小学5、6年级找规律
- 格式:doc
- 大小:215.50 KB
- 文档页数:6
一、等差型数列规律1.有一组数:7,12,17,22,27,…请观察这组数的构成规律,用你发现的规律确定 第8个数为 , 第n 个数为 . 二、等比型数列规律2. 有一组数:1,4,16,64,……,请观察这组数的构成规律,用你发现的规律确定三、含n 2型数列规律3.有一组数:2,6,12,20,30,…请观察这组数的构成规律,用你发现的规律 确定第8个数为 , 第n 个数为 .四、其它数列规律列举4.观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的 第k 个数是五、循环型数列.5. 已知221=,422=,32=8,42=16,25=32,……观察上面规律,试猜想20082 的末位数是 .6. 若1113a =-,2111a a =-,3211a a =-,… ;则2014a 的值为 . 六、算式型规律7. 已知22223322333388+=⨯+=⨯,,244441515+=⨯,……,若288a a b b+=⨯(a 、b 为正整数)则a b += .8. 研究下列算式,你会发现什么规律?1×3+1=22; 2×4+1=32; 3×5+1=42; 4×6+1=52 …………,(1) 请用含n 的式子表示你发现的规律:___________________.(2) 请你用发现的规律解决下面问题计算11111(1)(1)(1)(1)(1)132********+++++⨯⨯⨯⨯⨯的值七、数列阵型9.观察下列三行数: (课本P43页例4变式题)第一行:-1,2,-3,4,-5……第二行:1,4,9,16,25,……第三行:0,3,8,15,24,……(1)第一行数按什么规律排列?(2)第二行、第三行分别与第一行数有什么关系?(3)取每行的第10个数,计算这三个数的和.。
六年级数学找规律练习题班级姓名等级例 1 假设a#b=(a+b)+(a—b);求13#5和13#(5#4)练习一1、将新运算定义为a*b=(a+b)×(a—b);求27*92、设a*b=a 2+2b;求10*6和5*(2*8)13、设a*b=3a—b×1;求(15*24)*(10*12)2例 2 设p、q 是两个数;规定:p # q=4×q —(p+q)÷2;求 3 #(4# 6)练习二1、设p、q是两个数;规定:p # q=4×q—(p+q)÷2;求5#(6# 4)2、设p、q 是两个数;规定:p # q=p2+(p—q)×2;求30#(5# 3)3、设M 、N是两个数;规定:M # N=M N+M N1求—例 3 如果 1&5=1+11+111+1111+1111;1 2&4=2+22+222+2222;3&3=3+33+333;4&2=4+44 ; 那么 7&4= ;210&2= 。
练习三1、 如果 1&5=1+11+111+1111+1111;1 2&2=2+22 ;3&3=3+33+333 ⋯⋯ 那么 4&4=2、规定 a&b=a+aa+aaa+aaaa+a ⋯⋯ a ( b 个 a );那么 8&5= 。
1 1 13、如果 2&1= 1 ;3&2= 1 ;4&3= 1;那么( 6&3)÷(2&6)=。
2 33 4441 例 4 设 a@b=4a —2b+ 1ab ;求 x@(4@1) =34 中的未知数 x练习四1、设 a@b=3a —2b ;已知 x@(4@1)=7;求 x3、对任意两个整数 x 和 y 定义新运算“ #”:x#y= 4xy(其中 m 是一个确定的整数) 。
五年级找规律一.选择题1.按的方式摆放在桌面上.8个按这种方式摆放,有()个面露在外面.A.20B.23C.26D.292.按下列规律印刷笑脸图案,第8幅图案有()个笑脸.A.8B.32C.363.将一些小圆球如图摆放,第六幅图有()个小圆球.A.30B.36C.424.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”,从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10B.25=9+16C.36=15+21D.49=18+315.找规律填空3、5、8、10、13、()、18、20.A.14B.15C.16D.176.按规律填数:2,3,5,9,(),33,…….A.13B.15C.17D.307.找规律:19.8,18.6,17.4,()A.17.2B.16.8C.16.2D.15.28.按如图规律摆放三角形则第⑥个图三角形的个数为()A.15B.17C.20D.249.观察下面的点阵图,按规律,第(9)个点阵图中有()个点.A.27B.30C.33D.54二.填空题(共19小题)10.摆一个需要4根小棒,摆需要7根小棒,摆需要10根小棒…,像这样摆n个正方形需要根小棒,当n=20时,需要根小棒.11.如图方式摆放桌子和椅子,一张桌子能坐6人,3张桌子能坐人.12.