高中物理的二级结论及重要知识点
- 格式:doc
- 大小:588.00 KB
- 文档页数:22
[全]高中高考物理必考“二级结论”总结
一、力学
1. 平衡定律:物体在平面上平衡,则由一组互斥且合力为零的作用在物体身上。
2. 动量守恒定律:物体在受力过程中,它的动量总和保持不变(动量守恒定律)。
3. 能量守恒定律:物体在受力过程中,它的总能量总和保持不变(能量守恒定律)。
4. 运动定律:牛顿定律,重力作用时,物体受到的力与它的质量成正比,而且方向
和物体运动方向相反。
阻力守恒定律,只要恒定速度直线运动,则运动阻力与小量球的
质量} 运动量成正比,而且方向与小量球运动方向相同。
二、电学
1. 电荷守恒定律:任何系统中的电荷总和不变。
2. 欧拉定律:任何电路中,电位差的积分是电功的积分,而且绕线把开关改变电势
的变化,则欧拉定律的等号成立。
3. 高斯定律:当物体由完全不导体到完全导体时,电场强度在分隔处有跳变;当电
荷分布较为集中时,电场强度满足高斯定律。
三、热学
1. 热力学定律:能量守恒(热力学定律),任何物理系统的总的能量只是发生转换
不可消失。
2. 热放大定律:正温差扩大效应(热放大效应),表明热物质力学运动的正温差它
在高温处存在更强的力学运动速度。
3. 定压定容放热定律:恒定容狭放出的热量与容积有关,与压强无关。
4. 根-思定律:恒定压强放出的热量与压强有关,与容积无关。
高中物理的二级结论及重要知识点一.力 物体的平衡:1.几个力平衡,则一个力是与其它力合力平衡的力.2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小.三个大小相等的力平衡,力之间的夹角为1200.3.物体沿斜面匀速下滑,则μα=tg .4.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。
此时速度、加速度相等,此后不等.5.同一根绳上的张力处处相等,大小相等的两个力其合力在其角平分线上.6.物体受三个力而处于平衡状态,则这三个力必交于一点(三力汇交原理).7.动态平衡中,如果一个力大小方向都不变,另一个力方向不变,判断第三个力的变化,要用矢量三角形来判断,求最小力时也用此法. 二.直线运动:1.匀变速直线运动:平均速度: T S S V V V V t 2221212+=+==时间等分时: S S aT n n -=-12 ,中间位置的速度:V V V S212222=+,纸带处理求速度、加速度: T S S V t2212+= ,212T S S a -=,()a S S n T n =--121 2.初速度为零的匀变速直线运动的比例关系:等分时间:相等时间内的位移之比 1:3:5:……等分位移:相等位移所用的时间之比3.竖直上抛运动的对称性:t 上= t 下,V 上= -V下4.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。
先求滑行时间,确定了滑行时间小于给出的时间时,用V 2=2aS 求滑行距离.5.“S=3t+2t 2”:a=4m/s2 ,V0=3m/s.6.在追击中的最小距离、最大距离、恰好追上、恰好追不上、避碰等中的临界条件都为速度相等.7.运动的合成与分解中:船头垂直河岸过河时,过河时间最短.船的合运动方向垂直河岸时,过河的位移最短.8.绳端物体速度分解:对地速度是合速度,分解时沿绳子的方向分解和垂直绳子的方向分解. 三.牛顿运动定律:1.超重、失重(选择题可直接应用,不是重力发生变化)超重:物体向上的加速度时,处于超重状态,此时物体对支持物(或悬挂物)的压力(或拉力)大于它的重力.失重:物体有向下的加速度时,处于失重状态,此时物体对支持物(或悬挂物)的压力(或拉力)小于它的重力。
高中物理常用二级结论
