偏心受压柱的正截面破坏形态.
- 格式:docx
- 大小:663.61 KB
- 文档页数:3
混凝土结构设计原理复习资料第 1 章绪论1.钢筋与混凝土为什么能共同工作:(1)钢筋与混凝土间有着良好的粘结力,使两者能可靠地结合成一个整体,在荷载作用下能够很好地共同变形,完成其结构功能。
(2)钢筋与混凝土的温度线膨胀系数也较为接近,因此,当温度变化时,不致产生较大的温度应力而破坏两者之间的粘结。
(3)包围在钢筋外面的混凝土,起着保护钢筋免遭锈蚀的作用,保证了钢筋与混凝土的共同作用。
1、混凝土的主要优点:1)材料利用合理2 )可模性好3)耐久性和耐火性较好4)现浇混凝土结构的整体性好5)刚度大、阻尼大6)易于就地取材2、混凝土的主要缺点:1)自重大2)抗裂性差3 )承载力有限4)施工复杂、施工周期较长5 )修复、加固、补强较困难建筑结构的功能包括安全性、适用性和耐久性三个方面作用的分类:按时间的变异,分为永久作用、可变作用、偶然作用结构的极限状态:承载力极限状态和正常使用极限状态结构的目标可靠度指标与结构的安全等级和破坏形式有关。
荷载的标准值小于荷载设计值;材料强度的标准值大于材料强度的设计值第2章钢筋与混凝土材料物理力学性能一、混凝土立方体抗压强度(f cu,k):用150mm×150mm×150mm的立方体试件作为标准试件,在温度为(20±3)℃,相对湿度在90%以上的潮湿空气中养护28d,按照标准试验方法加压到破坏,所测得的具有95%保证率的抗压强度。
(f cu,k为确定混凝土强度等级的依据)1.强度轴心抗压强度(f c):由150mm×150mm×300mm的棱柱体标准试件经标准养护后用标准试验方法测得的。
(f ck=0.67 f cu,k)轴心抗拉强度(f t):相当于f cu,k的1/8~1/17, f cu,k越大,这个比值越低。
复合应力下的强度:三向受压时,可以使轴心抗压强度与轴心受压变形能力都得到提高。
双向受力时,(双向受压:一向抗压强度随另一向压应力的增加而增加;双向受拉:混凝土的抗拉强度与单向受拉的基本一样;一向受拉一向受压:混凝土的抗拉强度随另一向压应力的增加而降低,混凝土的抗压强度随另一向拉应力的增加而降低)受力变形:(弹性模量:通过曲线上的原点O引切线,此切线的斜率即为弹性模量。
偏心受压构件正截面受压破坏形态偏心受压短柱的破坏形态试验表明,钢筋混凝土偏心受压短柱的破坏形态有受拉破坏和受压破坏两种情况。
1.受拉破坏形态受拉破坏又称大偏心受压破坏,它发生于轴向力N的相对偏心距较大,且受拉钢筋配置得不太多时。
受拉破坏形态的特点是受拉钢筋先达到屈服强度,导致压区混凝土压碎,是与适筋梁破坏形态相似的延性破坏类型。
构件破坏时,其正截面上的应力状态如上图(a)所示;构件破坏时的立面展开图见下图(b)。
2.受压破坏形态受压破坏形态又称小偏心受压破坏,截面破坏是从受压区开始的,发生于以下两种情况。
(1)当轴向力N的相对偏心距较小时,构件截面全部受压或大部分受压,如图(a)或下图(b)所示的情况。
(2)当轴向力的相对偏心距虽然较大,但却配置了特别多的受拉钢筋,致使受拉钢筋始终不屈服。
破坏时,受压区边缘混凝土达到极限压应变值,受压钢筋应力达到抗压屈服强度,而远侧钢筋受拉而不屈服,其截面上的应力状态如下图(a)所示。
破坏无明显预兆,压碎区段较长,混凝土强度越高,破坏越带突然性,见下图(c)。
