大学物理非线性振动讲解
- 格式:ppt
- 大小:368.00 KB
- 文档页数:14
非线性振动非线性振动§0.1非线性振动的研究对象在自然界、工程技术、日常生活和社会生活中,普遍存在着物体的往复运动或状态的循环变化。
这类现象称为振荡。
例如大海的波涛起伏、花的日开夜闭、钟摆的摆动、心脏的跳动、经济发展的高涨和萧条等形形色色的现象都具有明显的振荡特性。
振动是一种特殊的振荡,即平衡位置四周微小或有限的振荡。
如声波和超声波、工程技术中的机器和结构物的机械振动、无线电和光学中的电磁振荡等。
从最小的初等粒子到巨大的天体,从简单的摆到复杂的生物体,无处不存在振动现象。
有时人们力图防止或减小振动,有时又力图制造和利用振动。
尽管振动现象的形式多种多样,但有着共同的客观规律和同一的数学表达形式。
因此有可能建立同一的理论来进行研究,即振动力学。
振动力学是力学、声学、无线电电子学、自动控制理论等学科,以及机械、航空、土木、水利等工程学科的理论基础之一。
它应用数学分析、实验量测和数值计算等方法,探讨振动现象的机理和基本规律,为解决与振动有关的实际题目提供理论依据。
根据描述振动的数学模型的不同,振动理论区分为线性振动理论和非线性振动理论。
线性振动理论适用于线性系统,即质量不变、弹性力和阻尼力与运动参数成线性关系的系统,其数学描述为线性常系数常微分方程。
不能简化为线性系统的系统为非线性系统,研究非线性系统的振动理论就是非线性振动理论。
线性振动理论是对振动现象的近似描述,在振幅足够小的大多数情况下,线性振动理论可以足够正确地反映振动的客观规律。
频率、振幅、相位、激励、响应、模态等都是在线性理论中建立起来的基本概念。
实际机械系统中广泛存在着各种非线性因素,如电场力、磁场力、万有引力等作用力非线性,法向加速度、哥氏加速度等运动学非线性,非线性本构关系等材料非线性,弹性大变形等几何非线性等。
因此工程实际中的振动系统尽大多数都是非线性系统。
由于非线性微分方程尚无普遍有效的精确求解方法,而线性常微分方程的数学理论已十分完善,因此将非线性系统以线性系统代替是工程中常用的有效方法,但仅限于一定的范围。
非线性振动理论与现象研究振动是物理学中一种重要的现象,广泛存在于自然界和人类生活中的各个领域。
传统的振动理论主要研究线性振动,即振动系统的运动方程是线性的。
然而,在实际应用中,很多振动系统往往具有非线性特征,这就需要非线性振动理论的研究。
非线性振动理论是研究非线性振动系统的运动规律和性质的学科。
与线性振动不同,非线性振动系统的运动方程中包含非线性项,使得系统的运动变得更加复杂和多样化。
非线性振动理论的研究对于理解和预测各种非线性振动现象具有重要意义。
非线性振动系统的一个典型例子是简谐振子。
在线性振动中,简谐振子的运动是以正弦曲线为基础的,而在非线性振动中,简谐振子的运动则可能呈现出更加复杂的现象,如周期倍增、混沌等。
这些非线性现象的出现使得振动系统的行为变得难以预测,也为非线性振动理论的研究提供了丰富的实例。
非线性振动理论的研究方法主要包括解析方法和数值方法。
解析方法是通过数学分析和近似计算来研究非线性振动系统的运动规律和稳定性。
数值方法则是通过计算机模拟和数值计算来研究非线性振动系统的运动特性。
这两种方法相辅相成,为非线性振动理论的研究提供了有效的工具和手段。
非线性振动理论的研究成果在许多领域都得到了广泛的应用。
例如,在机械工程中,非线性振动理论的研究可以帮助设计更加稳定和可靠的机械系统。
在电力系统中,非线性振动理论的研究可以帮助解决电力设备的振动问题,提高电力系统的运行效率。
在材料科学中,非线性振动理论的研究可以帮助理解材料的疲劳和断裂行为,提高材料的性能和寿命。
尽管非线性振动理论在许多领域都取得了重要的进展,但仍然存在许多待解决的问题和挑战。
例如,如何系统地研究非线性振动系统的稳定性和混沌现象,如何开发更加高效和准确的数值方法来模拟非线性振动系统的运动行为等。
这些问题的解决需要不断地深入研究和创新,推动非线性振动理论的发展。
总之,非线性振动理论是研究非线性振动系统的运动规律和性质的学科,具有重要的理论和应用价值。
非线性振动现象的分析与控制引言:振动是物体在受到外界力的作用下产生的周期性运动。
在很多实际应用中,振动现象是无法避免的。
传统的振动理论常常以线性振动为研究对象,但在实际工程中,由于材料的非线性特性或者复杂的系统结构等因素的影响,一些系统的振动往往表现出非线性特征,这给振动控制带来了挑战。
本文将从非线性振动的基本原理、分析方法和控制策略等方面进行介绍。
1. 非线性振动的基本原理非线性振动的基本原理是指在振动系统中,系统的运动方程中存在非线性项。
非线性项可能来自于系统的非线性弹簧,非线性摩擦力以及非线性扰动等。
这些非线性项会使得系统的运动不再满足叠加原理,产生新的现象。
在非线性振动中,振幅的大小和振动频率之间存在复杂的关系,如倍频现象、相位共振等。
2. 分析非线性振动的方法为了分析非线性振动系统,常常需要采用数值模拟方法。
其中,一种常用的方法是时域分析,即通过求解系统的运动方程,得到系统的时域响应。
