入电源转换成直流电源后再通过三层反复变换电压、电流和频率来稳定输出所需电能的过程。
具体来讲,变频器的工作过程分为以下四个步骤:
1. 整流变换:变频器的输入电源为交流电,首先需要通过整流闭环电路将其转换为直流电,以便后续处理。
2. 逆变变换:在这一步骤中,变频器使用晶闸管等器件对直流电进行逆变处理,即通过快速开合晶体管来模拟交流电流信号,从而得到和原电源完全相同的正弦波交流电。
3. 电压和电流的控制:在逆变变换的基础上,变频器对输出电压和频率进行精确控制,以满足不同负载的需求。
具体来说,变频器使用PWM调制技术来对逆变电路的输出波形进行调节,从而实现对输出电压和频率的控制。
4. 滤波:在经过PWM调制调整后,变频器的输出电压和频率已经达到了所需值,但是还存在噪声、谐波和突波等问题。
因此,
变频器需要通过滤波器来去除这些杂散信号,以确保输出电源的质量和稳定性。
综上所述,变频器通过整流变换、逆变变换、电压和电流的控制以及滤波等步骤来实现对原电源的稳定输出,它已经成为现代工业自动化、能源节约和环保的重要组成部分。
变频器的工作原理一、引言变频器是一种广泛应用于工业控制领域的电子设备,它能够将电源输入的固定频率交流电转换成可调频率的交流电,从而实现电动机的调速控制。
本文将详细介绍变频器的工作原理。
二、变频器的组成1. 整流器:变频器的输入端通常接收交流电源,整流器的作用是将交流电转换成直流电,为后续的逆变器提供能量。
2. 逆变器:逆变器是变频器的核心部件,它将直流电转换成可调频率的交流电。
逆变器通过控制开关器件的开关状态和频率,实现对输出电压的调节。
3. 控制电路:控制电路是变频器的智能部分,它负责接收外部的控制信号,如速度设定信号、启停信号等,并根据这些信号控制逆变器的工作状态,实现对电动机的精确调速控制。
4. 保护电路:保护电路用于监测变频器和电动机的工作状态,一旦发生异常情况,如过流、过压、过载等,保护电路将立即采取相应的措施,保护设备的安全运行。
三、变频器的工作原理1. 整流过程:当交流电源接入变频器时,整流器将交流电转换成直流电。
整流器通常采用可控硅器件,通过控制可控硅的导通角度,可以实现对直流电电压的调节。
整流过程中,变频器的输入电压和频率保持不变。
2. 逆变过程:逆变器将直流电转换成可调频率的交流电。
逆变器采用多级逆变技术,通过控制开关器件的开关状态和频率,可以实现对输出电压的调节。
逆变过程中,变频器的输出电压和频率可以根据需求进行调整,从而实现对电动机的精确调速控制。
3. 控制过程:控制电路接收外部的控制信号,如速度设定信号、启停信号等。
根据这些信号,控制电路通过调节逆变器的开关状态和频率,实现对电动机的精确调速控制。
控制过程中,变频器的输出电压和频率会根据控制信号的变化而实时调整,从而实现对电动机的精确控制。
4. 保护过程:保护电路用于监测变频器和电动机的工作状态,一旦发生异常情况,如过流、过压、过载等,保护电路将立即采取相应的措施,保护设备的安全运行。
保护过程中,变频器会自动切断输出电压,防止设备损坏。
变频器工作原理变频器是一种电力调节装置,能够调整交流电压和频率,实现对电机的速度和转矩进行精确控制。
它在各个领域的应用越来越广泛,包括工业自动化、电力传输和汽车控制等。
一、基本原理变频器的基本原理是将输入电源的直流电转换为交流电,然后通过在交流电中调整频率和电压来控制输出电机的转速和转矩。
变频器由整流单元、滤波单元、逆变单元和控制单元等组成。
1.整流单元变频器的输入部分是一个整流单元,主要由整流桥电路组成。
整流桥电路将交流输入电源转换为半波或全波直流电压,并通过滤波电容消除输出中的脉动。
2.滤波单元滤波单元主要由电感和电容组成,用于进一步平滑直流电压,减小输出电压的脉动。
通过调整电感和电容的数值能够有效地减小输出电压的纹波。
3.逆变单元逆变单元是变频器的核心部分,主要由逆变桥电路组成。
逆变桥电路将直流电压转换为高频交流电压,再通过PWM技术进行调制,实现对输出电压的精确控制。
逆变单元的输出电压频率和周期可以通过改变调制信号的频率和占空比来调节。
4.控制单元控制单元是变频器的智能部分,通过对逆变电路中的调制信号进行处理,控制输出电压的频率和电压波形。
控制单元通常采用DSP、FPGA等数字信号处理器,具备较高的运算速度和控制精度。
二、工作过程变频器的工作过程可以概括为以下几个步骤:1.测量输入信号变频器通过传感器测量输入电源的电流和电压等信号,并将这些信号反馈给控制单元。
控制单元根据反馈信号来获取输入电源的相关信息,包括频率、电流和功率等。
