试井解释典型曲线分析讲解
- 格式:pdf
- 大小:5.31 MB
- 文档页数:38
测井曲线描述与分析(张君学)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(测井曲线描述与分析(张君学))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为测井曲线描述与分析(张君学)的全部内容。
测井曲线的识别与应用一、测井曲线资料应用的意义测井资料在油、气田的勘探与开发中有广泛的的用途,大体可分为在裸眼井中的应用和套管井中的应用,及其它一些专门目的的应用。
在裸眼井中,测井资料主要用于寻找油、气层,并对储集层的孔隙性、渗透性和含油性作出评价,为油、气田的开发决策提供信息;在套管井中,测井资料主要用于开发过程中油、气层的动态分析,为油、气田开发的合理调整提供资料.二、常用的测井曲线的类型常用的测井曲线有:自然电位曲线、自然伽玛测井曲线、微电位测井曲线、微梯度测井曲线、深感应测井曲线、中感应测井曲线、4米电阻测井曲线、声波时差测井曲线、井径测井曲线等。
三、常用测井曲线识别第一节自然电位测井在钻开岩层时,井壁附近产生的电化学活动能形成一电场,该场产生的电位就叫自然电位,其产生的原因是地层水矿化度和泥浆滤液矿化度压力不同,以及泥浆压力与地层压力不同。
在砂泥岩剖面中,自然电位曲线以泥岩为基线,只在砂质渗透性岩层处,才出现自然电位曲线异常,所以我们可以利用它来划分渗透性岩层.纯砂岩井段出现最大的负异常,含泥质的砂岩负异常幅度较低,而且随泥质含量的增多负异常幅度下降。
此外通过自然电位曲线幅度还可判断渗透层孔隙中所含流体的性质,一般含水砂岩的自然电位幅度比含油砂岩的自然电位幅度要高。
自然电位曲线的应用仅限于淡水泥浆钻的井,因为自然电位曲线幅度(偏离泥岩基线的幅度)与地层水含盐量和井中流体含盐量之差有关。
线性复合油气藏试井解释模型及典型曲线分析罗建新;张烈辉;赵玉龙;刘启国【摘要】对于河道沉积环境所形成的条带状油气藏,储层物性的平面分布往往表现出较强的不连续性,呈现出线性组合的特征.在对这类油气藏的压力恢复和压力降落测试数据进行试井解释时,需要考虑其特殊性.根据表皮效应和井筒储集效应,通过建立外边界封闭线性复合油气藏试井解释模型,并结合拉普拉斯变换、有限傅里叶余弦变换以及正交变换法对该模型进行求解.利用Stehfest数值反演算法以及计算机编程技术编制了计算程序,绘制了线性复合油气藏的井底无因次压力典型曲线,并对各个流动阶段以及各种参数对曲线形态的影响进行了分析.该研究丰富了现代试井解释模型,对该类油气藏试井资料的解释具有指导作用.【期刊名称】《长江大学学报(自然版)理工卷》【年(卷),期】2011(008)002【总页数】3页(P65-67)【关键词】线形复合油藏;渗流模型;试井解释;典型曲线【作者】罗建新;张烈辉;赵玉龙;刘启国【作者单位】油气藏地质及开发工程国家重点实验室(西南石油大学),四川成都610500;油气藏地质及开发工程国家重点实验室(西南石油大学),四川成都610500;油气藏地质及开发工程国家重点实验室(西南石油大学),四川成都610500;油气藏地质及开发工程国家重点实验室(西南石油大学),四川成都610500【正文语种】中文【中图分类】TE353贾永禄[1,2]等人建立了均质多重不等厚地层试井分析模型,并对样板曲线进行了分析;向开理[3]、田冷[4]和何维署[5]等对径向复合油气藏进行过研究。
但是针对条带状油藏的不稳定渗流模型的相关研究较少。
为此,笔者建立了线性复合油气藏渗流物理模型,利用数学物理方法,对模型进行了求解,并利用计算机编程技术绘制了该类油气藏的压力典型曲线,并对各个流动阶段以及各种参数对曲线形态的影响进行了分析。
复合矩形油藏示意图如图1所示,其边界均封闭,油藏被分为左右2部分(Ⅰ区和Ⅱ区),其孔隙度和渗透率均不相同,Ⅰ区中任意位(xw,yw)有一口垂直井,以定产量qsc进行生产。
