几种聚噻吩衍生物的合成与性能研究_
- 格式:pdf
- 大小:797.71 KB
- 文档页数:14
聚噻吩/碳纳米管复合材料的制备与性能研究3郭洪范,朱 红,林海燕,张积桥,於留芳(北京交通大学理学院,北京100044)摘 要: 利用原位化学氧化聚合法将噻吩单体原位聚合包覆在碳纳米管上,制备出聚噻吩/碳纳米管(P Th/CN T)复合材料,并对其形貌、结构、电性能和热稳定性等进行了初步的研究。
研究结果表明聚噻吩包覆在碳纳米管上形成以碳纳米管为核,以聚噻吩为壳的核壳纳米线结构。
加入少量的碳纳米管就能显著改善导电聚合物的电性能和热性能。
碳纳米管的加入没有改变聚噻吩的主链结构,对聚噻吩的结晶状况也没有产生很大的影响。
关键词: 聚噻吩;碳纳米管;复合材料中图分类号: TB332文献标识码:A 文章编号:100129731(2007)09214962031 引 言导电聚合物由于具有密度低、结构多样化、可分子设计、电磁参量可调等优点而具有很好的发展前景,并且已经引起科学界的广泛重视。
在众多的导电聚合物材料中,聚噻吩及其衍生物由于具有容易聚合、优异的物理化学性能、电导率可调和环境稳定性良好等特点而成为导电聚合物领域的研究热点[1]。
碳纳米管是最具代表的纳米材料之一,其独特的分子结构,使其具有许多优良的物理化学性能[2]。
碳纳米管具有密度小、强度高、导热和导电性能优良等特点,其独特的力学和电磁学性能预示着它能在广阔的领域内应用[3]。
碳纳米管的复合改性已经成为目前材料的研究热点之一,尤其是将碳纳米管与含有π电子的导电聚合物通过π2π非共价键作用相结合而得到的复合材料[4~6]是非常有研究价值的材料,并且已经取得了一定的进展,形成复合材料后能够改进导电聚合物的力学性能和其它性能[7],而且还可以防止碳纳米管团聚作用的发生。
但是到目前为止对用具有共轭π键的聚噻吩来包覆碳纳米管的详细研究却鲜有报道,在本文中,采用原位化学氧化聚合法将聚噻吩包覆在碳纳米管上,并对其结构、电磁性能、热稳定性等进行了研究,希望此类材料能够在隐身材料、导电材料和纳米器件等领域内得到应用。
聚噻吩衍生物的合成及光电性质研究乌海燕;刘福德;王娟;周勇【摘要】Three kinds of polythiophenes are prepared by chemical oxidative polymerization.The UV -Vis spectra, fluorescence spectra, PL and CV spectra of the three polymers have been determined, the photoelectric properties, band gag and HOMO/LUMO orbital energy of them are investigated.It is concluded that a long chain alkyl group at 3 - position of thiophene ring can effectively increase λmax and decrease band gap of polythiophene.%通过化学氧化聚合法合成了3种聚噻吩衍生物,并通过测定紫外-可见吸收光谱、荧光光谱、光致发光光谱以及循环伏安曲线对3种聚合物的光电性质进行了表征,确定其光学性质、带隙及HOMO/LUMO轨道能量.结果表明,在噻吩环3-位引入长链取代基可提高聚合物最大吸收波长λmax,降低聚合物带隙.【期刊名称】《天津工业大学学报》【年(卷),期】2013(032)002【总页数】3页(P54-56)【关键词】聚噻吩;光电性质;禁带宽度;化学氧化法【作者】乌海燕;刘福德;王娟;周勇【作者单位】天津理工大学化学化工学院,天津300384【正文语种】中文【中图分类】TQ031.2聚噻吩衍生物是一类重要的共轭高分子材料,其合成方法可分为金属催化偶联法[1]、电化学氧化法[2]及FeCl3氧化法[3],其中FeCl3氧化法简便易行.近年来,聚噻吩衍生物在光伏电池、电致发光材料、电磁屏蔽材料、导电涂料、传感器等诸多领域都得到了广泛的研究和应用[4-6],其光电性质对选择其应用领域具有重要参考意义,例如Scharber[7]绘制了本体异质节光伏电池光电转换效率与给体材料带隙Eg及LUMO轨道能量ELUMO的关系图,表明带隙Eg及ELUMO的良好匹配是影响光电转换效率的重要因素.