最新墙体抗剪承载力计算公式在砌体结构设计中的应用
- 格式:doc
- 大小:25.00 KB
- 文档页数:11
砌体墙抗剪计算
砌体墙抗剪计算是指在构建实体墙结构时,为了保证墙体的稳定性和承重能力,在设计过程中需要对其抗剪能力进行计算。
抗剪计算主要针对在施工过程中墙体受到扭转和剪切力的情况,以确保墙体的耐久性和安全性。
首先,我们需要了解一下,砌体墙对抗剪力的静力学计算。
墙体高度为h,墙宽为b,墙体长度为L。
设P为墙体上的荷载,τ为抗剪力,θ为摩擦角,则有:
τ=P*sinθ
其中,θ的取值范围为0.5°-2.5°。
根据以上公式,我们可以得到砌体墙的抗剪能力公式:
τ=0.34×f_b×h×L
其中,f_b为砖的抗压强度,h为墙的高度,L为墙的长度。
根据该公式,我们可以计算出砖墙的抗剪能力。
除此以外,砌体墙的抗剪能力还需要考虑墙体的墙体的配筋和开
裂控制。
配筋一般采用钢杆、钢筋、网格等加固材料,在墙体构造中
布置横向或纵向排干,形成钢筋网状结构,提高墙体的抗剪强度。
开裂控制则是通过合理的设计减少居民楼房屋结构中的开裂现象。
开裂控制主要是通过在墙体的底部嵌设置一个伸缩缝或在新墙顶部切
割一条缝,使墙体更好地适应地震、台风、风雨等自然灾害的作用。
总之,砌体墙抗剪计算是设计中不可或缺的一部分,它的正确计
算会直接影响到墙体结构的稳定性和承重能力。
为了保障居民的安全
居住环境,设计人员需要认真选材、设计和施工,确保墙体的抗剪能
力和稳定性。
墙体抗剪承载力计算的应用[摘要] 利用ALGOR FEA计算程序,分析了竖向压应力和水平力共同作用下无筋砖墙的应力。
基于文中提出的平面受力砌体的破坏准则,对墙体裂缝分布进行了描述,并提出了不同高宽比砖墙的水平开裂荷载的计算公式。
最后建立了墙体抗剪承载力计算公式,其计算结果与试验值吻合较好。
所提出的方法可供砌体结构设计和研究参考。
[关键词] 砖墙剪切承载力Abstract:The stress of unreinforced brick wall under vertical compression and horizontal force has been analysed by ALGORFEAcomputer software.The formulas for calculation of horizontal cracking load of brick wall of different ratio ofheight to width have been proposed on the basis of failure criterions of plane-stress masonry.The crack distribution ofwall has been described in detail.In the end,the calculating formula of shear load-bearing capacity of wall has been es-tablished.The calculating results agree well with the experimental data.This method can provide reference for mason-ry structural design and research.Keywords:brick wall;shear;load-bearing capacity混合结构房屋中,墙体除了承担屋(楼)盖传来的竖向压力以及本身的自重外,还承担风、地震引起的水平力。
第一章绪论1.砌体、块体、砂浆这三者之间有何关系?答:由块体和砂浆砌筑而成的墙、柱作为建筑物主要受力构件的结构称为砌体结构。
它是砖砌体、砌块砌体和石砌体结构的统称。
2.哪项措施使砌体结构在地震区的应用得以复兴?答:1950年以来,各工业发达国家对砌体结构进行了研究与改进,块体向高强、多孔、薄壁、大块等方向发展,最重要的是发展了配筋砌体,才使砌体结构能用于地震区,使砌体结构得到了复兴。
3.砌体的基本力学特征是什么?答:抗压强度很高,抗拉强度却很低。
因此,砌体结构构件主要承受轴心压力或小偏心压力,而很少受拉或受弯。
4.砌体结构的优缺点对于其应用有何意义?答:砌体结构的主要优点是:1)容易就地取材。