一、SP曲线和GR曲线测井基本原理用淡水泥浆钻井时,由于地层水矿化度小于泥浆滤液矿化度而在砂岩段形成扩散电位——在井眼内砂岩段靠近井壁的地方负电荷富集,地层内砂岩段靠近井壁的地方正电荷富集,导致砂层段井眼泥浆的电势低于砂层电势,正象一个平行于地层且正极指向地层的“电池”(第一个)。
在泥岩段,因为泥浆滤液与地层水之间存在矿化度差及选择性吸附作用形成吸附电位——在井眼内泥岩段靠近井壁的地方正电荷富集,地层中泥岩段负电荷富集,导致泥岩段井眼泥浆的电势高于地层电势,正象一个平行于地层且正极指向井眼的“电池”(第二个)。
又因为泥浆和地层各具导电性,正象两条导线把以上两个“电池”串联了起来而形成回路,这样在地层中电流从砂岩段(第一个电池正极)流向泥岩段(第二个电池负极);在井眼中电流从泥岩段(第二个电池正极)流向砂岩段(第一个电池负极)。
在此回路中,地层也充当电阻的作用,总电动势等于扩散电动势和吸附电动势之和。
用M电极在井眼中测的自然电流在泥浆中产生的电位降即得自然电位曲线。
其值在正常情况下与对应地层中泥质含量关系密切,砂岩中泥质含量增加,则电位降下降,异常幅度减小;砂岩中泥质含量下降,则电位降上升,异常幅度增大。
另外,当泥浆柱与地层流体间存在压力差时发生过滤作用形成过滤电动势——动电学电位。
沉积岩的放射形取决于岩石中放射性元素的含量,放射性元素的含量主要取决于粘土和泥质的含量,粘土和泥质含量越高放射性越强。
GR曲线主要测量地层的放射性。
1、曲线幅度反映沉积时水动力能量的强弱;2、曲线形态反映物源供给的变化和沉积时水动力条件的变化;3、顶、底部形态的变化反映沉积初、末期水动力能量和物源供给的变化速度;4、曲线的光滑程度水动力对沉积物改造所持续时间的长短;5、曲线的齿中线组合方式反映沉积物加积特点;6、曲线包络形态反映在大层段内垂向层序特征和多层砂在沉积过程中能量的变化。
影响自然电位曲线异常幅度的因素:(1)岩性、地层水与泥浆含盐度比值的影响。
1 水平井的流动期及曲线特征水平井试井分析成功的关键是如何确定水平井不同流动期的开是时间和结束时间, 进而根据不同流动阶段来选择适当的方法估算地层参数。
一般水平井压力测试中出现4个流动期。
(1) 早期垂直( 不稳定) 径向流期。
它可分为第一早期径向流动期和第二早期径向流动期。
在关井后的第一个流动期为液体环绕水平井呈圆柱形的径向流动, 也称第一早期径向流动期。
当K z / K r 的比值比较大时这第一径向流动期不明显。
在水平井靠近某一非流动边界时, 在第一径向流动期以后会出现呈半圆柱形的径流动期, 即第二早期径向流动期, 在半对数图上, 这一流动期的半对数直线的斜率是第一流动期的2倍。
早期径向流期的诊断方法与常规直井的径向流诊断方法相同, 但实际情况下, 由于井筒储存效应的影响, 早期垂直径向流期不易见到。
(2) 中期线性流动期。
这一流动期一般发生在水平井段比储层厚度长的情况下。
对于不渗透边界, 一旦不稳定达到了顶底边界, 线性流动期将出现。
这与整个井段流动效应相水平井的两个末端流动效应可以忽略,这种线性流动类似于垂直裂缝的情况, 可用线性流图来诊断。
(3) 中期( 不稳定) 拟径向流动期。
在生产时间足够长以后, 在水平面上环绕水平井段的流动进入一个近似的径向流动期, 即中期拟径向流动期。
这一流动期类似于垂直井的无限作用径向流, 在这个流动期压力传到足够远时, 水平井段就像在地层中部的一个点源。
如果储层的宽度与水平井段长度相比不大, 那么, 这一流动期就难见到(4) 晚期线性流动期。
一般储层的伸展是有限的,并且储层的顶、底也可能不是封闭的, 结果会出现以下的流动期: 一是晚期线性流动期, 如果水平井位于两条不渗透边界所阻挡的长条储层之中, 拟径向流之后可见类似于垂直裂缝中的线性流动期。
这一流动期同样可用线性流图来诊断。
如果储层是无限延伸的, 这一流动期将不会出现。
二是稳定流动期, 如果存在气顶或底水式的定压边界, 中期线性流动期和拟径向流动期将不存在, 代之以稳定流动期。
测井解释曲线形态四、岩石组合及层序的测井解释模型不同沉积环境下形成的地层,在纵向上有不同的岩相组合,在横向上有不同的分布范围及沉积体的几何形态,砂体的内部具有不同的粒度,分选性,泥质含量。