本文采用以无水Fe-Cl3为氧化剂的化学氧化聚合法[7]制备了3种聚噻吩衍生物,并对其光电性质进行研究.1 实验部分1.1 实验药品及仪器实验药品包括:3-甲基噻吩、3-己基噻吩,北京麟恩科技有限公司产品;四丁基高氯酸铵TBAP,国药集团化学试剂有限公司产品;噻吩、氯仿、N,N-二甲基甲酰胺(DMF)、水合肼、无水三氯化铁均为化学纯试剂,天津江天统一科技有限公司产品.实验仪器包括:UV-3310型紫外可见分光光度计,日本日立公司产品;F-4500型荧光分光光度光谱仪,天津兰立科电子有限公司产品;FL3-212-TCSPC荧光分光光度计,法国Jobin Yvon公司产品.1.2 3种聚噻吩衍生物的合成方法聚3-己基噻吩的合成:氮气保护下,向干燥四口瓶中加无水三氯化铁7 g和经干燥处理的氯仿15 mL,搅拌10 min后冰浴降温,0~5℃下滴加1.68 g 3-己基噻吩与10 mL氯仿的混合液,滴毕冰浴下反应6 h后,于室温下继续反应24 h.抽滤,水洗滤饼至滤液无色,干燥得到墨绿色片状固体1.56 g,收率94.2%.采用类似方法合成得到:聚3-甲基噻吩黑色粉末,收率75%;3-甲基噻吩与噻吩共聚物褐色粉末,收率78%.1.3 性能测试与表征(1)紫外可见吸收光谱分析:根据3种聚合物在不同溶剂中的溶解性好坏,在室温下将样品溶解于DMF中进行测试,光区测量范围在280~700 nm之间.(2)荧光光谱分析:同浓度下将3种聚合物的DMF溶液置于石英皿当中,以聚合物最大紫外-可见吸收波长为激发波长对聚合物进行光激发,得到相应的荧光发射谱图.(3)光致发光光谱分析:采用FL3-212-TCSPC型荧光分光光度计对3种固体聚合物光致发光性能进行检测.首先对材料进行激发谱图的扫描,从中选取最强激发峰作为固定激发波长,在400~750 nm之间对材料进行荧光发射图谱的检测,从而得到聚合物的光致发光图谱.(4)循环伏安曲线测定:采用三电极体系(玻碳电极为工作电极,Ag/AgCl电极为参比电极,铂片为对电极)测定3种聚合物的循环伏安曲线.电解质溶液为0.1 mol/L的四丁基高氯酸铵(TBAP)氯仿溶液,二茂铁为内标.2 结果与讨论2.1 聚合物光谱分析2.1.1 紫外-可见吸收光谱分析以DMF为溶剂测定3种聚合物的紫外-可见吸收光谱,如图1所示.由图1可以看出,3-甲基噻吩与噻吩共聚物(聚合物A)在315、363 nm处有吸收峰,分别归属于噻吩环的π→π*电子跃迁以及整个聚合物中共轭链的π→π*电子跃迁.聚3-甲基噻吩(聚合物B)和聚3-己基噻吩(聚合物C)分别在379 nm和435 nm处有吸收峰,归属于聚合物中共轭链的π→π*电子跃迁.对比3种聚合物的紫外-可见吸收光谱可知,聚3-己基噻吩λmax高于其他2个聚合物的λmax.其原因可能是由于噻吩环3-位长链烷基的引入,在提高聚合物溶解性的同时使得聚合物分子质量增大,共轭链增长,λmax增大[8].2.1.2 带隙分析带隙又称为禁带宽度,带隙Eg与波长λg之间的关系为λg(nm)=1240/Eoptg (eV),λg取聚合物紫外-可见吸收峰的起始点.聚合物A的DMF溶液的λg为431 nm,计算得光学带隙Eg为2.87 eV.聚合物B的DMF溶液的λg为525 nm,计算得光学带隙Eg为2.36 eV.聚合物C的DMF溶液的λg为542 nm,光学带隙Eg为2.28 eV.3种聚合物的带隙大小顺序为:C<B<A.聚合物C的带隙低于聚合物A 0.59 eV,低于聚合物B 0.08 eV,具有较低的光学带隙.由此可知,噻吩环上3位烷基取代碳链的引入和增长使得聚合物的光学带隙降低.2.1.3 荧光光谱分析同浓度下对3种聚合物的DMF溶液进行荧光光谱的测定,结果如图2所示.由图2可知,当激发波长为360 nm时,聚合物A在470~580 nm之间出现较宽荧光发射,强度较小,荧光发射波长最大为518 nm.当激发波长为377 nm激发时,聚合物B在450~620 nm之间出现较宽较强荧光发射,荧光发射波长最大为512 nm.当激发波长为435 nm时,聚合物C在500~650 nm之间出现较宽且很强的荧光发射,荧光发射波长最大为562 nm.其中聚3-己基噻吩的荧光性均高于其他2种聚合物,进一步表明随着3位长链烷基的引入,有效提高了聚合物共轭链的长度,提高了聚合物的荧光强度,荧光发射波长增大.2.1.4 光致发光光谱3种聚合物固体的光致发光光谱如图3所示.