下图编号为(1),(2),(3),(4)这四幅图分别由1,4,9,16个小等边三角形拼成,它们的周长分别为3,6,9,12.按这个规律.由100个小等边三角形拼成的图形,周长为.13.如图,它是由火柴棒拼成的图案,如果在这个图案中用了51根火柴棒,可拼成个三角形.14.找规律填数.(1)1,4,7,10,,,.(2)2,4,6,8,,,.(3)1,1,2,3,5,8,,.(4)2,5,4,7,6,9,8,,.(5)1,﹣4,9,﹣16,25,,.15.△□□△□□△□□…,这一组图形中第16个是,第21个是.16.●●〇●〇〇〇●●〇●〇〇〇…,黑白两色棋子是按的规律摆放的,第51枚棋子是,前20枚棋子中,白色棋子有枚.17.按规律填数:,,,,,,.18.先找规律,再填数:1,,,,,,.19.照下图排列的规律,第10幅图有个圆点,第n个图有个圆点.20.用同样长的小木棒摆成如图,照这样摆下去,第6幅图需要根这样的小木棒.21.下图是小亮在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第7个小房子用了块石子.22.将一些▲按一定的规律摆放,(如图所示).图中▲的个数依次是6、10、16、24……第10个图形共有个▲.第m个图形中共有个▲.23.用边长为1的小三角形按如图方式摆图形.摆第7个图形需要个小三角形,第7个图形的周长是.24.将一些半径相同的小圆按如图所示的規律摆放:第1个图形中有6个小圆,第2个形中有10个小圆,第3个图形中有16个小圆,第4个图形中有24个小圆,…依此律,第6个图形有个小圆.25.仔细观察如图,照这样排列下去,第六个图形中共有个三角形,其中涂色的三角形有个.26.数形结合是一种重要的数学思想.请你仔细观察,找出下面图形与算式的关系,再直接填空.(1)推算:1+3+5+…+19=2(2)概括:=2(3)拓展应用:1+3+5+7+9+11+13+15+13+11+9+7+5+3+1=27.奇思用小棒这样摆三角形:…,一共用了27根小棒,摆出了个三角形.28.如图,每个图案都是由若干个棋子摆成,依照此规律,第100个图案中棋子的总个数是.三.解答题(共2小题)29.学校准备了40000元,够不够?30.摆放易拉罐,(如图)看图回答问题.(1)摆两层一共有:1+2=3个摆三层一共有1+2+3=6个摆四层一共有个.摆五层一共有个.摆六层一共有个.…(2)用n表示摆的层数,你能总结出一个计算公式吗?.五年级找规律参考答案与试题解析一.选择题(共9小题)1.按的方式摆放在桌面上.8个按这种方式摆放,有()个面露在外面.A.20B.23C.26D.29【解】根据题干分析可得,n个正方体有5+(n﹣1)×3=3n+2;所以8个小正方体时,露在外部的面有:3n+2=3×8+2=26(个)故选:C.2.按下列规律印刷笑脸图案,第8幅图案有()个笑脸.A.8B.32C.36【解】1+2+3+4+5+6+7+8,=(1+8)+(2+7)+(3+6)+(4+5),=9×4,=36;答:第8副图案有36个笑脸.故选:C.3.将一些小圆球如图摆放,第六幅图有()个小圆球.A.30B.36C.42【解】观察图形可知:第一个图形中有1×2=2个小圆球,第二个图形中有2×3=6个小圆球,第三个图形中有3×4=12个小圆球,第四个图形中有4×5=20个小圆球,…所以第六幅图有6×7=42个小圆球.故选:C.4.古希腊著名的毕达哥拉斯学派把1、3、6、10…这样的数称为“三角形数”,而把1、4、9、16…这样的数称为“正方形数”,从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10B.25=9+16C.36=15+21D.49=18+31【解】这些三角形数的规律是1,3,6,10,15,21,28,36,45,…,且正方形数是这串数中相邻两数之和,很容易看到:恰有36=15+21.故选:C.5.找规律填空3、5、8、10、13、()、18、20.A.14B.15C.16D.17【解】10+5=15故选:B.6.按规律填数:2,3,5,9,(),33,…….A.13B.15C.17D.30【解】2×9﹣1=18﹣1=17所以:2,3,5,9,17,33,…….故选:C.7.找规律:19.8,18.6,17.4,()A.17.2B.16.8C.16.2D.15.2【解】17.4﹣1.2=16.2.故选:C.8.按如图规律摆放三角形则第⑥个图三角形的个数为()A.15B.17C.20D.24【解】图①三角形的个数:2×3﹣1=5(个)图②三角形的个数:3×3﹣1=8(个)图③三角形的个数:4×3﹣1=11(个)……图n三角形的个数:3(n+1)﹣1=(3n+2)个……第⑥个图三角形的个数为:3×6+2=18+2=20(个)答:第⑥个图三角形的个数为20个.故选:C.9.观察下面的点阵图,按规律,第(9)个点阵图中有()个点.A.27B.30C.33D.54【解】由分析可知,第n项是(3n+3)个点3×9+3=27+3=30答:第(9)个点阵图中有30个点.