砖主要用粘土烧制;石材的原料是天然石;砌块可以用工业废料——矿渣制作,来源方便,价格低廉。
2)砖、石或砌块砌体具有良好的耐火性和较好的耐久性。
3)砌体砌筑时,不需要模板和特殊的施工设备。
在寒冷地区,冬季可用冻结法砌筑,不需要特殊的保温措施。
4)砖墙和砌块墙体有良好的隔声、隔热和保温性能。
并有良好的耐火性和耐久性,所以既是较好的承重结构,也是较好的维护结构。
砌体结构的缺点是:1)与钢和混凝土相比,砌体的强度较低,因而构件的截面尺寸较大,材料用量多,自重大。
2)砌体的砌筑基本上是手工方式,施工劳动量大。
3)砌体的抗拉强度和抗剪强度都很低,因而抗震性能较差,在使用上受到一定的限制;砖、石的抗拉强度也不能充分发挥。
4)粘土砖需要用粘土制造,在某些地区过多占用农田,影响农业生产。
5.与其他结构形式相比,砌体结构的发展有何特点?答:相对于其他结构形式,砌体结构的设计理论发展得较晚,还有不少问题有待进一步研究。
随着社会和科学技术的进步,砌体结构也需要不断发展才能适应社会的要求。
砌体结构的发展方向如下:1)使砌体结构适应可持续性发展的要求2)发展高强、轻质、高性能的材料3)采用新技术、新的结构体系和新的设计理论第二章砌体结构的设计原则1.极限状态设计法与破坏阶段设计法、容许应力设计法的主要区别是什么?答:极限状态设计法考虑荷载的不确定性以及材料强度的变异性,将概率论引入结构的设计,可以定量估计所设计结构的可靠水平。
墙体抗剪承载力计算公式在砌体结构设计中的应用墙体抗剪承载力计算公式在砌体结构设计中的应用[提要] 利用ALGOR FEA计算程序,分析了竖向压应力和水平力共同作用下无筋砖墙的应力。
基于文中提出的平面受力砌体的破坏准则,对墙体裂缝分布进行了描述,并提出了不同高宽比砖墙的水平开裂荷载的计算公式。
最后建立了墙体抗剪承载力计算公式,其计算结果与试验值吻合较好。
所提出的方法可供砌体结构设计和研究参考。
[关键词] 砖墙剪切承载力The stress of unreinforced brick wall under vertical compression and horizontal force has been analysed by ALGORFEAcomputer software.The formulas for calculation of horizontal cracking load of brick wall of different ratio ofheight to width have been proposed on the basis of failure criterions of plane-stress masonry.The crack distribution ofwall has been described in detail.In the end,the calculating formula of shearload-bearing capacity of wall has been es-tablished.The calculating results agree well with the ex perimental data.This method can provide reference for mason-ry structural design and research.Keywords:brick wall;shear;load-bearing capacity混合结构房屋中,墙体除了承担屋(楼)盖传来的竖向压力以及本身的自重外,还承担风、地震引起的水平力。
因此,墙体受竖向压力和水平力共同作用是工程中常遇到的一种受力状态。
研究墙体在这种受力状态下的应力分布以及高宽比对墙体开裂荷载、裂缝分布情况和抗剪承载力的影响,对于丰富砌体结构基本理论和完善砌体结构构件抗剪承载力的设计方法有较大的实际工程意义。
一、竖向压应力和水平集中力共同作用下砖墙的弹性有限元分析有限元方法是目前研究砌体结构非常有用的工具[1-4]。
图1所示的砖墙,在墙顶受到平行于墙面并且不沿厚度变化的竖向压应力σ0和顶点集中水平力F作用,由于墙厚t 相对于墙高H和墙宽B较薄,因此可将空间问题简化为近似的平面应力问题。