由图3可以看出,激发波长为416 nm时,聚合物A荧光发射峰为493 nm;激发波长为377 nm时,聚合物B荧光发射峰为490 nm;激发波长为435 nm时,聚合物C荧光发射峰为505 nm.说明3种聚噻吩化合物都有较强的荧光特性,且荧光发射范围相差不大,都在490~500 nm之间出现最强荧光发射峰.2.2 聚合物电化学分析3种聚合物的循环伏安曲线如图4所示.聚合物电离能Ip和电子亲合能Ea是由聚合物的起始氧化还原电位确定的.聚合物氧化峰的起始电位对应于HOMO轨道能级,还原峰的起始电位对应于LUMO轨道能级,两者分别对应电离能Ip和电子亲合能Ea[9].经二茂铁标定后的轨道能量计算式如式(1)及式(2)所示[10].起始氧化电位和起始还原电位由图4确定,计算得3种聚合物的电化学性质如表1所示.表1 3种聚合物的电化学性质Tab.1 Electrochemical properties of three polymerseV由表1可见,3种聚合物A、B、C的电化学带隙分别为2.31、2.14和1.91 eV,均略低于相应的光学带隙,大小次序与光学带隙大小次序一致.3 结论通过化学氧化法合成得到3种聚噻吩衍生物:3-甲基噻吩与噻吩共聚物、聚3-甲基噻吩、聚3-己基噻吩,并测定了3种聚合物的紫外-可见吸收光谱、荧光光谱、光致发光光谱以及循环伏安曲线,进一步计算得到聚合物光学带隙、电化学带隙、HOMO轨道和LUMO轨道能量及聚合物电离能Ip和电子亲合能Ea.聚3-己基噻吩相较其它2种聚合物具有更大的λmax及更低的带隙,表明噻吩环3位引入长链取代烷基有利于提高聚合物共轭链长度,从而提高λmax及降低带隙.参考文献:【相关文献】[1]王芸,肖立新,陈志坚,等.电化学合成聚噻吩薄膜提高光伏电池的开路电压[J].光谱学与光谱分析,2011,31(1):7-11.[2]LEE S M,LEE S B,KIM K H,et al.Syntheses and photovoltaic properties of polymeric sensitizers using thiophenebased copolymer derivatives for dye-sensitized solarcells[J].Solar Energy Materials&Solar Cells,2011,95:306-309.[3]DAI Q,LIU W M ,ZENG L T,et al.Aggregation-induced emission enhancement materials with large red shifts and their self-assembled crystal microstructures[J].Cryst Eng Comm,2011,13:4617-4624.[4]FOITZIK R C,KAYNAK A,BECKMANN J,et al.Soluble poly-3-poly-3-alkylpyrrole polymers on films and fabrics[J].Synthetic Metals,2005,155:185-190.[5]VANGENEUGDN D L,STAES E,NAGELS L J,et al.Chemical sensors based on a new low band gap materials[J].Synthetic Metals,1999,102:1332.[6]KUMAR D,SHARMA R C.Advance in conductive polymers[J].Eur Polym J,1998,34(8):1053-1060.[7]KAWANO K,SAKAI J,YAHIRO M,et al.Effect of solvent on fabrication of active layers in organic solar cells based on poly (3-hexylthiophene)and fullerenederivatives[J].Solar Energy Materials and Solar Cells,2009,93(4):514-518.[8]李晓丽.聚3-甲基噻吩的合成及其电致变色性能的研究[J].绿色科技,2011(1):153-155.[9]王雪梅,石晨,肖英勃,等.3-烷基噻吩交替共聚物的合成及其电化学性质[J].应用化学,2009,26(6):707-710.[10]RANJITH K,SWATHI S K,KUMAR P,et al.Dithienylcy-clopentadienone derivative-co-benzothiadiazole:An alternating copolymer for organic photovoltaics[J].Solar Energy Materials&Solar Cells,2012,98:448-454.。