总之,受压破坏形态或称小偏心受压破坏形态的特点是混凝土先被压碎,远侧钢筋可能受拉也可能受压,但都不屈服,属于脆性破坏类型。
在“受拉破坏形态”与“受压破坏形态”之间存在着一种界限破坏形态,称为“界限破坏”。
它不仅有横向主裂缝,而且比较明显.。
其主要特征是:在受拉钢筋应力达到屈服强度的同时、受压区混凝土被压碎。
界限破坏形态也属子受拉破坏形态。
长柱的正截面受压破坏试验表明,钢筋混凝土柱在承受偏心受压荷载后,会产生纵向弯曲。
但长细比小的柱,即所谓“短柱”,由于纵向弯曲小,在设计时一般可忽略不计。
对于长细比较大的柱则不同,它会产生比较大的纵向弯曲,设计时必须予以考虑。
下图是一根长柱的荷载一侧向变形(N -f)实验曲线。
偏心受压长柱在纵向弯曲影响下‘可能发生两种形式的破坏。
长细比很大时,构件的破坏不是由于材料引起的,而是由于构件纵向弯曲失去平衡引起的,称为“失稳破坏”。
一.填空题1. 偏心受压构件正截面破坏有——和——破坏两种形态。
当纵向压力N 的相对偏心距e 0/h 0较大,且A s 不过多时发生——破坏,也称——。
其特征为——。
2. 小偏心受压破坏特征是受压区混凝土——,压应力较大一侧钢筋——,而另一侧钢筋受拉——或者受压——。
3. 界限破坏指——,此时受压区混凝土相对高度为——。
4. 偏心受压长柱计算中,由于侧向挠曲而引起的附加弯矩是通过_____来加以考虑的。
5. 钢筋混凝土偏心受压构件正截面承载力计算时,其大小偏压破坏的判断条件是:当____为大偏压破坏;当——为小偏压破坏。
6. 钢筋混凝土偏心受压构件在纵向弯曲的影响下,其破坏特征有两种类型:①——;②——。
对于长柱、短柱和细长柱来说,短柱和长柱属于——;细长柱属于——。
7. 柱截面尺寸bxh (b 小于h),计算长度为l 0 。
当按偏心受压计算时,其长细比为——;当按轴心受压计算时,其长细比为——。
8. 由于工程中实际存在着荷载作用位置的不定性、——及施工的偏差等因素,在偏心受压构件的正截面承载力计算中,应计入轴向压力在偏心方向的附加偏心距e a ,其值取为——和——两者中的较大值。
9. 钢筋混凝土大小偏心受拉构件的判断条件是:当轴向拉力作用在A s 合力点及A s ’合力点——时为大偏心受拉构件;当轴向拉力作用在A s 合力点及A s ’合力点——时为小偏心受拉构件。
10. 沿截面两侧均匀配置有纵筋的偏心受压构件其计算特点是要考虑——作用,其他与一般配筋的偏心受压构件相同。
11. 偏心距增大系数2012011()1400i le hh ηξξ=+式中:e i 为______;l 0/h 为_____;ξ1为 ______。
12. 受压构件的配筋率并未在公式的适用条件中作出限制,但其用钢量A s +A s ′最小为______,从经济角度而言一般不超过_____。
13. 根据偏心力作用的位置,将偏心受拉构件分为两类。
1.1钢筋混凝土梁破坏时都有哪些特点?钢筋和混凝土是如何共同工作的?钢筋混凝土梁破坏时的特点是:受拉钢筋屈服,受压区混凝土被压碎,破坏前变形较大,有明显预兆,属于延性破坏类型。
在钢筋混凝土结构中,利用混凝土的抗压能力较强而抗拉能力很弱,钢筋的抗拉能力很强的特点,用混凝土主要承受梁中和轴以上受压区的压力,钢筋主要承受中和轴以下受拉区的拉力,即使受拉区的混凝土开裂后梁还能继续承受相当大的荷载,直到受拉钢筋达到屈服强度以后,荷载再略有增加,受压区混凝土被压碎,梁才破坏。