1.牛顿第二定律:物体的加速度与作用力成正比,与物体质量成反比。
其中,F=ma,F为作用力,m为物体质量,a为加速度。
2.功与能:物体的功等于物体受到的力与位移的乘积。
能量可以转化,但总能量守恒。
3.万有引力定律:任何两个物体之间都存在引力,大小与物体质量成正比,与物体之间距离的平方成反比。
4.热力学第一定律:能量守恒,能量不能被创造或者消灭,只能从一种形式转化为另一种形式。
5.电流和电势差:电流是电荷在导体中的流动,电势差是电荷在电场中移动的能量变化。
6.磁感应强度和磁通量:磁感应强度是单位面积垂直于磁场方向的磁通量,磁通量是磁场穿过一个平面的总磁通量。
7.光的折射和反射:光线在光学介质之间传播时会发生折射,反射则是光线遇到光滑表面时的反弹现象。
8.波动理论:波是一种能量传递的形式,具有波长和频率的特性,可以是机械波或者电磁波。
- 1 -。
先想前提,后记结论力学 一.静力学:1.几个力平衡,则一个力是与其它力合力 平衡的力。
2.两个力的合力:F +F ≥F ≥F -F 。
三个大小相等的力平衡,力之间的夹大小合大小角为120度。
3.物体沿斜面匀速下滑,则μ=tanα。
4.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。
此时速度 加速度相等,此后不等。
二.运动学:1.在描述运动时,在纯运动学问题中,可以任意选取参照物;在处理动力学问题时,只能以地为参照物。
2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便:=V ==-V 2/t 221V V +TS S 221+3.匀变速直线运动:当时间等分时:S n -Sn-1=aT .2位移中点的即时速度:V s/2= ,V s/2>V t/222221V V +纸带点迹求速度加速度:V t/2=, a=, a=T S S 212+212TSS -21)1(T n S S n--4.自由落体:V t (m/s): 10 20 30 40 50 = gtH 总(m ):5 20 45 80 125 = gt 2/2H 分(m):5 15 25 35 45 = gt 22/2 – gt 12 /2g=10m/s 25.上抛运动:对称性:t 上= t 下 V 上= -V下6.相对运动:相同的分速度不产生相对位移。
7.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。
先求滑行时间,确定了滑行时间小于给出的时间时,用V 2=2aS 求滑行距离。
8."S=3t+2t 2”:a=4m/s 2,V 0=3m/s 。
(s = v 0t+ at 2/2)9.绳端物体速度分解:对地速度是合速度,分解为沿绳的分速度合垂直绳的分速度。
三.运动定律:1.水平面上滑行:a=-µg2.系统法:动力-阻力=m总g绳牵连系统3.沿光滑斜面下滑:a=gSinα时间相等: 450时时间最短: 无极值:4.一起加速运动的物体:N=F,(N为物体间相互作用力),与有无摩212mmm+擦(μ相同)无关,平面斜面竖直都一样。
高中物理常用二级结论汇总一、静力学:1.当几个力平衡时,其中一个力是与其他力合力平衡的力。
2.两个力的合力:当三个大小相等的共点力平衡时,力之间的夹角为120°。
3.力的合成和分解是一种等效代换,分力与合力都不是真实的力。
求合力和分力是处理力学问题时的一种方法。
4.如果三力共点且平衡,则有:5.当物体沿斜面匀速下滑时:6.当两个一起运动的物体“刚好脱离”时,弹力为零。
此时速度、加速度相等,此后不等。
7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。
因其形变被忽略,其拉力可以发生突变,“没有记忆力”。