噻吩衍生物
第一篇:噻吩衍生物的合成及应用
噻吩衍生物是一类具有重要生物活性和广泛应用价值的
有机分子,其合成方法和应用领域在过去几十年得到了广泛的研究和开发。
本篇将介绍噻吩衍生物的合成方法和应用领域。
一、噻吩衍生物的合成方法
1. 传统的合成方法
噻吩衍生物的传统合成方法主要包括两步法和多步法。
其中两步法是指先合成羰基化合物,然后和硫加成得到噻吩衍生物;多步法则是指先将苯并噻吩或硫代苯并噻吩进行修饰,然后得到所需要的噻吩衍生物。
2. 新型的合成方法
随着有机合成化学的发展,越来越多的新型的合成方法
应用于噻吩衍生物的合成中。
例如,Suzuki-Miyaura交叉偶
联反应、C-H键官能团化反应、金属有机催化反应等。
二、噻吩衍生物的应用领域
1. 生物医药领域
噻吩衍生物具有重要的生物活性,可应用于药物合成和
医疗领域。
例如,曲剪菌素A、马来酸青霉素、异硫氰酸伐昔
洛韦等都是以噻吩衍生物为基础合成的药物。
2. 光电子领域
噻吩衍生物在光电子领域具有广泛的应用价值。
它们可
以用作金属配合物、感光剂、 OLED等,可以应用于LED屏幕、太阳能电池等。
3. 化学传感领域
噻吩衍生物还可以应用于化学传感领域。
例如,噻吩衍生物可以和一些金属离子发生配位反应,得到颜色变化,从而可以作为金属离子的检测试剂。
总之,噻吩衍生物在生物医药、光电子和化学传感等领域均有着广泛的应用前景。
未来,随着更多新型的噻吩衍生物的合成方法的开发,其应用领域还将会不断地扩展。
季铵盐型聚噻吩衍生物的合成、表征及其光电性能研究炊萍;陈卫星;金洗郎;马爱洁;朱生勃【摘要】为了使聚噻吩衍生物可以溶解在乙醇/水中,实现其水溶性.通过酯化反应合成了6-氯己基噻吩-3-羧酸酯,6-氯己基噻吩-3-羧酸酯与三乙胺反应合成3-噻吩-乙酰基-氧己基-三乙基氯化铵;采用Fe(Ⅲ)对3-噻吩-乙酰基-氧己基-三乙基氯化铵进行催化聚合,得到聚噻吩衍生物聚(3-噻吩-乙酰基-氧己基-三乙基氯化铵).采用傅里叶红外光谱仪对合成的中间单体及聚合物结构进行表征,使用凝胶渗透色谱对合成的聚合物的分子及分子量分布进行测试;通过紫外-可见分光光度计测定了目标聚合物的带边吸收波长.将目标聚合物与石墨烯的乙醇/水溶液,采用旋涂法制备出太阳能电池器件,并对其输出特性进行测试.研究结果表明:将聚(3-噻吩-乙酰基-氧己基-三乙基氯化铵)与石墨烯的复合物作为活化层制备的太阳能电池器件,光照条件下测试,开路电压为0.5659 V,短路电流为0.1624 A,能量转换效率为3.75×10-2%.在暗箱中测试,开路电压为4×10-4 V,短路电流为4.88 mA,能量转化效率为5.5×10-3%.自然光照下,其能量转换效率是暗箱中的6.8倍,说明聚噻吩衍生物具有光伏性能,但该器件能量转换效率较低.%In order to make the polythiophene derivativesare dissolved in ethanol/water to achieve its solubility in water.The 6-chlorine hexyl thiophene-3-carboxylic ester (M-1 ) was synthesized by esterification reaction,and the 3-thiophene-acetyl-oxygen hexyl-triethyl ammonium chloride (M-2)was prepared by 6-chlorine hexyl thiophene-3-carboxylic ester and triethylamine.Polythiophene derivatives Poly (3-thiophene-acetyl-oxygen hexyl-triethyl ammonium chloride)(P-1 )was synthesized by Fe(Ⅲ) catalytic