2.控制信号处理控制单元根据输入信号和设定值进行比较和计算,生成控制信号。
控制信号包括PWM信号和幅频调制信号等,在逆变单元中通过改变频率和宽度来调整输出电压的频率和电压波形。
3.逆变电路工作逆变桥电路接收控制信号,将直流电压转换为高频交流电压,并通过PWM技术对交流电压进行调制。
调制后的输出电压频率和电压幅值可以根据控制信号的变化实现精确控制。
4.输出信号传输逆变单元将调制后的交流电压输出给电机,电机根据电压的频率和幅值来确定转速和转矩。
变频器工作原理变频器主要由整流(交流变直流)滤波再次整流(直流变交流)制动单元驱动单元检测单元微处理单元等组成的1. 电机的旋转速度为什么能够自由地改变?*1: r/min电机旋转速度单位:每分钟旋转次数,也可表示为rpm.例如:2极电机50Hz 3000 [r/min]4极电机50Hz 1500 [r/min]结论:电机的旋转速度同频率成比例本文中所指的电机为感应式交流电机,在工业中所使用的大部分电机均为此类型电机感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和频率由电机的工作原理决定电机的极数是固定不变的由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以一般不适和通过改变该值来调整电机的速度另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备n = 60f/pn: 同步速度f: 电源频率p: 电机极对数结论:改变频率和电压是最优的电机控制方法如果仅改变频率而不改变电压,频率降低时会使电机出于过电压(过励磁),导致电机可能被烧坏因此变频器在改变频率的同时必须要同时改变电压输出频率在额定频率以上时,电压却不可以继续增加,最高只能是等于电机的额定电压例如:为了使电机的旋转速度减半,把变频器的输出频率从50Hz改变到25Hz,这时变频器的输出电压就需要从400V改变到约200V2. 当电机的旋转速度(频率)改变时,其输出转矩会怎样?*1: 工频电源由电网提供的动力电源(商用电源)*2: 起动电流当电机开始运转时,变频器的输出电流变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动电机在工频电源供电时起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些工频直接起动会产生一个大的起动起动电流而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机起动电流和冲击要小些通常,电机产生的转矩要随频率的减小(速度降低)而减小减小的实际数据在有的变频器手册中会给出说明通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足,甚至在低速区电机也可输出足够的转矩3. 当变频器调速到大于50Hz频率时,电机的输出转矩将降低通常的电机是按50Hz电压设计制造的,其额定转矩也是在这个电压范围内给出的因此在额定频率之下的调速称为恒转矩调速. (T=Te, P<=Pe)变频器输出频率大于50Hz频率时,电机产生的转矩要以和频率成反比的线性关系下降当电机以大于50Hz频率速度运行时,电机负载的大小必须要给予考虑,以防止电机输出转矩的不足举例,电机在100Hz时产生的转矩大约要降低到50Hz时产生转矩的1/2因此在额定频率之上的调速称为恒功率调速. (P=Ue*Ie)4. 变频器50Hz以上的应用情况大家知道, 对一个特定的电机来说, 其额定电压和额定电流是不变的如变频器和电机额定值都是: 15kW/380V/30A, 电机可以工作在50Hz以上当转速为50Hz时, 变频器的输出电压为380V, 电流为30A. 这时如果增大输出频率到60Hz, 变频器的最大输出电压电流还只能为380V/30A. 很显然输出功率不变. 所以我们称之为恒功率调速.这时的转矩情况怎样呢?因为P=wT (w:角速度, T:转矩). 因为P不变, w增加了, 所以转矩会相应减小我们还可以再换一个角度来看:电机的定子电压U = E + I*R (I为电流, R为电子电阻, E为感应电势)可以看出, U,I不变时, E也不变.而E = k*f*X, (k:常数, f: 频率, X:磁通), 所以当f由50-->60Hz时, X会相应减小对于电机来说, T=K*I*X, (K:常数, I:电流, X:磁通), 因此转矩T会跟着磁通X减小而减小.