故选:B.二.填空题(共19小题)10.摆一个需要4根小棒,摆需要7根小棒,摆需要10根小棒…,像这样摆n个正方形需要3n+1根小棒,当n=20时,需要61根小棒.【解】第一个正方形由四根火柴摆成,以后加三根就可加一个正方形,摆n个正方形需要3n+1根小棒,当n=20时,需要3×20+1=61根小棒.故答案为:3n+1,61.11.如图方式摆放桌子和椅子,一张桌子能坐6人,3张桌子能坐14人.【解】有1张桌子时有6把椅子,有2张桌子时有10把椅子,10=6+4×1,有3张桌子时有14把椅子,14=6+4×2,答:3张桌子可以坐14人.故答案为:14.12.下图编号为(1),(2),(3),(4)这四幅图分别由1,4,9,16个小等边三角形拼成,它们的周长分别为3,6,9,12.按这个规律.由100个小等边三角形拼成的图形,周长为30.【解】因为:100=102所以由100个小等边三角形拼成的图形编号为(10),所以周长为:3×10=30.故答案为:30.13.如图,它是由火柴棒拼成的图案,如果在这个图案中用了51根火柴棒,可拼成25个三角形.【解】第一个三角形有1+2=3根火柴棒组成,以后每多一个三角形就多用2根火柴棒,所以组成n个三角形就需要1+2n根火柴棒;当1+2n=51时2n=50n=25答:可拼成25个三角形.故答案为:25.14.找规律填数.(1)1,4,7,10,13,16,19.(2)2,4,6,8,10,12,14.(3)1,1,2,3,5,8,13,21.(4)2,5,4,7,6,9,8,11,10.(5)1,﹣4,9,﹣16,25,49,﹣64.【解答】解(1)10+3=1313+3=1616+3=19(2)8+2=1010+2=1212+2=14(3)5+8=138+13=21(4)72=49﹣16×4=﹣64故答案为:13,16,19;10,12,14,13,21,49,﹣64.15.△□□△□□△□□…,这一组图形中第16个是△,第21个是□.【解】16÷3=5…1,所以这一组图形中第16个是△;21÷3=7,所以这一组图形中第21个是□;故答案为:△,□.16.●●〇●〇〇〇●●〇●〇〇〇…,黑白两色棋子是按●●〇●〇〇〇的规律摆放的,第51枚棋子是黑色的,前20枚棋子中,白色棋子有11枚.【解】51÷7=7(周)…2(个)第51枚棋子是黑色的.20÷7=2(周)…6(个)2×4+3=11(个)所以前20枚中一共有11个白色的.答:第51枚棋子是黑色的,前20枚棋子中,白色棋子有11枚.故答案为:黑色的,11.17.按规律填数:,,,,,,.【解】==故答案为:;.18.先找规律,再填数:1,,,,,,.【解】1=,由前几个分数可知,分子是从1开始的连续奇数,分母是项数的平方;所以,第6项的分子是11,分母是62=36,是.故答案为:.19.照下图排列的规律,第10幅图有33个圆点,第n个图有(3n+3)个圆点.【解】第一幅图圆点个数:1+2+3=6(个)第二副图圆点个数:2+3+4=9(个)第三幅图圆点个数:3+4+5=12(个)……第10幅图圆点个数:10+11+12=33(个)……第n幅图圆点的个数:n+(n+1)+(n+2)=(3n+3)个答:第10幅图有33个圆点,第n个图有(3n+3)个圆点.故答案为:33;(3n+3).20.用同样长的小木棒摆成如图,照这样摆下去,第6幅图需要34根这样的小木棒.【解】由分析可得:第n幅图需要小棒:4+6(n﹣1)根.所以第6幅图需要小棒:4+6(n﹣1)=4+6×(6﹣1)=4+30=34(根)答:第6幅图需要34根这样的小木棒.故答案为:34.21.下图是小亮在沙滩上用石子摆成的小房子,观察图形的变化规律,写出第7个小房子用了77块石子.【解】第一个图形有5块小石子,5=1×(1+4)第二个图形有12块小石子,12=2×(2+4)第三个图形由21块小石子,21=3×(3+4)……由此推出:第n个图形有n(n+4)块石子7×(7+4)=7×11=77(块)答:第7个小房子用了77块石子.故答案为:77.22.将一些▲按一定的规律摆放,(如图所示).图中▲的个数依次是6、10、16、24……第10个图形共有114个▲.第m个图形中共有m(m+1)+4个▲.【解】∵第1个图形有1×2+4=6个三角形,第2个图形有4+2×3=10个三角形,第3个图形有4+3×4=16个三角形,…,∴第m个图形中有m(m+1)+4个三角形,∴第10个图形棋子的颗数为:10×(10+1)+4=10×11+4=110+4=114(个)故答案为:114,m(m+1)+4.23.用边长为1的小三角形按如图方式摆图形.摆第7个图形需要49个小三角形,第7个图形的周长是21.【解】根据题干分析可得:第一个图形是12=1个三角形,边长是1;第二个图形是22=4个三角形,边长是2;第三个图形是32=9个三角形,边长是3;…,第七个图形是72=49个三角形,边长是7,周长是7×3=21.