polymerization.Their molecul ar structureswere characterized by FT IR.Molecular weight and its distribution were measured by gel permeation chromatograph,and the edge absorption wavelength of poly (3-thiophene-acetyl-oxygen hexyl-triethyl ammonium chloride ) were measured by UV-vis absorption spectrum.Polymer and graphene were dissolved in the mixture of ethanol/water.The spin coating was used to prepare the poly (3-thiophene-acetyl-oxygen hexyl-triethyl ammonium chloride)/graphene film,whose output characteristics were tested,for the preparation of solar cell devices.The film of poly (3-thiophene-acetyl-oxygen hexyl-triethyl ammonium chloride)/graphene was used as activation layer of solar cell device,under the darkness condition,the photoelectric energy conversion efficiency of this film is 5.5 × 10-3%,the short-circuit current is 4.88 mA.But under the lightness condition,its photoelectric energy conversion efficiency is 3.75×10-2%,and the short-circuit current is 0.162 4 A. Compared with that of under the darkness condition,the photoelectric energy conversion efficiency is 6 .8 times higher.The polythiophene derivatives have photovoltaic properties,but the photoelectric conversion efficiency is low.【期刊名称】《西安工业大学学报》【年(卷),期】2016(036)005【总页数】7页(P365-370,376)【关键词】季铵盐聚噻吩衍生物;太阳能电池;光伏性;溶解性【作者】炊萍;陈卫星;金洗郎;马爱洁;朱生勃【作者单位】西安工业大学材料与化工学院,西安 710021;西安工业大学材料与化工学院,西安 710021;西安工业大学材料与化工学院,西安 710021;西安工业大学材料与化工学院,西安 710021;西安工业大学材料与化工学院,西安710021【正文语种】中文【中图分类】O633.3聚噻吩(PTh)衍生物以其优异的光电性能成为了人们研究的热点.在理论研究上,聚噻吩被当成研究非简并态导电高分子迁移的模型化合物[1].聚噻吩类衍生物是一类应用广泛的有机光电材料[2-5].目前,聚噻吩不溶于任何溶剂,所以通过在β-位上引入取代基合成聚噻吩衍生物,一方面可以提高聚噻吩的溶解性,让它可以溶解在有机溶剂中,另一方面使其光电性能易于控制,有益于光伏器件的制备.传统的聚噻吩衍生物只能溶于有机溶剂,但是大部分有机溶剂具有一定的毒性,限制了其应用.水溶性的聚噻吩衍生物由于是以乙醇/水为溶剂,所以制备器件更方便、环保.水溶性聚噻吩衍射物是人们目前重点研究的一种共轭聚电解质.研究者在聚噻吩类共轭聚合物侧上接入亲水基团,文献[6]通过对其侧链上进行季铵化可以使聚噻吩衍生物兼具水溶性和共轭聚合物的光电性能,力图使共轭聚电解质的应用从有机相扩展到水相中.打破了噻吩聚合物只能在有机溶剂中进行研究这一局限,使得它在新一代的光、电器件和生物传感器的研究上受到越来越多的关注.