8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。
9.轻杆能承受纵向拉力、压力,还能承受横向力。
力可以发生突变,“没有记忆力”。
二、运动学:1.在描述运动时,在纯运动学问题中,可以任意选取参照物。
在处理动力学问题时,只能以地为参照物。
2.对于匀变速直线运动,用平均速度思考总是更方便。
3.在匀变速直线运动中:4.当匀变速直线运动的初速度为0时,时间等分点的速度比为1:2:3:4:5.各时刻总位移比为1:4:9:16:25.各段时间内位移比为1:3:5:7:9.5.自由落体的末速度和下落高度:6.上抛运动具有对称性。
7.相对运动中,共同的分运动不产生相对位移。
8.“刹车陷阱”中,如果给出的时间大于滑行时间,则不能用公式算。
需要先求滑行时间,确定滑行时间小于给出的时间时,再用求滑行距离。
9.绳端物体速度分解:对地速度是合速度,分解为沿绳的分速度和垂直绳的分速度。
10.两个物体刚好不相撞的临界条件是:接触时速度相等或者匀速运动的速度相等。
11.物体刚好滑到小车(木板)一端的临界条件是:物体滑到小车(木板)一端时与小车速度相等。
12.在同一直线上运动的两个物体距离最大(小)的临界条件是:速度相等。
三、运动定律:四、圆周运动和万有引力:五、机械能:1.求机械功的途径包括:用定义求恒力功,用做功和效果(用动能定理或能量守恒)求功,由图象求功,用平均力求功(力与位移成线性关系时),由功率求功。
高中物理二级结论总结高中物理是一门涉及自然现象和规律的科学学科,通过实验和理论推导来研究物质运动和能量转化的规律。
在学习物理过程中,我们积累了一系列的实验经验和理论知识,并形成了一些重要的物理定律和结论。
本文将对高中物理二级结论进行总结和梳理,以加深对这些结论的理解和记忆。
1. 质点受力平衡的条件:当一个质点所受合力为零时,质点处于力的平衡状态。
这个结论可以通过实验验证和理论推导得到。
在平衡状态下,质点所受外力的合力为零,即∑F=0,其中F代表外力的合力。
这个结论适用于各种情况下的平衡问题,例如物体悬挂、静止在斜面上等。
在解决平衡问题时,我们可以利用这个结论,通过分析力的平衡条件来确定未知量。
2. 牛顿第一定律(惯性定律):一个物体如果不受外力作用,将保持静止或匀速直线运动。
这个结论可以从观察实验中得到,也可以从牛顿运动定律的推导中得出。
根据牛顿第一定律,物体所受合力为零时,物体的加速度为零,即a=0。
这个结论揭示了物体的惯性特性,对解释许多运动现象有重要意义。
3. 牛顿第二定律:物体的加速度与作用在物体上的力成正比,与物体的质量成反比。
这个结论可以通过实验验证和数学推导得到。
根据牛顿第二定律,物体所受合力F与物体的加速度a之间的关系为F=ma,其中m代表物体的质量。
这个结论表明了力对于物体运动的影响,并且为力学问题的解决提供了重要的定量方法。
4. 牛顿第三定律:任何两个物体之间的相互作用力大小相等、方向相反。
这个结论可以通过实验验证和推理得出。
根据牛顿第三定律,物体A对物体B施加的力大小等于物体B对物体A施加的力大小,并且方向相反。
这个结论反映了作用力和反作用力的相互关系,揭示了力的交互作用和平衡问题的本质。
5. 动量守恒定律:在一个孤立系统中,系统的总动量保持不变。
这个结论可以通过实验验证和理论推导得到。
根据动量守恒定律,系统中各个物体的动量之和在时间上保持不变,即在碰撞或运动过程中,物体之间的相互作用力对总动量的贡献为零。
高中物理二级结论汇总
高中物理二级结论汇总如下:
1. 竖直上抛运动:
1. 上升阶段:只受重力,加速度为g,做匀减速运动。
2. 下降阶段:只受重力,做加速运动,加速度仍为g。
3. 整个过程(往返运动):先减速后加速,整个过程时间比为1:1,
位移大小比为1:3。
2. 平抛运动:
1. 水平方向:匀速直线运动。