答:摆第7个图形需要49个小三角形,第7个图形的周长是21.故答案为:49;21.24.将一些半径相同的小圆按如图所示的規律摆放:第1个图形中有6个小圆,第2个形中有10个小圆,第3个图形中有16个小圆,第4个图形中有24个小圆,…依此律,第6个图形有44个小圆.【解】第1个图形中有6个小圆第2个形中有10个小圆第3个图形中有16个小圆第4个图形中有24个小圆……第n个图形为:[n(n+1)+4]个小圆所以,第6个图形小圆的个数为:6×7+4=42+2=44(个)答:第6个图形有44个小圆.故答案为:44.25.仔细观察如图,照这样排列下去,第六个图形中共有49个三角形,其中涂色的三角形有21个.【解】根据题干分析可得:第n个图形涂色的小三角形个数为1+2+3+…+n,没有涂色的小三角形个数为1+2+3+…+n+n+1,当n=6时,1+2+3+4+5+6=21(个)没有涂色小三角形有1+2+3+4+5+6+7=28(个)21+28=49(个)故答案为:49,21.26.数形结合是一种重要的数学思想.请你仔细观察,找出下面图形与算式的关系,再直接填空.(1)推算:1+3+5+…+19=102(2)概括:=n2(3)拓展应用:1+3+5+7+9+11+13+15+13+11+9+7+5+3+1=113【解】(1)1+3+5+…+19=(19+1)÷2=10(个),即1+3+5+…+19由10个加数其和是102即1+3+5+…+19=102(2)=n2(3)1+3+5+7+9+11+13+15+13+11+9+7+5+3+1=(1+3+5+7+9+11+13+15)+(1+3+5+7+9+11+13)=82+72=64+49=113故答案为:10,n,113.27.奇思用小棒这样摆三角形:…,一共用了27根小棒,摆出了13个三角形.【解】当有n个三角形时小棒的数量就是:3+2(n﹣1)=3+2n﹣2=2n+1(根);当有27根小棒时:2n+1=272n=26n=13;答:摆27根小棒能摆出13个三角形.故答案为:13.28.如图,每个图案都是由若干个棋子摆成,依照此规律,第100个图案中棋子的总个数是10100.【解】由分析可得:每个图案的纵队棋子个数是:n,每个图案的横队棋子个数是:n+1,那么第n个图案中棋子的总个数与n的关系式为:总个数=n(n+1).那么第100个图案中棋子的总个数:100×(100+1)=100×101=10100(个)答:第100个图案中棋子的总个数是10100个.故答案为:10100.三.解答题(共2小题)29.学校准备了40000元,够不够?【解】172×42+328×45=7224+14760=21984(元)21984<40000答:学校准备了40000元,够.30.摆放易拉罐,(如图)看图回答问题.(1)摆两层一共有:1+2=3个摆三层一共有1+2+3=6个摆四层一共有1+2+3+4=10个.摆五层一共有1+2+3+4+5=15个.摆六层一共有1+2+3+4+5+6=21个.…(2)用n表示摆的层数,你能总结出一个计算公式吗?n(n+1).【解】(1)摆两层一共有:1+2=3个摆三层一共有1+2+3=6个摆四层一共有1+2+3+4=10个.摆五层一共有1+2+3+4+5=15个.摆六层一共有1+2+3+4+5+6=21个(2)用n表示摆的层数:n(n+1)故答案为:1+2+3+4=10;1+2+3+4+5=15;1+2+3+4+5+6=21;n(n+1)。
数学找规律⽅法怎么教五年级⼩孩数学找规律是数学学习题型的⼀种,找规律要求有较强的思维逻辑,下⾯就是⼩编给⼤家带来的数学找规律⽅法,希望⼤家喜欢!数学找规律⽅法代数中的规律“有⽐较才有鉴别”。
通过⽐较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题⽬,通常按照⼀定的顺序给出⼀系列量,要求我们根据这些已知的量找出⼀般规律。
揭⽰的规律,常常包含着事物的序列号。
所以,把变量和序列号放在⼀起加以⽐较,就⽐较容易发现其中的奥秘。
例1 观察下列各式数:0,3,8,15,24,……。
试按此规律写出的第100个数是___。
”分析:解答这⼀题,可以先找⼀般规律,然后使⽤这个规律,计算出第100个数。
我们把有关的量放在⼀起加以⽐较:给出的数:0,3,8,15,24,……。
序列号: 1,2,3, 4, 5,……。
平⾯图形中的规律:图形变化也是经常出现的。
作这种数学规律的题⽬,都会涉及到⼀个或者⼏个变化的量。
所谓找规律,多数情况下,是指变量的变化规律。
所以,抓住了变量,就等于抓住了解决问题的关键。
2数学找规律⽅法⼀从具体的.实际的恩提出发,观察各个数量的特点及相互之间的变化规律。
由此及彼,合理联想,⼤胆猜想善于类⽐,从不同事物中发现相似或相同点;总结规律,得出结论,并验证结论正确与否;在探索规律的过程中,要善于变化思维⽅式,做到事半功倍探索规律是⼀种思维活动,及思维从特殊到⼀半的跳跃,需要有⼀定的归纳与综合能⼒。