由于混凝土硬化后钢筋与混凝土之间产生了良好的粘结力,且钢筋与混凝土两种材料的温度线膨胀系数十分接近,当温度变化时,不致产生较大的温度应力而破坏二者之间的粘结,从而保证了钢筋和混凝土的协同工作。
1.2结构由哪些功能要求?简述承载能力极限状态正常使用极限状态的概念?建筑结构应该满足安全性、适用性和耐久性的功能要求。
承载能力极限状态,即结构或构件达到最大承载能力或者达到不适于继续承载的变形状态。
正常使用极限状态,即结构或构件达到正常使用或耐久性能中某项规定限值的状态。
2.1混凝土的强度等级是根据什么确定的?混凝土的强度等级是根据立方体抗压强度标准值确定的。
我国新《规范》规定的混凝土强度等级有C15、C20、C25、C30、C35、C40、C45、C50、C55、C60、C65、C70、C75和C80,共14个等级。
2.2根据约束原理如何加固该柱?根据约束原理,要提高混凝土的抗压强度,就要对混凝土的横向变形加以约束,从而限制混凝土内部微裂缝的发展。
因此,工程上通常采用沿方形钢筋混凝土短柱高度方向环向设置密排矩形箍筋的方法来约束混凝土,然后沿柱四周支模板,浇筑混凝土保护层,以此改善钢筋混凝土短柱的受力性能,达到提高混凝土的抗压强度和延性的目的。
2.3混凝土的徐变?影响?因素?如何减小?结构或材料承受的荷载或应力不变,而应变或变形随时间增长的现象称为徐变。
简述偏心受压短柱正截面破坏形态及其破坏特征下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!1. 概述偏心受压短柱偏心受压短柱是指受到偏心载荷作用的柱子,其短边受压,长边受拉的情形。
《混凝土结构理论》课程学习模块一:钢筋混凝土结构基本概念和设计方法1.名词解释1、结构的可靠性:结构在规定时间内,在规定条件下,完成预定功能的能力(或者安全性、耐久性、适用性)。
2、作用和作用效应:作用是使结构产生内力或变形的各种原因;作用效应是结构上各种作用对结构产生的效应的总称。
3、结构抗力:结构或构件承受作用效应的能力,即结构或结构。
4、条件屈服强度:对于无明显屈服点的钢筋取残余应变为0.2%时对应的应力 作为强度设计指标,成为条件屈服强度。
2.05、徐变和收缩:混凝土在荷载的长期作用下随时间增长而增长的变形称为徐变;混凝土在空气中硬化时体积收缩的现象称为收缩。
6、极限状态:当结构超过某一特定状态而不能满足设计规定的某一功能要求时,称为极限状态。
2. 简答题1、钢筋和混凝土两种不同材料能够有效结合在一起共同工作的原因?答:一:钢筋和混凝土之间存在粘结力,使两者之间能传递力和变形;二:钢筋和混凝土两种材料的温度线膨胀系数接近。
2、钢筋和混凝土之间的粘结力主要由哪几部分组成?影响粘结强度的因素有哪些?答:化学胶着力、摩阻力、和机械咬合力三种。
影响因素有:钢筋表面形状、混凝土强度、保护层厚度、钢筋浇筑位置、钢筋净间距、横向钢筋和横向压力等。
3、建筑结构应满足哪些功能要求?为满足这些功能要求,需要对结构进行什么验算?答:安全性,适用性,耐久性。
满足安全性需进行承载能力极限状态验算;满足适用性和耐久性需进行正常使用极限状态验算。