另一种方法是频域分析,即通过将时域信号转换到频域,分析系统的频谱特性。
此外,还可以通过相平面分析方法来研究非线性系统的稳定性、受激振动和共振现象等。
3. 非线性振动的控制策略在实际应用中,为了控制非线性振动系统,常常需要采取相应的控制策略。
其中,一种常见的方法是使用非线性控制器,通过引入非线性反馈来补偿系统的非线性特性。
另一种方法是使用自适应控制策略,根据系统的变化实时调整控制参数。
此外,还可以通过参数识别和模型预测控制等方法来实现对非线性振动的控制。
4. 实际应用中的非线性振动现象非线性振动现象在实际应用中普遍存在。
例如在建筑结构中,由于地震或风荷载等外力的作用,结构会发生非线性振动,给结构的安全性和稳定性带来威胁。
在机械系统中,由于轴承的非线性摩擦力或者悬挂系统的非线性特性,机械系统会出现非线性振动,影响其性能和寿命。
因此,对于非线性振动的分析和控制具有重要的理论和实际意义。
结论:非线性振动现象是实际工程中普遍存在的重要问题。
第一章 非线性振动初步第一节 无阻尼单摆的自由振荡1 小角度无阻尼单摆 椭圆点单摆,一个由摆线l 联着的重量为mg 的摆锤所组成的力学系统,是力学教科书中通常都要进行讨论的一个简单的动力学模型。
其实我们将会看到,它具有非常复杂的动力学行为,是一个复杂系统。
我们研究一个理想的单摆,即忽略摆线l 质量,认为整个系统的质量都集中在摆锤上,是一个具有集中参数的数学摆,如图1-1所示。
因为如果把摆线与摆锤的质量一起计算,单摆就是一个具有分布参数的摆,与此相应的数学模型是偏微分方程,处理起来很复杂。
理想单摆的数学表达是常微分方程,研究起来就要容易得多了。
图1-1 数学摆首先忽略一切阻尼,例如忽略摆锤在运动中受到的空气阻力、摆线与悬挂点之间的摩擦力等等。
由牛顿第二运动定律,摆锤质量为m 的单摆的运动方程为:(1-1-1)式中θ为摆角,g 为重力加速度。
将等式右边项移到到左边,并以ml 相除后有:设 ,它是以单位时间的弧度为单位的角频率,则式(1-1-1)可写为:(1-1-2)由于正弦函数是非线性的,因此这是一个二阶非线性微分方程。
用级数展开正弦函数:(1-1-3)如果x 很小,则可以忽略三次以上的高次项,即。
这就是说当单摆的摆角很小时,式(1-1-2)变为线性微分方程:ml d dtmg 22θθ=−sin 0sin 22=+θθl g dt d l g /0=ω0ω0sin 2022=+θωθdt d L +−+−=!7!5!3sin 753x x x x x x x ≈sin(1-1-4)方程(1-1-4)的解可以通过如下的代换解获得:式中λ为常数。
代入方程(1-1-4)并消去因子后得特征方程:(1-1-5)方程(1-1-5)的特征根为:由此得到方程(1-1-4)的通解为:(1-1-6)式中,为复常数。
由于描述单摆振动的应为实函数,所以常数,必须满足条件:于是得条件:,。
将满足这样条件的系数,写成指数形式:, 其中P 为它们的模,为幅角,则(1-1-6)式写成如下形式:(1-1-7)(1-1-7)式是一个振幅为P ,角频率为的简谐振动表示式,表明单摆在摆角很小时的摆动为简谐振荡,其振动波形可以用正弦曲线来表示。
非线性振动研究非线性系统振动的学科非线性振动研究:非线性系统振动的学科非线性振动研究是物理学、工程学和应用数学中一个重要的学科领域。
它涉及到非线性系统中的振动现象,对于理解和分析各种实际问题具有重要意义。
本文将基于该主题,介绍非线性振动研究的基本概念和方法,以及它在各个学科中的应用。
引言振动是自然界中广泛存在的物理现象,从机械振动到电磁振动,都是非常重要的。
然而,在实际问题中,线性系统往往无法完全揭示振动行为。
非线性系统中的振动特性往往更为复杂,涉及到非线性的力学、电磁学和流体力学等多个领域。
因此,非线性振动研究成为了一个独立的学科领域,其目的是研究非线性系统中的振动现象以及相关的动力学行为。
非线性振动的基本概念非线性振动是指系统在受到激励或扰动后,不呈线性关系的振动现象。
与线性振动相比,非线性振动的特点在于其振幅与激励信号之间的关系不再是比例关系。
常见的非线性振动现象包括剧烈摆动、混沌振动以及非周期振荡等。
非线性振动的研究方法研究非线性振动的方法包括理论分析和数值模拟两种主要途径。
1. 理论分析理论分析是非线性振动研究的基础。
常见的理论方法包括广义福克斯-普朗克方程、极限环理论和多尺度分析等。
通过建立系统的数学模型,可以通过解析推导的方式研究其振动行为,得到系统的稳定性条件和振动特性。
2. 数值模拟数值模拟是研究非线性振动的重要手段之一。
借助计算机的计算能力,可以模拟非线性系统的振动行为。
常见的数值方法有有限元法、有限差分法和谱方法等。
这些方法可以通过离散化系统的动力学方程,利用计算机进行数值求解,从而得到系统的振动特性和动态响应。
非线性振动的应用非线性振动研究不仅在学术领域具有重要意义,还在实际工程和科学研究中得到了广泛应用。
1. 结构动力学非线性振动理论在结构动力学中有广泛的应用。
对于高层建筑、大型桥梁和飞机等结构,非线性振动的研究可以更准确地预测其动态响应和受力情况。
这对结构的设计、安全评估和损伤检测具有重要意义。