当以知的数据有很多组时,需要仔细观察,反复⽐较,才能准确找出规律。
需⽤到的数学⽅法有:分类讨论法.转化法.归纳法.通过观察.分析.综合.归纳.概括.推理.判断等⼀系列探索活动,解答有关探索规律性问题的特点是问题的结论或条件不直接给出,需要逐步确定需要的结论和条件。
解答这类题的关键是认真审题,掌握规律.合理推测.认真验证,从⽽得出问题的正确结论。
数学找规律⽅法3数学找规律⽅法⼆标出序列号:找规律的题⽬,通常按照⼀定的顺序给出⼀系列量,要求我们根据这些已知的量找出⼀般规律。
第四讲:找规律(一)事物的发展中有规律的,只有认为观察事物,找到事物发展变化的规律,才能深入地了解和掌握它,从而找到解决问题的方法和途径。
在数学竞赛中,常常出现按规律填数的题目,找规律的方法是根据已知数的前后(可上下)之间的联系,找出其中的规律,求得相应的数。
例题例1. 请找出下列各组数排列的规律,并根据规律在括号里填上适当的数。
(1)1,5,9,13,( ),21,25。
(2)3,6,12,24,( ),96,192。
(3)1,4,9,16,25,( ),49,64,81。
(4)2,3,5,8,12,17,( ),30,38。
(5)21,4,16,4,11,4,( ),( )。
(6)1,6,5,10,9,14,13,( ),( )。
例2.根据下表中数的排列规律,在空格里填上适当的数。
(1) (2)例3.下面每个括号里两个数按一定规律组合,在里填上适当的数。
(9,13),(17,5),(14,8),( ,16)。
例4.根据前面两个圈里三个数的关系,在第三个圈里的( )里填上适当的数。
练习与思考1.找出下面各组数排列的规律,并根据规律在括号里填上合适的数。
(1)1,4,3,6,5,( ),( )。
(2)1,4,16,64,( )。
(3)11,3,8,3,5,3,( ),( )。
(4)0,1,3,8,21,( )。
2.找规律,在空格里填上适当的数。
(1)(2)3.下面括号里和两个数是按一定规律组合,根据规律在里填上适当的数。
(1)(8,7),(6,9),(10,5),(,13)。
(2)(1,3),(5,9),(7,13),(9,)。
4.根据前面两个圈里三个数的关系,在第三个圈里的()里填上适当的数。
(1)(2)例5.请先计算下面一组算式的前三题,然后找出其中的规律,并根据规律直接写出后六题的得数。
1×8+1=12×8+2=123×8+3=1234×8+4=12345×8+5=123456×8+6=1234567×8+7=12345678×8+8=123456789×8+9=例6.请先计算下现的一组算式的第一题,然后找出其中的规律,并根据规律直接写出后几题的得数。
六年级上册数学找规律题一、数字规律类。
1. 观察数列:1,3,5,7,9,…,第n个数是多少?解析:这是一个奇数数列,相邻两个数的差都是2。
第一个数是1 = 2×1 1,第二个数是3=2×2 1,第三个数是5 = 2×3 1,以此类推,第n个数是2n 1。
2. 数列:2,4,8,16,32,…,第n个数是多少?解析:这个数列中,后一个数都是前一个数的2倍。
第一个数是2 = 2^1,第二个数是4 = 2^2,第三个数是8 = 2^3,所以第n个数是2^n。
3. 1,4,9,16,25,…,第n个数是多少?解析:这些数分别是1²,2²,3²,4²,5²,…,所以第n个数是n²。
4. 数列:1, 1,1, 1,1,…,第n个数是多少?解析:这个数列是正负交替的,当n为奇数时,数为1;当n为偶数时,数为1。
所以第n个数是(-1)^(n + 1)。
5. 2,5,10,17,26,…,第n个数是多少?解析:这个数列中,第一个数2=1² + 1,第二个数5 = 2²+1,第三个数10 = 3² + 1,第四个数17 = 4²+1,所以第n个数是n²+1。
6. 0,3,8,15,24,…,第n个数是多少?解析:这些数分别是1² 1,2² 1,3² 1,4² 1,5² 1,所以第n个数是n²1。
7. 1,1,2,3,5,8,13,…,求第n个数(斐波那契数列)。
解析:从第三项起,每一项都等于前两项之和。
设这个数列的第n项为F(n),则F(n)=F(n 1)+F(n 2)(n≥3),F(1)=1,F(2)=1。
8. 数列:3,6,9,12,15,…,第100个数是多少?解析:这个数列是一个公差为3的等差数列,首项是3。
五年级找规律填数的方法与技巧全文共四篇示例,供读者参考第一篇示例:五年级是学习数学的一个重要阶段,其中找规律填数是数学中非常重要的一个内容。
这部分内容不仅考验了学生的观察力和逻辑思维能力,还帮助他们培养了解决问题的方法和思维习惯。
下面我将和大家分享一些关于五年级找规律填数的方法与技巧。
要培养学生的观察力。
找规律填数的问题通常会给出一系列数字或图形,要求学生找出其中的规律,并根据这个规律填写缺失的数字或图形。
所以,学生需要仔细观察给出的数列或图形,看看数字间有没有明显的变化规律,图形有没有某种特殊的排列方式。