4、什么是结构的设计状况?工程结构设计的设计状况可分为哪几种?答:设计状况是代表一定时段内实际情况的一组设计条件,设计应做到在该组条件下结构不超越有关的极限状态;分为:持久设计状况、短暂设计状况、偶然设计状况和地震设计状况。
5、什么是徐变?徐变对钢筋混凝土结构有何影响?答:混凝土在荷载的长期作用下随时间增长而增长的变形称为徐变;徐变使构件变形增加;在钢筋混凝土截面内引起应力重分布;在预应力混凝土构件中引起预应力损失;某些情况下可减少由于支座不均匀沉降而产生的应力,延缓收缩裂缝出现。
5.1 轴心受压普通箍筋短柱的破坏形态是随着荷载的增加,柱中开始出现微细裂缝,在临近破坏荷载时,柱四周出现明显的纵向裂缝,箍筋间的纵筋发生压屈,向外凸出,混凝土被压碎,柱子即告破坏。
而长柱破坏时,首先在凹侧出现纵向裂缝,随后混凝土被压碎,纵筋被压屈向外凸出;凸侧混凝土出现垂直于纵轴方向的横向裂缝,侧向挠度急剧增大,柱子破坏。
稳定系数来表示长柱承载力的降低程度,即ϕ=s l N N u u /,l N u 和s N u 分别为长柱和短柱的承载力破坏。
5.2 轴心受压普通箍筋柱的正截面受压承载力计算公式为:)(9.0's 'y c u A f A f N +=ϕ轴心受压螺旋箍筋柱的正截面受压承载力计算公式为:)2(9.0's 'y sso y cor c u A f A f A f N ++=α5.3 纵筋 柱中直径不宜小于12mm ;全部纵向钢筋的配筋率不宜大于5%;全部纵向钢筋配筋率不应小于最凶啊配筋百分率,且截面一侧纵向钢筋配筋率不应小于0.2% 箍筋 为了能箍住纵筋,防止纵筋圧曲,柱及其他受压构件中的周边箍筋应做成封闭式;其间距在绑扎骨架中不应大于15d (纵筋最小直径)且不应大于400mm ,也不大于构件横截面的短柱尺寸,箍筋直径不应小于d/4(纵筋最大直径),且不应小于6mm5.4 偏心受压短柱破坏形态:混凝土先被压碎,远侧钢筋可能受拉也可能受压,但都未达到受拉屈服,属于脆性破坏 偏心受压构件按受力情况可分为单向偏心受压构件和双向偏心受压构件;按破坏形态可分为大偏心受压构件和小偏心受压构件;按长细比可分为短柱、长柱和细长柱。
5.5偏心受压长柱的正截面受压破坏有两种形态,当柱长细比很大时,构件的破坏不是由于材料引起的,而是由于构件纵向弯曲失去平衡引起的,称为“失稳破坏”,它不同于短柱所发生的“材料破坏”;当柱长细比在一定范围内时,虽然在承受偏心受压荷载后,偏心距由e i 增加到e i +f ,使柱的承载能力比同样截面的短柱减小,但就其破坏本质来讲,与短柱破坏相同,均属于“材料破坏”,即为截面材料强度耗尽的破坏。
《混凝土结构设计原理》第六章受压构件正截面承载力计算课堂笔记♦主要内容受压构件的构造要求轴心受压构件承载力的计算偏心受压构件正截面的两种破坏形态及英判别偏心受压构件的N厂血关系曲线偏心受压构件正截面受压承载力的计算偏心受压构件斜截面受剪承载力的汁算♦学习要求1.深入理解轴心受压短柱在受力过程中,截而应力重分布的概念以及螺旋箍筋柱间接配筋的概念。
2.深入理解偏心受压构件正截而的两种破坏形式并熟练掌握其判别方法。
3.深入理解偏心受压构件的Nu-Mu关系曲线。
4.熟练掌握对称配筋和不对称配筋矩形截而偏心受压构件受压承载力的计算方法。
5.掌握受压构件的主要构造要求和规定。
♦重点难点偏心受压构件正截而的破坏形态及其判别;偏心受压构件正截面承载力的计算理论:对称配筋和不对称配筋矩形截面偏心受压构件受压承载力的计算方法:偏心受压构件的Nu-Mu关系曲线;偏心受压构件斜截面抗剪承载力的计算。