(一)、测井曲线要素及其常规组合测井曲线地质意义1.幅度:分为低幅、中幅、高幅三个等级2.形态①钟形:反映水流能量向上减弱它代表河道的侧向迁移或逐渐废弃。
②漏斗:反映砂体向上部建造时水流能量加强,颗粒变粗分选加好,代表砂体上部受波浪收造影响,此外也代表砂体前积的结果。
③箱形:反映沉积过程中能量一致,物源充足的供应条件,是河道沙坝的曲线特征④对称齿形:常见的一种曲线形态,它多以充刷、充填作用为主,具有正粒序。
⑤反向齿形:常见的一种曲线形态,河水道末稍前积式充填为主具有反粒序。
⑥正向齿形:为充填堆积特征,常代表洪水作用下的堆积具有对称粒序。
⑦指形:代表强能量下的中层粗粒堆积,如海滩、湖滩⑧漏斗-箱形:代表丰富物源供应下的水下沙体堆积,为河口堆积的典型特征。
⑨箱形-钟形:环境为有丰富的物源,但后期由于河道迁移或废弃导致能量衰减,具有河道的均质沉积,到后期正向粒度的沉积。
⑩上为漏斗-箱形,下为漏斗-钟形:代表河道在迁移摆动条件下,有丰富物源供应的水道充填式堆积。
⑧、⑨、⑩统称为复合形,表示由两种或两种以上曲线形态组合,表示一种水动力环境向另一种环境的变化。
各类形态又可进一步细分为光滑形和锯齿形。
3.接触关系顶底接触关系反映砂体沉积初期、末期水动力能量及物源供应的变化速度,有渐变和突变两种,渐变又分为加速、线性和减速三种,反映曲线形态上的凸型、直线和凹型。
突变往往表示冲刷(底部突变)或物源的中断(顶部突变)。
单砂层顶部突变,反映了砂体沉积末期水动力、物源供应条件。
顶部突变代表物源供应的突然中断,顶部加速渐变代表水流能量在后期急刷减退或物源供应减少,多与河道末期沉积有关,顶部匀均渐变呈斜线形代表均匀的能量减退的过程。
为河道侧向迁移的典型特征,顶部减速渐变代表能量或物质供应在后期缓速消退,水下河道常具有这种特点,代表后续水流滞后沉积。
测井曲线解释1.声波时差曲线:在泥砂岩剖面上,砂岩显示低时差,其数值随孔隙度的不同而不同;泥岩一般为高时差,其数值随压实程度的不同而变化;页岩的时差介于泥岩和砂岩之间;砾岩的时差一般都较低,并且越致密声波时差值越低.在碳酸盐剖面上,致密石灰岩和白云岩声波时差最低,如含有泥质时,声波时差增高,若有孔隙和裂缝,声波时差明显增大,甚至出现周波跳跃.石膏岩盐剖面,渗透性砂岩最高?,泥岩(含钙质、石膏多)与致密砂岩相近,泥质含量高时增大,岩盐扩径(井直径)严重,周波跳跃?气体比油水的时差要大的多,岩性一定时候,含气层段出现周波跳跃。
2.自然Gamma曲线:在泥砂岩剖面上,纯砂岩在自然Gamma 曲线上显最底值,泥岩显最高值,粉砂岩和泥质砂岩介于二者之间,并随着岩层中泥质含量增加曲线幅度增加;在碳酸盐剖面上,泥岩和页岩显最高值,纯的石灰岩、白云岩有最低值,而泥灰岩、泥质石灰岩、泥质白云岩自然Gamma测井曲线值介于二者之间,并随泥质含量增加幅值增大.3.微电极测井曲线中砂岩异常幅度差大于粉沙岩异常幅度差.4.泥岩在密度测井曲线上值较高而煤层密度测井值在剖面上看很低5.在淡水泥浆的沙泥岩剖面井中,自然电位测井曲线以大断泥岩层部分的自然电位曲线为基线,此时出现负异常的井段都可认为是渗透性岩层。
在含有泥质的砂岩中由于泥质对溶液产生吸附电动势使总电动势降低。
所以纯砂岩的自然电位异常幅度要比泥质岩石的异常幅度大,而且随着砂岩中泥质含量的增加,自然电位异常幅度会随之减小自然电位与自然伽马对砂岩泥岩都很敏感,但是自然电位容易受到流体性质、岩层厚度的影响,含油气或者薄层时,幅度很低。
粉砂和泥的比值大于1:2,幅度趋于0.自然伽马虽然也受到层厚影响,层厚小于0.8米时才开始显现影响。
以上为一般情况(正常压实),如果欠压实,情况相反,砂岩出现高时差,如渤海湾明化镇组所以具体地区具体问题具体分析(要根据岩心资料建立具体解释模型)6.感应测井为了获取井下地层的原始含油饱和度资料,用油基钻井液钻井;为了不破坏井下地层的渗透率,有时采用空气钻井;这时井中没有导电介质,不能传导电流,为了解决这个问题,发明了感应测井。