水溶性聚噻吩衍生物与生物有很好的相容性,可以作为荧光探针用于生物传感领域.文献[7]合成水溶性聚噻吩衍生物,它的构象对外界刺激非常敏感,响应迅速,对待测物具有比色与荧光双重响应性,可以实现对目标检测物的可视化和荧光双模式的检测.目前,水溶性聚噻吩用于生物研究领域较多,而用于光伏太阳能电池研究较少.但是目前研究最多的都是含有溴原子的噻吩类衍生物,还没有含有氯原子的季铵盐类水溶性聚噻吩衍生物的研究.本研究拟通过在噻吩环上引入易溶于水的季铵盐基团,以改变噻吩衍生物的水溶性,并初步探索改性后的水溶性聚噻吩衍生物的光电性能.3-噻吩乙酸(成都贝斯特试剂有限公司),6-氯-1-己醇(萨恩化学技术有限公司),二环己基碳二亚胺(DCC)(萨恩化学技术有限公司),四氢呋喃(天津市红岩试有限公司),二氯甲烷(天津市天力化学试剂有限公司),三乙胺(萨恩化学技术有限公司),乙腈(天津市科密欧化学试剂有限公司),石油醚(天津市天力化学试剂有限公司),氯仿(天津市富宇精细化工有限公司),三氯化铁(国药集团化学试剂有限公司),PEDOT:PSS(成都艾科达化学试剂有限公司).集热式恒温加热磁力搅拌器(巩义市裕华仪器有限责任公司),真空干燥箱(天津市泰斯特仪器有限公司),低温恒温反应浴(郑州杜甫仪器厂),电子天平(上海光正医疗仪器有限公司),电热鼓风干燥箱(天津市泰斯特仪器有限公司),傅里叶变换红外光谱仪(美国Nicoler公司NEXUS型),紫外-可见分光光度计(日本岛津公司SHIMADIR-UV-2550),高效液相/凝胶色谱仪(美国Waters公司Breeze系列),数控超声波清洗器(昆山市超声仪器有限公司),循环水式真空泵(遵义市子华仪器有限责任公司).将1.42 g(10 mmol) 3-噻吩乙酸和1.38 g(10 mmol) 6-氯-1-己醇,加入三口烧瓶,量取50 mL四氯吷喃(THF)使固体溶解后,加入2.47g (12 mmol) DCC到烧瓶中.抽真空使体系处于无氧条件,氮气保护,在70 ℃条件下,回流反应20 h,抽滤,取滤液,减压蒸除溶剂,浓缩物柱层析分离提纯产物,得到6-氯己基噻吩-3-羧酸酯(M-1),产率为41.23%.M-1的合成路线如图1所示.在氮气保护下,在干净的三口烧瓶中加入 50 mL乙腈,0.26 g M-1和 0.1 g三乙胺,控制温度80 ℃下搅拌反应 48 h.反应结束后除去乙腈和三乙胺,得到粘稠液体,过柱提纯,得到3-噻吩-乙酰基-氧己基-三乙基氯化铵(M-2) 0.043 6 g,产率为43.6%.M-2的合成路线如图2所示.称取3 g的三氯化铁加入到三口烧瓶中,抽真空,氮气保护,用注射器加入20mL氯仿到烧瓶中,在0 ℃的冰浴中磁力搅拌1 h,使FeCl3溶于氯仿中,再量取10 mL氯仿加入烧杯中,将0.3 g M-2加入到烧杯中让其溶解,用注射器将其滴加入烧瓶中,0.5 h内加完,0 ℃下恒温反应24 h,将得到的聚合物过硅胶柱提纯,得到聚(3-噻吩-乙酰基-氧己基-三乙基氯化铵)(P-1) 0.08 g,产率为26.67%.P-1的合成路线如图3所示.采用傅里叶变换红外光谱仪对合成的中间单体及聚合物进行了结构的测定和分析,在测试过程中,采用溴化钾压片法,将KBr粉末在85 ℃下真空干燥24 h,将掺杂了样品的溴化钾用压片机压成约1.5 mm厚的薄片,在4 500~400 cm-1范围内进行测定.采用美国Waters公司Waters-Breeze 高效液相/凝胶色谱仪对合成的聚合物的相对分子量及其分布进行了测定和分析,以四氢呋喃为流动相,在室温条件下测定,流速0.5 mL·min-1采用日本岛津公司SHIMADIR-UV02550型号的紫外分光光度计对合成的聚合物进行测定和分析,测试条件:将聚合物溶解在乙醇-水中,在室温下测定.将ITO导电玻璃(2 cm×2 cm)在超声波清洗器中首先用去离子水清洗,然后依次用乙醇、丙酮、去离子水超声清洗,真空烘干.在ITO玻璃板上旋涂一层PEDOT∶PSS薄膜,待其充分干燥后,再旋涂一层复合物的乙醇/水溶液(石墨烯:P-1=1∶1),在氮气流下干燥后,利用高真空多功能磁控溅射仪在聚合物薄膜的一端溅射一层Au层作为负极,ITO作为光伏电池正极,得到器件的结构为ITO/ PEDOT∶PSS/ polymer/ Au,采用安捷伦4155C型半导体参数分析仪进行电流-电压性能测试.