6.1受压构件的一般构造要求结构中常用的柱子是典型的受压构件。
6.1.1材料强度混凝上:受压构件的承载力主要取决于混凝丄强度,一般应采用强度等级较髙的混凝上,目前我国一般结构中柱的混凝土强度等级常用C30-C40,在髙层建筑中,C50-C60级混凝上也经常使用。
6.1.2截面形状和尺寸柱常见截面形式有圆形、环形和方形和矩形。
单层工业厂房的预制柱常采用工字形截面。
圆形截面主要用于桥墩、桩和公共建筑中的柱。
柱的截面尺寸不宜过小,一般应控制在lo/b^30及l°/hW25°当柱截面的边长在800mm以下时,一般以50mm为模数,边长在800mm以上时,以100mm为模数。
6.1.3纵向钢筋构造纵向钢筋配筋率过小时,纵筋对柱的承载力影响很小,接近于素混凝土柱,纵筋不能起到防止混凝上受压脆性破坏的缓冲作用。
同时考虑到实际结构中存在偶然附加弯矩的作用(垂直于弯矩作用平面),以及收缩和温度变化产生的拉应力,规定了受压钢筋的最小配筋率。
模块五 钢筋混凝土纵向受力构件计算能力训练习题答案 一、简答题1试说明轴心受压普通箍筋柱和螺旋箍筋柱的区别?答:与轴心受压普通箍筋柱相比,混凝土的受压破坏可认为是由于横向变形而发生的破坏,螺旋箍筋可以约束混凝土的横向变形,因而可以间接提高混凝土的纵向抗压强度。
试验研究表明,当混凝土所受的 压应力较低时,螺旋箍筋的受力并不明显;当混凝土的压应力增至相当大后,(纵向钢筋受压屈服),混凝土中沿受力方向的微裂缝开始迅速发展,使混凝土的横向变形明显增大并对箍筋形成径向压力,这时箍筋才对混凝土施加被动的径向约束压力,当构件的压应变超过无约束混凝土的极限应变后,箍筋以外的表层混凝土将逐步脱落,箍筋以内的混凝土 (称核芯混凝土)在箍筋的约束下处于三向受压应状态,可以进一步承受压力直至螺旋箍筋受拉屈服,其抗压极限强度和极限压应变随箍筋约束力的增大(螺旋减小,箍筋直径增 大)而增大。
2轴心受压短柱、长柱的破坏特征各是什么?为什么轴心受压长柱的受压承载力低于短柱?承载力计算时如何考虑纵向弯曲的影响?答:钢筋混凝土轴心受压短柱,当荷载较小时,混凝土处于弹性工作阶段,随着荷载的增大,混凝土塑性变形发展,钢筋压应力'sσ和混凝土压应力σc 之比值将发生变化。
's σ增加较快而σc 增长缓慢。
当荷载持续一段时间后,由于收缩和徐变的影响,随时间的增长,'s σ减小,σc 增大。
's σ及σc 的变化率与配筋率ρ′=A s ′/A c 有关,此处为受压钢筋的截面面积,A c 为构件混凝土的截面面积。
配筋率ρ′越大,受压筋'sσ增长就越缓慢,而混凝土的压应力σc 减小得就越快。
试验表明,配 纵筋和箍筋的短柱,在荷载作用下整个截面的应变分布是均匀的,随着荷载的增加,应变也迅速增加。
最后构件的混凝土达到极限应变柱子出现纵向裂缝,保护层剥落。
接着箍筋间的纵向钢筋向外凸出。
钢筋混凝土轴心受压柱,当长细比较大时(l 0/b >8),在未达到所确定的极限荷载以前,经常由于侧挠度的增大,发生纵向弯曲而破坏、钢筋混凝土柱由于各种原因可能存在初始偏心距,受荷以后将引起附加弯矩和弯曲变形。
单元一偏心受压柱的正截面破坏形态
【学习目标】
理解偏心受压柱正截面的两种破坏形态。
【任务概况】
请思考:偏心受压破坏分为哪两种类型?两类破坏有何本质区别?