2. 竖直方向:自由落体运动,或初速度为零的匀加速直线运动(只考
虑重力的话)。
3. 合速度方向:抛出点正上方时,与水平方向成45度角;不断下落,角度越来越小,速度分解后,平行水平分量不变。
3. 万有引力:
1. 所有物体间引力大小与它们质量的乘积成正比,与它们距离的平方
成反比。
2. 在同一星球上不同高度(或不同纬度)的地方重力加速度不同(向
心加速度与半径成反比)。
3. 物体随倾斜轨道做匀速圆周运动时,受到的万有引力可以分为沿轨
道切线方向的分量和径向分量的力(也叫向心力)。
只有径向的力才
能使物体做匀速圆周运动。
这些只是一部分二级结论,详细的物理二级结论建议您查阅物理教辅
资料或咨询物理老师。
高中物理规律方法总结一.力 物体的平衡:1.几个力平衡,则一个力是与其它力合力平衡的力.2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小.三个大小相等的力平衡,力之间的夹角为1200.3.物体沿斜面匀速下滑,则μα=tg .4.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。
此时速度、加速度相等,此后不等.5.同一根绳上的张力处处相等,大小相等的两个力其合力在其角平分线上.6.物体受三个力而处于平衡状态,则这三个力不平行时必交于一点(三力汇交原理).7.动态平衡中,如果一个力大小方向都不变,另一个力方向不变,判断第三个力的变化,要用矢量三角形来判断,求最小力时也用此法.二.直线运动:1.匀变速直线运动:平均速度: T S S V V V V t 2221212+=+==时间等分时: S S aT n n -=-12 ,中间位置的速度:V V V S212222=+,纸带处理求速度、加速度: T S S V t2212+= ,212T S S a -=,()a S S n Tn =--121 2.初速度为零的匀变速直线运动的比例关系:等分时间:相等时间内的位移之比 1:3:5:……等分位移:相等位移所用的时间之比3.竖直上抛运动的对称性:t 上= t 下,V 上= -V下4.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。
先求滑行时间,确定了滑行时间小于给出的时间时,用V 2=2aS 求滑行距离.5.S 与t 的关系为“S=3t+2t 2”时,则有:a=4m/s2 ,V0=3m/s.6.在追击中的最小距离、最大距离、恰好追上、恰好追不上、避碰等中的临界条件都为速度相等.7.运动的合成与分解中:船头垂直河岸过河时,过河时间最短.船的合运动方向垂直河岸时,过河的位移最短.8.绳端物体速度分解:对地速度是合速度,分解时沿绳子的方向分解和垂直绳子的方向分解.三.牛顿运动定律:1.超重、失重(选择题可直接应用。
实际上重力并没有发生变化)超重:物体向上的加速度时,处于超重状态,此时物体对支持物(或悬挂物)的压力(或拉力)大于它的重力.失重:物体有向下的加速度时,处于失重状态,此时物体对支持物(或悬挂物)的压力(或拉力)小于它的重力。
有完全失重(加速度向下为g).2.沿光滑物体斜面下滑:a=gSin α时间相等:(等时园) 450时时间最短:3.如下图:一起加速运动的物体:M 1和M 2 之间的作用力为F m m m N 212+=,与有无摩擦(μ相同)无关,平面、斜面、竖直都一样.4.几个临界问题: αgtg a = 注意α角的位置!弹力为零 弹力为零5.速度最大时往往合力为零(a=0):6.牛顿第二定律的瞬时性:不论是绳还是弹簧:剪断谁,谁的力立即消失;不剪断时,绳的力可以突变,弹簧的力不可突变.gR 4四.圆周运动、 万有引力: 1.向心力公式:v m R f m R Tm R m R mv F ωππω=====22222244=ma . 