采用采用美国 FEI 公司quanta 400 场发射扫描电镜对活性层进行扫描,观察其表面形貌.如图4所示是3-噻吩乙酸,6-氯-1-己醇,M-1的红外谱图,从图4中可以看出3 452 cm-1归属于O-H的伸缩振动峰,可能是有水存在;在2 927 cm-1处有明显的特征吸收峰,是—CH2—中C—H的伸缩振动峰;1 637 cm-1、1 689 cm-1处分别是M-1、3-噻吩乙酸中C=O的特征吸收峰,可见酯基的波数发生了红移;1 454 cm-1是C—H的面内弯曲振动;1 105 cm-1的特征吸收峰归属于噻吩环上C—S的伸缩振动,从红外光谱分析可以证明所合成的为目标产物.如图5所示是M-1,M-2的红外谱图,从图5中可以看出3 435 cm-1归属于O—H的伸缩振动峰,可能是有水存在.在2 928 cm-1处有明显的特征吸收峰,是—CH2—中C—H的伸缩振动峰;在2 358 cm-1处有明显的吸收峰,归属于季铵盐中C—N的伸缩振动峰;1 630 cm-1、1 610 cm-1处分别是M-1、M-2乙酸中C=O的特征吸收峰;1 457 cm-1、1 395 cm-1是C—H的面内弯曲振动;在1 099 cm-1、1 135 cm-1处出现明显的特征吸收峰,归属于噻吩环上M-1和M-2上C-S的伸缩振动.从红外图谱分析中,可以初步说明生成的物质为所要制备的单体M-2.将M-2通过化学氧化法聚合后,得到产物P-1,其红外吸收光谱如图6所示.由图6可得,3 545 cm-1处为O—H的伸缩振动峰,可能样品中含有少量水分;2 360 cm-1处为季铵盐中C-N的伸缩振动峰,1 589 cm-1、1 630 cm-1处为M-2和聚合物-C=O的特征峰;1 127 cm-1、1 135 cm-1处为两种物质中C-S的伸缩振动峰.从红外光谱分析中可以证明所合成的化合物是聚噻吩衍生物P-1.为确定目标聚合物P-1的分子量及分子量分布,采用凝胶渗透色谱(Gel Permeation Chromatography,GPC)测定了这些参数,其流出曲线如图7所示.以THF为溶剂,流速为0.5 mL·min-1.可以看出该聚合物分子量呈多分布,图中出现多重峰,表明物质的分子量呈多分布.经分析软件计算,由测试结果可知,该聚合物的数均分子量n为w为4 257,分子量分布为1.34.P-1的聚合度约为9.6,其聚合度很低,其主要原因是侧链上的烷基链太长,空间位阻大,聚合过程中空间位阻效应影响了链的增长,另一个原因是该物质是混合物,一些小分子的存在也影响了链的增长.如图8所示为P-1的紫外-可见光(UV-Vis)吸收光谱图,从图8可以看出聚合物溶液的最大吸收波长为361 nm,带边吸收波长为550 nm,说明在可见光区域有吸收,只是吸收的波长范围比较窄.由经验公式=1 240/λedg(eV)计算得到其光学能隙为3.435 eV,可以说明聚合物具有π-π*电子跃迁性能力,但由于聚合物的侧链比较长,分子间的空间位阻比较明显.将聚合物P-1与还原态石墨烯复合物薄膜作为电池活性层,制备BHJ构型来进行光电性能测试.图9是石墨烯和P-1混合物薄膜的电流-电压曲线,聚合物薄膜的活化面积为0.24 cm2.为了得到复合物薄膜在不同光照下的能量转换效率,所以采用两种不同光照条件下来进行测试.一种是在正常光照条件下的测试,另一种是在黑暗箱情况下进行测试,两种不同光照下得到不同的曲线,由曲线我们可以计算得到不同的开路电压、不同的短路电流,由此可以得出两种情况下的能量转换效率.石墨烯/P-1在光照条件下测试,开路电压为0.565 9 V,短路电流为0.162 4 A,能量转换效率为3.75×10-2%.在暗箱中测试,开路电压为4×10-4 V,短路电流为4.88 mA,能量转换效率为5.5×10-3%.自然光照下,能量转换效率是暗箱中的6.8倍,这说明聚合物薄膜具有光电转化性能,但该器件能量转换效率较低.为进一步研究石墨烯/P-1薄膜的结构与其光电性能的关系,采用扫描电子显微镜(Scanning Electron Microscope,SEM)观察薄膜表面形貌,以了解其对薄膜光电性能的影响.SEM照片如图10所示.从图10可以看出,图10(a)薄膜整体表面比较平整;图10(b)中P-1薄膜表面出现了聚合物团聚现象,这是由于制备薄膜时聚合物分散不好,形成了团聚的现象;从图10(c)中可以看出,在加入石墨烯以后,聚合物不再发生团聚,但有空隙出现.