只有通过观察,才能找到隐藏在其中的规律。
要引导学生进行分类思维。
在找规律填数的过程中,有时候数字之间的规律并不是一眼就能看出来的,这时可以让学生尝试对数字进行分类。
按照数字的奇偶性进行分类,或者按照数字的大小进行分类,看看是否能够找出规律。
分类思维可以帮助学生更有条理地分析问题,找到规律。
要培养学生的想象力。
有些找规律填数的问题可能需要学生进行一定程度的推理和想象,这时候就需要学生发挥自己的想象力了。
给出一系列图形,要求学生猜测下一个图形是什么样子的,这就需要学生根据前面的图形想象出可能的规律。
想象力是培养创造力和思维灵活性的重要手段。
要鼓励学生多练多想。
找规律填数是一种需要不断练习的数学技能,通过不断练习,学生可以更快地提高自己的观察力和思维能力。
学生也要多动脑筋,多尝试不同的方法和思路,培养自己的独立思考能力。
只有通过持续的练习和思考,才能真正掌握找规律填数的方法与技巧。
五年级找规律填数是一个寓教于乐的过程,通过这个过程,学生可以锻炼自己的观察力、逻辑思维能力和想象力,培养解决问题的方法和思维习惯。
希望通过老师和家长的引导,学生可以在找规律填数的过程中不断提高自己的数学水平,更好地应用数学知识解决生活中的问题。
【字数不足,继续努力】第二篇示例:五年级找规律填数是数学中的一种重要技能,在学习过程中有很多方法和技巧可以帮助孩子更好地理解和掌握这个知识点。
六年级数学找规律知识点1.算术中的规律【知识点归纳】在数学算式中探索规律,应认真观察算式的特点,再观察结果的特点,进而,根据规律填出这一类算式的结果.例如:1×1=1;11×11=121;111×111=12321;1111×1111=1234321;通过观察发现:每个算式中,两个因数各个数位上的数字都是1,且个数相同.积里的数字呈对称形式,且前半部分是从1开始,写至某个数字(此数即因数的位数),积的后半部分再顺次写出.①一个数乘11,101的规律一个数乘11的规律:可采用“两头一拉,中间相加”的方法计算.如:123×11=1353一个数乘101的规律:可采用“两两一位,隔位一加”的方法计算.如:58734×101=5932134②一个数乘5,15,25,125的规律一个数乘5,转化为一个数乘10,然后,再除以2.如:28×5=28×10÷2=280÷2=140这种情况可以概括为“添0求半”.根据同级运算可交换位置的性质,也可以先除以2,再乘10.如:28×5=28÷2×10=14×10=140.即“求半添0”的方法.一个数乘15,可分解为先用这个数乘10,再加上这个数乘5,乘5的方法同上.如:264×15=264×10+264×5=2640+264×10÷2=2640+2640÷2=2640+1320=3960.这种情况可以概括为“添0补半”一个数乘125,因为125×8=1000,所以,可将一个数乘125转化为先乘1000,再除以8,或先除以8,再乘1000.如:864×125=864×1000÷8=864000÷8=108000.常考题型:例1:4÷11的商用循环小数表示,则小数点后面第20位数字是()A、0B、3C、7D、6例2:按规律计算.3+6+12=12×2﹣3=213+6+12+24=24×2﹣3=453+6+12+24+48=48×2﹣3=933+6+12+24+ (192)a+2a+4a+8a+16a+…+1024a=.知识点2.数列中的规律【知识点归纳】按一定的次序排列的一列数,叫做数列.(1)规律蕴涵在相邻两数的差或倍数中.例如:1,2,3,4,5,6…相邻的差都为1;1,2,4,8,16,32…相邻的两数为2倍关系.(2)前后几项为一组,以组为单位找关系,便于找到规律.例如:1,0,0,1,1,0,0,1…从左到右,每四项为一组;1,2,3,5,8,13,21…规律为,从第三个数开始,每个数都是它前面两个数的和.(3)需将数列本身分解,通过对比,发现规律.例如,12,15,17,30,22,45,27,60…在这里,第1,3,5…项依次相差5,第2,4,6…项依次相差15.(4)相邻两数的关系中隐含着规律.例如,18,20,24,30,38,48,60…相邻两数依次差2,4,6,8,10,12…常考题型:例1:一列数1,2,2,3,3,3,4,4,4,4,….中的第35个数为()A、6B、7C、8D、无答案例2:一对成熟的兔子每月繁殖一对小兔子,而每对小兔子一个月后就变成一对成熟的兔子.那么,从一对刚出生的兔子开始,一年后可变成对兔子.知识点3.“式”的规律【知识点归纳】把一些算式排列在一起,从中发现规律,也是探索规律的重要内容.在探索“式”的规律时,要从组成“式”的要素中去探索.常考题型:例:观察1+3=4 4+5=9 9+7=16 16+9=25 25+11=36这五道算式,找出规律,则下一道算式是.知识点4.数与形结合的规律【知识点归纳】在探索数与形结合的规律时,一方面要考虑图形的对称(上下对称和左右对称),另一方面要考虑数的排列规律,通过数形结合、对应等方法,来解决问题.