2.同一皮带或齿轮上线速度处处相等,同一轮子上角速度相同.3.在非匀速圆周运动(竖直平面内的圆周运动)中使用向心力公式的办法:沿半径方向的合力是向心力.4.竖直平面内的圆运动:(1)“绳”和:“圆轨道”类:最高点最小速度为(此时绳子的张力为零),最低点最小速度为(2)“绳”和:“圆轨道”类:最高点和最低点绳或圆轨道对小球的弹力之差总是6mg(3)“杆”和“圆管轨道”类:最高点最小速度0(此时杆的支持力为mg )最低点最小速度5.开普勒第三定律:T 2/R 3=K (K =4π2/GM) {K:常量(与行星质量无关,取决于中心天体的质量)}.6.万有引力定律:F =GMm/r 2 =mv 2/r=m ω2r=m4π2r/T 2(其中G =6.67×10-11N ·m 2/kg 2)7.地球表面的万有引力等于重力:GMm/R 2=mg ;g =GM/R 2 (黄金代换式)8.卫星绕行速度、角速度、周期:V =(GM/r)1/2;ω=(GM/r 3)1/2;T =2π(r 3/GM)1/2 (轨道半径变大时:线速度变小,角速度变小,加速度变小,周期变大)(1)天体运动所需的向心力由万有引力提供,F 向=F 万;(2)应用万有引力定律可估算天体的质量密度等;(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);(5)地球卫星的最大环绕速度和最小发射速度均为7.9km/s 。
9.第一(二、三)宇宙速度V 1=(g地R 地)1/2=(GM/R 地)1/2=7.9km/s (注意计算方法);V 2=11.2km/s ;V 3=16.7km/s10.地球同步卫星:T =24h ,h =3.6×104km =5.6R 地 (地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同)11.卫星的最小发射速度和最大环绕速度均为V =7.9km/s ,卫星的最小周期约为85分钟(几乎贴地面飞行的卫星);若行星表面的重力加速度为 g ,行星的半径为R ,则环绕其表面的卫星最低速度v 为gR ;若行星的平均密度为ρ,则卫星周期的最小值T 同ρ、G 之间存在ρT 2=3π/G 的关系式。
12.双星引力是双方的向心力,两星角速度相同,星与旋转中心的距离跟星的质量成反比。
13、物体在恒力作用下不可能作匀速圆周运动14、圆周运动中的追赶问题(同类型有“钟表指针的旋转和天体间的相对运动”):121=-T t T t ,其中T 1<T 2。
14、平抛运动的规律:运动时间t =(2y/g )1/2(通常又表示为(2h/g)1/2)合速度方向与水平夹角β:tg β=V y /V x =gt/V 0合位移方向与水平夹角α:tg α=y/x =gt/2V oθ与β的关系为tg β=2tg α运动时间由下落高度h(y)决定与水平抛出速度无关;在平抛运动中时间t 是解题关键;15、质点若先受力F 1作用,后受反方向F 2作用,其前进位移S 后恰好又停下来,则运动的时间t 同质量m 、作用力F 1、F 2、位移S 之间存在关系2121/)(2F F s F F m t +=16、质点若先受力F 1作用一段时间后,后又在反方向的力F 2作用相同时间后恰返回出发点,则F 2=3F 1。
17、物体由斜面上高为h的位置滑下来,滑到平面上的另一点停下来,若L是释放点到停止点的水平总距离,则物体的与滑动面之间的摩擦因数μ与L,h之间存在关系μ=h/L,如图7所示。
1.求功的途径:①用定义求恒力功.②用动能定理(从做功的效果)或能量守恒求功.③由图象求功.④用平均力求功(力与位移成线性关系).⑤由功率求功.2.功能关系---功是能量转化的量度。