相关知识:
一、偏心受压短柱的破坏形态
试验表明,偏心受压短柱的破坏最后都是由于受压区混凝土被压碎而造成的,但是引起混凝土压碎的原因不同,其破坏特征也不相同。
据此可将偏心受压短柱的破坏分为大、小偏心受压破坏两种破坏形态。
1、大偏心受压破坏(受拉破坏)形态
发生于轴向压力的偏心距较大,且受拉钢筋的数量不太多时。
此时,靠近轴向压力N 的一侧受压,另一侧受拉。
随着荷载的增加,首先在受拉区出现短的横向裂缝,随着荷载的继续增加,裂缝不断发展和加宽,在更大压力N的作用下,形成一条明显的主裂缝。
临近破坏荷载时,受拉钢筋首先达到屈服,受拉区横向裂缝迅速开展,并向受压区延伸,使受压区高度迅速减小,混凝土压应力迅速增大,在压应力较大的混凝土受压边缘附近出现裂缝。
当受压区边缘混凝土的应变达到其极限值,受压区混凝土被压碎,构件即告破坏。
破坏时,若混凝土受压区不是过小,受压钢筋应力都可达到受压屈服强度,如图2-9所示。
由于其破坏是始于受拉钢筋先屈服,然后受压钢筋屈服,最后受压区混凝土被压碎而导致构件破坏,故又称为受拉破坏。
这种破坏的过程和特征与适筋的双筋梁类似,有明显的破坏预兆,属塑性破坏。
图2-9 大偏心受压破坏形态
2、小偏心受压破坏(受压破坏)形态
当轴向压力的偏心距较小或虽偏心距较大,但受拉钢筋数量较多时,构件将会发生小偏心受压破坏。
破坏时,靠近轴向压力一侧的混凝土先被压碎,此种破坏包括以下三种情况:
(a)(b)(c)(d)
图2-10 小偏心受压破坏形态
(1)当偏心距很小时,构件全截面受压,靠近轴向压力一侧的压应力大于另一侧。
随着荷载增大,压应力较大一侧的混凝土先被压碎,同时该侧受压钢筋也达到受压屈服强度;而另一侧的混凝土和钢筋在破坏时均未达到其相应的抗压强度,如图2-10(a)所示。
当偏心距很小,靠近轴向压力一侧的钢筋数量又过多,而另一侧钢筋数量过少时,破坏也可能发生在距离轴向压力较远的一侧,如图2-10(b)所示。
A很(2)当偏心距较小时,截面大部分受压,小部分受拉。
但由于中性轴离受拉钢筋
s 近,无论受拉钢筋数量多少,钢筋应力都很小,破坏总是发生在受压一侧。
破坏时,混凝土被压碎,受压钢筋达到屈服强度。
临近破坏时,受拉区混凝土横向裂缝开展不明显,受拉钢筋也达不到屈服强度,如图2-10(c)所示。
这种破坏的过程和特征与超筋梁类似,破坏时无明显的破坏预兆,属脆性破坏。
(3)当偏心距较大但受拉钢筋数量过多时,截面还是部分受压,部分受拉。
但由于受拉钢筋配置过多,受拉钢筋应力达到屈服强度之前,受压区混凝土已先达到极限压应变而破坏,同时受压钢筋也达到抗压屈服强度,其破坏特征与超筋梁类似,破坏时无明显的破坏预兆,属脆性破坏,如图2-10(d)所示。
以上三种破坏情况的共同特征是:构件的破坏是由于受压区混凝土被压碎而造成的。
破坏时,靠近轴向压力一侧的受压钢筋压应力一般均达到屈服强度,而另一侧的钢筋,不论是受拉还是受压,其应力均达不到屈服强度。
受拉区横向裂缝不明显,也无明显主裂缝。
纵向开裂荷载与破坏荷载很接近,压碎区段很长,破坏无明显预兆,属脆性破坏且混凝土强度等级越高,破坏越突然,故统称为受压破坏。
二、偏心受压长柱的破坏形态
试验表明,钢筋混凝土柱在承受偏心压力后会产生纵向弯曲。
对于短柱,由于纵向弯曲小,在设计时一般忽略不计。
对于长柱则不同,它会产生比较大的纵向弯曲,设计时必须予以考虑。
偏心受压长柱在纵向弯曲影响下,可能发生两种形式的破坏。
长细比很大时,构件的破坏不是由于材料引起的,而是由于构件纵向弯曲失去平衡引起的,称为“失稳破坏”,因此,工程中应尽可能避免采用细长柱,因为其破坏具有突然性,且材料强度尚未充分发挥。
当柱长细比在一定范围内时,由于柱的纵向弯曲引起了不可忽略的二阶弯矩,从而使柱的承载能力比同样截面的短柱减小,但就其破坏本质来讲,跟短柱破坏相同,属于“材料破坏”。