这是由于聚合物P-1是以溶液形式旋涂在ITO玻璃上的,这是由于以乙醇/水为溶剂,在旋涂时,由于乙醇容易挥发,造成溶剂挥发快,出现了团聚和裂纹,由于裂纹的存在,阻碍了空穴和电子传输,这就是图9所得到的能量转化率低的原因.在图10(c)中可以看到有白色物质存在,将这些白色物质放大,如图10(d)中所示,可以看出这些白色物质应该是层状结构的石墨烯. 实验以6-氯-1-己醇,3-噻吩乙酸,三乙胺为单体,合成水溶性聚噻吩衍生物,并对其结构及性能进行表征,得到以下结论:1) 用傅里叶红外光谱图对制备的中间单体及聚合物结构进行了表征,证实了所合成的单体M-2和聚合物P-1为所需要的物质;2) GPC结果显示所得到聚合物的n为w为4 257,分子量分布为1.34,聚合物的聚合度为9.6,聚合度低;3) 聚合物的最大吸收波长为361 nm,最大吸收限为550 nm,能带间隙为3.435 eV;吸收波长在可见光区域,属于半导体材料,可以用于光伏材料.4) 以石墨烯/P-1的复合物作为活化层制备的太阳电池器件在自然光照下能量转换效率是暗箱中的6.8倍,说明石墨烯/P-1薄膜具有光电转化性能,但是能量转化效率率较低.[3] BUGA K,POKROP R,MAJKOWSKA A,et al.Alternate Copolymers of Head to Head Coupled Dialkylbithiophenes and Oligoanline Substituted Thiophenes: Preparation,Electro-chemical and Spectroelectrochemical Properties[J].Journal of Materials Chemistry,2006,16(22):2150.HONG Ruibin.Synthesis and Application of Water-soluble Polythiophene Derivatives[D].Guangzhou:South China University of Technology,2012. (in Chinese)CHENG Dandan.Synthesis of Water-soluble Polythiophene Derivatives andStudy on Their Sensing Property[D].Tianjin:Tianjin University of Technology,2015.(in Chinese)。
聚噻吩类导电聚合物的研究进展姓名:丁泽班级:材化12-3学号:1209020302摘要π-共轭聚合物被认为是很有发展前景的材料,因为它拥有独特的光电特性,可以被广泛的应用于太阳能电池(PSCs),电致变色器件,传感器,聚合物发光二极管(PLEDs)等各种领域。
这些电活性与光活性聚合物通常是基于噻吩,吡咯,苯,芴或咔唑等芳环、芳杂环等单元的聚合物。
在大量的电致变色材料中,噻吩类聚合物由于它们的高电子导电性和好的氧化还原特性,以及在可见与红外区域,快的响应时间,显著地稳定性和高的对比率而成为一类重要的电致变色共轭聚合物。
更重要的是,通过聚合物链结构改动,噻吩类聚合物拥有容易的禁带可调性,可展示不同的电致变色特性。
关键词:π-共轭聚合物;电化学聚合;共聚;导电聚合物;一、导电聚合物简介1.1导电聚合物的分类导电高分子材料包括结构型导电高分子材料和复合型导电高分子材料两大类型。
复合型导电高分子材料是将各种导电性物质以不同的方式和加工工艺(如分散聚合、层积复合、形成表面电膜等)填充到聚合物基体中而构成的。
该类材料通常是填充高效导电粒子或导电纤维,较普及的是炭黑填充型和金属填充型。
复合型导电高分子材料在技术上比结构型导电高分子材料具有更加成熟的优势。
结构型(又称作本征型)导电聚合物是指聚合物本身具有导电性或经掺杂处理后具有导电性的聚合物材料。
这种高分子材料本身具有“固有”的导电性,由其结构提供载流子,一经掺杂,电导率可大幅度提高,甚至可达到金属的导电水平。
如聚乙炔、聚吡咯、聚苯胺、聚噻吩、聚苯硫醚、聚对苯撑等均属于结构型导电高分子材料(如图1-1)[1]。
结构型导电聚合物是目前导电聚合物研究领域的重点。
图1-1 常见共轭聚合物结构型导电聚合物根据其结构特征和导电机理的不同又可进一步分为:1) 载流子为自由电子的电子导电聚合物;2) 载流子为能在聚合物分子间迁移的正负离子的离子导电聚合物;3) 以氧化还原反应为电子转移机理的氧化还原型导电聚合物。