常考题型:例:用小棒照下面的规律搭正方形,搭一个用4根,搭2个用7根…,搭10个要用根小棒,搭n个要用根小棒..知识点5.数表中的规律【命题方向】常考题型:例:如图是一张月历卡,用形如的长方形去框月历卡里的日期数,每次同时框出3个数.框出的3个数的和最大是,一共可以框出种不同的和.知识点6.事物的间隔排列规律常考题型:例:六一儿童节用彩色小灯泡布置教室,按“三红、二黄、二绿”的规律连接起来,第37个小灯泡是()A、红B、黄C、绿D、不确定知识点7.事物的简单搭配规律小红有2顶不同的帽子,3件不同的上衣,2条不同的裤子.若帽子、上衣和裤子搭配穿着,共有种不同的搭配方法.知识点8.简单周期现象中的规律常考题型:例:体育课上同学们站成一排,老师让他们按1、2、3、4、5循环报数,最后一个报的数是2,这一排同学有()人.A、26B、27C、28知识点9.简单图形覆盖现象中的规律常考题型:例:如图是2006年6月的月历,认真观察阴影部分五个数的关系.想一想:如果像这种形式的五个数的和105,则中间的那个数是.达标检测1.将化成小数后,小数点后第2013位上的数字是()A.2B.4C.3D.82.下面的数是有规律排列的,但有一个数“与众不同”,这个数是()4,10,16,5,7,13,19.A.4B.5C.193.看算式,发现规律,找出答案.()3×6=18 33×66=2178 333×666=221778 3333×6666=22217778 …=A.B.C.4.木材厂将木头按下图堆放,第五堆有()个.A.15B.21C.28D.345.一个自然数表如下(零除外,表中下一行数的个数是上一行的2倍),第六行最后一个数是()A.31B.63C.64D.1276.一串珠子按●●●○○的顺序依次排列,第48颗珠子是()色.A.黑B.白C.不能确定7.找一下规律,空格内的应该是()图.A.B.C.D.8.一组图形有规律的排列着.…第78个是()A.B.C.D、9.在下面的月历卡中,用“十”字形框5个数,共可以框出()个不同的和.A.14B.15C.10D.11巩固练习1.循环小数0.02的小数点后第2012位上的数字是()A.4B.5C.6D.82.按规律填数:1、、、、、…,第11个数是()A.B.C.D.3.加法算式1+2,2+5,3+8,1+11,2+14,3+17,…是按一定的规律排列的,则第40个加法算式是()A.1+120B.2+119C.1+119D.3+1194.下面的3个图形都是由相同的小棒拼成,根据前3个图形的排列规律,第5个图形由()根小棒拼成.A.20B.18C.16D.145.下表表示的是一辆汽车在启动前五秒的速度变化关系.按照表中的规律,表中的“?”处应填()A.96B.72C.60D.586.操场的一边按3面红旗,4面黄旗,5面蓝旗插着一排彩旗.那么第60面是()A.红旗B.黄旗C.蓝旗7.观察下列各图,找出图中数与数之间的变化规律,那么?处的数是()A.4B.5C.6D.7 E.88.小红按照红、黄、蓝这样的顺序串珠子,第32个珠子是()颜色.A.红B.黄C.蓝9.小强观察一个建筑物模型(由若干个相同的小正方体拼成),分别从前面,右面,上面观察,看到的图案如图所示,那么该模型共由()个小正方体拼成.A.8B.9C.10D.1110.自己观察下列算式,寻找规律填数.2+4=2×32+4+6=3×42+4+6+8=4×52+4+6+8+10+…+50=×.11.找规律:,,,,.12.摆1个正方形需要4根小棒,摆2个需要7根小棒,摆3个需要10根小棒,摆n个正方形需要根小棒.13.观察找规律:用同样长的小棒摆第10个图形需要根小棒,第12个图形是形.14.把2015 名学生排成一排,按1,2,3,4,5,6,7,6,5,4,3,2,1,1,2,3,4,5,6,7,6,5,4,3,2,1…循环报数,则第201名学生所报的数是.15.一列分数的前4个是,,,,根据这4个分数的规律可知,第8个分数是。。
类型一:尾数规律
例1:在20001999321⨯⨯⨯⨯⨯ 的乘积尾部有 个连续的零。
例2:n =2×2×2×…×2(2005个2相乘),所得积的末尾数字是几?
例3:12+22+32+42+…+992+1002的个位数字是多少?
例4:2001200120092004⨯积的末位数字是几?
例5:算式19941995199619971998(199419951996)19971998++⨯⨯的个位数是多少?
巩固练习:
1、50个7相乘所得积的末位数是多少?
2、1991个1991相乘的积与1992个1992相乘的末位数字是多少?
3、1992个13边乘的积,个位数字是多少?
4、1×1+2×2+3×3+4×4+…1991×1991的末位数字是多少?
5、观察1×2×3×4×5=120,积的尾部都有一个零,1×2×3×4×5…×50的积的尾部有多少连续的零?
6、自然数3×3×3×…×3─1(有68个3连乘)的个位数字是多少?