同时, 小于50Hz时, 由于I*R很小, 所以U/f=E/f不变时, 磁通(X)为常数. 转矩T和电流成正比. 这也就是为什么通常用变频器的过流能力来描述其过载(转矩)能力. 并称为恒转矩调速(额定电流不变-->最大转矩不变)结论: 当变频器输出频率从50Hz以上增加时, 电机的输出转矩会减小.5. 其他和输出转矩有关的因素发热和散热能力决定变频器的输出电流能力,从而影响变频器的输出转矩能力载波频率: 一般变频器所标的额定电流都是以最高载波频率, 最高环境温度下能保证持续输出的数值. 降低载波频率, 电机的电流不会受到影响但元器件的发热会减小环境温度:就象不会因为检测到周围温度比较低时就增大变频器保护电流值.海拔高度: 海拔高度增加, 对散热和绝缘性能都有影响.一般1000m以下可以不考虑. 以上每1000米降容5%就可以了.6. 矢量控制是怎样改善电机的输出转矩能力的?*1: 转矩提升此功能增加变频器的输出电压(主要是低频时),以补偿定子电阻上电压降引起的输出转矩损失,从而改善电机的输出转矩$ 改善电机低速输出转矩不足的技术使用"矢量控制",可以使电机在低速,如(无速度传感器时)1Hz(对4极电机,其转速大约为30r/min)时的输出转矩可以达到电机在50Hz供电输出的转矩(最大约为额定转矩的150%)对于常规的V/F控制,电机的电压降随着电机速度的降低而相对增加,这就导致由于励磁不足,而使电机不能获得足够的旋转力为了补偿这个不足,变频器中需要通过提高电压,来补偿电机速度降低而引起的电压降变频器的这个功能叫做"转矩提升"(*1)转矩提升功能是提高变频器的输出电压然而即使提高很多输出电压,电机转矩并不能和其电流相对应的提高因为电机电流包含电机产生的转矩分量和其它分量(如励磁分量)"矢量控制"把电机的电流值进行分配,从而确定产生转矩的电机电流分量和其它电流分量(如励磁分量)的数值"矢量控制"可以通过对电机端的电压降的响应,进行优化补偿,在不增加电流的情况下,允许电机产出大的转矩此功能对改善电机低速时温升也有效变频器制动的情况1: 制动的概念指电能从电机侧流到变频器侧(或供电电源侧),这时电机的转速高于同步转速负载的能量分为动能和势能. 动能(由速度和重量确定其大小)随着物体的运动而累积当动能减为零时,该事物就处在停止状态机械抱闸装置的方法是用制动装置把物体动能转换为摩擦和能消耗掉对于变频器,如果输出频率降低,电机转速将跟随频率同样降低这时会产生制动过程. 由制动产生的功率将返回到变频器侧这些功率可以用电阻发热消耗在用于提升类负载,在下降时, 能量(势能)也要返回到变频器(或电源)侧,进行制动这种操作方法被称作再生制动,而该方法可应用于变频器制动在减速期间,产生的功率如果不通过热消耗的方法消耗掉,而是把能量返回送到变频器电源侧的方法叫做功率返回再生方法在实际中,这种应用需要能量回馈单元选件2:怎样提高制动能力?为了用散热来消耗再生功率,需要在变频器侧安装制动电阻为了改善制动能力,不能期望靠增加变频器的容量来解决问题请选用制动电阻制动单元或功率再生变换器等选件来改善变频器的制动容量3. 当电机的旋转速度改变时,其输出转矩会怎样?变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动时的起动转矩和最大转矩我们经常听到下面的说法:电机在工频电源供电时,电机的起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些如果用大的电压和频率起动电机,例如使用工频电网直接供电,就会产生一个大的起动冲击(大的起动电流)而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机产生的转矩要小于工频电网供电的转矩值所以变频器驱动的电机起动电流要小些通常,电机产生的转矩要随频率的减小(速度降低)而减些减小的实际数据在有的变频器手册中会给出说明通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足,甚至在低速区电机也可输出足够的转矩当变频器调速到大于额定频率20%时,电机的输出转矩将降低通常的电机是按照额定频率电压设计制造的,其额定转矩也是在这个电压范围内给出的因此在额定频率之下的调速称为恒转矩调速. (T=Te, P<=Pe) 