(功不是能).⑴重力所做的功等于重力势能的减少(数值上相等)⑵电场力所做的功等于电势能的减少(数值上相等)⑶弹簧的弹力所做的功等于弹性势能的减少(数值上相等)⑷合外力所做的功等于动能的增加(所有外力)⑸只有重力和弹簧的弹力做功,机械能守恒⑹克服安培力所做的功等于感应电能的增加(数值上相等)(7)除重力和弹簧弹力以外的力做功等于机械能的增加(8)功能关系:摩擦生热Q=f·S相对(f滑动摩擦力的大小,ΔE损为系统损失的机械能,Q为系统增加的内能)(9)静摩擦力可以做正功、负功、还可以不做功,但不会摩擦生热;滑动摩擦力可以做正功、负功、还可以不做功,但会摩擦生热。
3.传送带以恒定速度运行,小物体无初速放上,达到共同速度过程中,相对滑动距离等于小物体对地位移,摩擦生热等于小物体的动能.4.发动机的功率P=Fv,当合外力F=0时,有最大速度v m=P/f(注意额定功率和实际功率).5.00≤α<900做正功;900<α≤1800做负功;α=90o不做功(力的方向与位移(速度)方向垂直时该力不做功).(判断正负功还有那些方法?)6.能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J.7.解决动力学问题的两条思路:六.电场: 1.电势能的变化与电场力的功对应,电场力的功等于电势能增量的负值(减少量):电电E W ∆-=。
2.带电粒子垂直射入匀强(偏转)电场(不考虑重力)做类平抛运动。
粒子飞出偏转电场时“速度的反向延长线,通过沿电场方向的位移的中心”。
3.讨论电荷在电场里移动过程中电场力的功基本方法:把电荷放在起点处,标出位移方向和电场力的方向,分析功的正负,并用W=FS 计算其大小;或用W=qU 计算.4.处于静电平衡的导体内部合场强为零,整个是个等势体,其表面是个等势面.5.电场线的疏密反映E 的大小;沿电场线的方向电势越来越低;等差等势面越密的区域场强越强。
电势与场强之间没有联系;匀强电场中,两平行且相等的线段两端的电势差相等,线段中点的电势等于两端点电势之和的一半。
6.电容器接在电源上,电压不变; 断开电源时,电容器电量不变,此时改变两板距离,场强不变。
7.电容器充电电流,流入正极、流出负极;电容器放电电流,流出正极,流入负极。
8.带电粒子在交变电场中的运动:①直线运动:不同时刻进入,可能一直不改方向的运动;可能时而向左时而向右运动;可能往返运动(可用图像处理)②垂直进入:若在电场中飞行时间远远小于电场的变化周期,则近似认为在恒定电场中运动(处理为类平抛运动);若不满足以上条件,则沿电场方向的运动处理同①③带电粒子在电场和重力场中做竖直方向的圆周运动用等效法:当重力和电场力的合力沿半径且背离圆心处速度最大,当其合力沿半径指向圆心处速度最小.9、若一条直线上有三个点电荷因相互作用均平衡,则这三个点电荷的相邻电性相反,即仅有“正负正”和“负正负”的两种方式,而且中间的电量值最小。
(两同夹一异、两大夹一小、近小远大)10、两同种带电小球分别用等长细绳系住,相互作用平衡后,摆角α与质量m 存在2211sin sin ααm m =,如图9所示。
11、匀强电场中,任意两点连线中点的电势等于这两点的电势的平均值;匀强电场中平行且相等的两线段端点的电势差相等。
12、电容器充电后和电源断开,仅改变板间的距离时,场强不变;若始终与电源相连,仅改变正对面积时,场强不变。
13、电场强度方向是电势降低最快的方向,在等差等势面分布图中,等势面密集的地方电场强度大。
七.恒定电流:1.电流的微观定义式:I=nqsv2.等效电阻估算原则:电阻串联时,大的为主;电阻并联时,小的为主。
3.电路中的一个滑动变阻器阻值发生变化,有“并同串反”关系,即:电阻增大,与它并联的电阻上电流或电压变大, 与它串联的电阻上电流或电压变小;电阻减小,与它并联的电阻上电流或电压变小, 与它串联的电阻上电流或电压变大.4.外电路任一处的一个电阻增大,总电阻增大,总电流减小,路端电压增大。