7、3×3的末位数字是9,3×3×3的末位数字是7,3×3×3×3的末位数字是1。
35个3相乘的末位数字是多少?
8、算式1993×1995×1997×1999─1992×1994×1996×1998的结果的末位数是多少?
9、3×13×23×33×43×53×63×73×83×93×103×113×123×…×19903的积的个位数字是多少?
10、有一串数,5,55,555,5555,……,555…55(15个5)这一串数的和的末三位数是多少?
11、1×2×3×4×…×1993×1994的末位数字是多少?
12、1993个0.7的积与1994个0.8的积相乘末位数字是多少?
13、1+1×2+1×2×3+1×2×3×4+1×2×3×4×5×6×7×8×9的值的个位数是多少?
14、求1×3×5×7×9×11×…×97×99的值的个位数。
15、求1050个2相乘的积与2105个4相乘的积的和再加上1997个8相乘的积
的尾数是几?
16、求19个12相乘的积与11个8相乘的积的差的末尾数字是多少?
17、2004个23的积乘1942个18的积乘1049个27的积的末尾数字是几?
18、1991个1991相乘所得的积,末两位数字是多少?
19、求1995个2的积乘1994个3的积乘1993个4的积乘1992个5的积乘1991
个6的积加上1990个7的和的个位数是几?
20、自然数2×2×2×…×2─1(67个2相乘)的个位数字是多少?
21、1*2*3*4*......*500的乘积尾数有几个“0”?
22、20022007 +20032007+20072007 +20082007和的个位数字是几?
类型二:数字规律
1、古希腊数学家把1,3,6,10,15,21,……,叫做三角形数,根据它的规
律,则第100个三角形数与第98个三角形数的差为 。
2、猜数字游戏中,小明写出如下一组数:35
32,1916,118,74,52,…….小亮猜想出第六个数字是67
64,根据此规律,第n 个数是 _______。
3、有一组多项式:a+b2,a2﹣b4,a3+b6,a4﹣b8,…,请观察它们的构成规律,用你发现的规律写出第 10个多项式为 。
4、求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则
2S=2+22+23+24+…+22013,因此2S-S=22013-1.仿照以上推理,计算出
1+5+52+53+…+52012的值为 。
5、观察下列等式:
第一行 3=4-1
第二行 5=9-4
第三行 7=16-9
第四行 9=25-16…
…
按照上述规律,第n 行的等式为____________
6、50枚棋子围成圆圈,编上号码1、2、3、4、……、50,每隔一枚棋子取出一
枚,要求最后留下的一枚棋子的号码是42号,那么该从几号棋子开始取呢?
7、已知一串有规律的数:1,2/3,5/8,13/21,34/55,…。
那么,在这串数中,从左往右数,第10个数是________。
8、在一个圆圈上,逆时针标上1、2、3、…、19,从某个数起取走该数,然后沿逆时针方向每隔一个数取走一个数,如果最后剩下数1。
求从哪个数起?
9、把1~1992为1992个数,按逆时针方向排在一个圆圈上,从1开始逆时针方向,保留1,涂掉2;保留3,涂掉4,……。
(每隔一个数涂去一个数),求最后剩下哪个数?
10、把1~1987这1987个数,均匀排成一个大圆圈。
从1开始数,隔过1,划掉2,3;隔过4,划掉5,6;……,(每隔一个数,划掉两个数)一直划下去,问最后剩下哪个数?
类型三:图形规律
1:下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为。
2:一个由小菱形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是() A.3 B.4 C.5 D.6
3:如图(1)是一个水平摆放的小正方体木块,图(2),图(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是()
A.25
B.66
C.91
D.120
第n个叠放的图形中,小正方体木块总数应是。
4:观察下列图形,则第n 个图形中三角形的个数是( )
5:王婧同学用火柴棒摆成三个“中”字形图案,依此规律,第n 个“中”字形图案需 根火柴棒( )。
巩固练习:
1、下图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图
形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.
2、将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第
2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,
依次规律,第6个图形有 个小圆.第n 个( )
第1个图形 第2个图形 第3个图形 第4个图形 …
……
第1个 第2个 第3个
(1)
(2)
(3)
……
3、按如下规律摆放三角形:
则第(4)堆三角形的个数为_____________;第(n)堆三角形的个数为_____________.
4、如图所示的图案是按一定规律排列的,照此规律,在第1至第2012个图案中“♣”共个。
♣♢♡♠♣♢♡♠♣·····
5如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n个“广”字中的棋子个数是________
6、柜台上放着一堆罐头,它们摆放的形状见右图:
第一层有2×3听罐头,第二层有3×4听罐头,第三层有4×5听罐头,……根据这堆罐头排列的规律,第n(n为正整数)层有听罐头(用含n的式子表示)。
7、观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白
色三角形有()个.
第1个第2个第3个
8、下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为 .
9、如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .
10、观察下列球的排列规律(其中●是实心球,○是空心球):
●○○●●○○○○○●○○●●○○○○○●○○●●○○○○○● …………从第1个球起到第2005个球止,共有实心球 个.
(1) (2) (3) ……
……。