变频器输出频率大于额定频率时(如我国的电机大于50Hz),电机产生的转矩要以和频率成反比的线性关系下降当电机以大于额定频率20%速度运行时,电机负载的大小必须要给予考虑,以防止电机输出转矩的不足举例,额定频率为50Hz的电机在100Hz时产生的转矩大约要降低到50Hz时产生转矩的1/2因此在额定频率之上的调速称为恒功率调速. (P=Ue*Ie)摘要:本文介绍了变频器的工作原理和控制方式,文中遵循理论和实际相结合的原则,对变频器的工作原理和控制方式作了详细的对比和分析关键词:变频器控制方式工作原理近年来,随着电力电子技术微电子技术及大规模集成电路的发展,生产工艺的改进及功率半导体器件价格的降低,变频调速越来越被工业上所采用如何选择性能好的变频其应用到工业控制中,是我们专业技术人员共同追求的目标下面结合作者的实际经验谈谈变频器的工作原理和控制方式:1 变频器的工作原理我们知道,交流电动机的同步转速表达式位:n=60 f(1-s)/p (1)式中n异步电动机的转速;f异步电动机的频率;s电动机转差率;p电动机极对数由式(1)可知,转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f在0~50Hz的范围内变化时,电动机转速调节范围非常宽变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率高性能的调速手段2变频器控制方式低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交直交电路其控制方式经历了以下四代2.1U/f=C的正弦脉宽调制(SPWM)控制方式其特点是控制电路结构简单成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高控制曲线会随负载的变化而变化,转矩响应慢电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等因此人们又研究出矢量控制变频调速2.2电压空间矢量(SVPWM)控制方式它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压电流闭环,以提高动态的精度和稳定度但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善2.3矢量控制(VC)方式矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流IaIbIc通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制矢量控制方法的提出具有划时代的意义然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果2.4直接转矩控制(DTC)方式1985年,德国鲁尔大学的DePenbrock教授首次提出了直接转矩控制变频技术该技术在很大程度上解决了上述矢量控制的不足,并以新颖的控制思想简洁明了的系统结构优良的动静态性能得到了迅速发展目前,该技术已成功地应用在电力机车牵引的大功率交流传动上直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩它不需要将交流电动机等效为直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型2.5矩阵式交交控制方式VVVF变频矢量控制变频直接转矩控制变频都是交直交变频中的一种其共同缺点是输入功率因数低,谐波电流大,直流电路需要大的储能电容,再生能量又不能反馈回电网,即不能进行四象限运行为此,矩阵式交交变频应运而生由于矩阵式交交变频省去了中间直流环节,从而省去了体积大价格贵的电解电容它能实现功率因数为l,输入电流为正弦且能四象限运行,系统的功率密度大该技术目前虽尚未成熟,但仍吸引着众多的学者深入研究其实质不是间接的控制电流磁链等量,而是把转矩直接作为被控制量来实现的具体方法是:控制定子磁链引入定子磁链观测器,实现无速度传感器方式;自动识别(ID)依靠精确的电机数学模型,对电机参数自动识别;算出实际值对应定子阻抗互感磁饱和因素惯量等算出实际的转矩定子磁链转子速度进行实时控制;实现BandBand控制按磁链和转矩的BandBand控制产生PWM信号,对逆变器开关状态进行控制矩阵式交交变频具有快速的转矩响应(<2ms),很高的速度精度(±2%,无PG反馈),高转矩精度(<+3%);同时还具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150%~200%转矩。