采用ALGOR FEA软件,并选用二维的四节点单元对砖墙进行分析,分别计算墙体高宽比ψ=H/B=0·5,0·75,1,1·5,2五种情况下墙体的应力,相应单元网格分别为16×8,16×12,16×16,16×24,16×32。
墙体在σ0和F共同作用下的应力,在弹性阶段可看成是两种荷载单独作用时的应力迭加。
下面重点分析水平力F作用下墙体的应力分布规律。
1·墙体不同高度处水平截面上的正应力分布墙体底部、中部处水平截面上正应力σy的分布如图2所示,其规律如下:(1)在条件相同情况下,如墙厚、正应力σ0、墙体材料强度等级相同时,随墙体高宽比ψ增大,截面的正应力σy也增大,与ψ不成正比。
(2)墙体中部截面的正应力σy分布几乎成直线变化(除ψ=0·5外);墙体底部截面的正应力σy分布几乎均呈曲线分布,最大拉、压应力均产生于截面边缘。
2·墙体不同高度处水平截面上剪应力分布墙体底部、中部截面处水平截面上的剪应力τxy的分布如图3所示,其规律如下:(1)墙体中部水平截面的τxy分布几乎相同,与墙体高宽比无关,呈抛物线变化;截面中点处的剪应力最大,约为平均剪应力τm的1·5倍。
(2)墙体底部截面τxy分布与墙体高宽比有直接关系,随ψ的增大,τxy分布由向上凸转为向下凹的抛物线型。
ψ较小时,最大剪应力位于截面高度的中点处,ψ较大时,最大剪应力位于截面边缘处。
二、平面受力砌体的破坏准则图1所示的墙体,当墙体水平截面内既有剪应力τ作用,同时又有正拉应力σy作用,该部分砌体位于剪拉区。
参考文[1],对于剪拉区的砌体,其破坏准则可采用如下表达式:式中:V=F;系数k1,k2分别为由有限元法确定的墙体在单位水平力作用下的剪应力和正应力;fv0,m为砌体抗剪强度平均值。
上述有限元分析的墙体的截面为4·0m×0·24m,将式(2),(3)代入式(1)得:图1所示的墙体截面内,也必然存在剪压区,即墙体水平截面内既有剪应力τ作用,同时又有垂直压应力σy作用。
基于文[5]的试验结果,通过分析可知,当σy/fm≤0·32时(fm为砌体抗压强度平均值),砌体呈剪切滑移破坏,其破坏准则可采用如下表达式:当0·32<σy/fm≤0·67时,砌体呈斜拉破坏,砌体的破坏由主拉应力大小所控制,其破坏准则可采用如下表达式:当0·67<σy/fm≤1·0时,砌体呈斜压破坏,砌体的破坏由主压应力大小所控制,其破坏准则可采用如下表达式:σ0/fm条件下,发生上述四种破坏(或出现裂缝)的部位、出现的先后次序以及相应的τm/fv0,m比值,计算结果如表1所示,其中(τm/fv0,m)min为对应于第一条(批)裂缝出现时的比值。
三、墙体裂缝出现以及分布情况以ψ=1,砌体材料强度等级为MU10,M5的墙体为例,其裂缝分布及出现的先后次序如图4所示,其规律如下(裂缝角度均系根据有限元分析得到的应力,然后按材料力学方法计算确定):(1)当σ0/fm=0·1,0·2时,可能出现三种裂缝图4(a)中首先在墙底部受拉区最大拉应力边缘处,由剪拉共同作用形成裂缝①,裂缝①方向与水平方向夹角较小,分别为16°,24°,然后靠近底部1/4高度范围内,由于剪切滑移引起裂缝②,其方向与水平方向夹角较大,分别为49°,47°。
第三批裂缝③将出现在底部受压区最大压应力边缘,由主压应力所控制,其方向与水平方向夹角更大,分别为84°,85°。
此时墙体均不可能出现剪压斜裂缝,墙体水平开裂荷载由砌体剪拉破坏准则所控制,亦即为裂缝①形成时所对应的水平荷载。
(2)当σ0/fm=0·3,0·4时,裂缝分布(图4(b)) 与上述情形(图4(a))类似,但墙体内第二批裂缝②产生于受压区最大压应力边缘,第三批裂缝③则由剪切滑移所引起。
第一批裂缝①均出现在受拉区最大拉应力边缘,产生第一批裂缝①时的水平荷载均随σ0/fm的增大而增大,裂缝方向与水平方向的夹角亦随σ0/fm的增大而增大,相应为31°,36°。
第二批裂缝②由主压应力控制,此时的水平荷载随着σ0/fm 的增大而降低,裂缝方向与水平方向的夹角随着σ0/fm增大而增大,增大幅度不大,相应为85°,86°。
此时,均不可能出现剪压斜裂缝。
墙体水平开裂荷载由砌体剪拉破坏准则所控制,亦即裂缝①形成时对应的水平荷载。
(3)当σ0/fm=0·5,0·6,0·7时,可能出现的裂缝图4(c)所示裂缝,第一批斜压裂缝①产生于墙底部受压区最大压应力边缘,其水平荷载随σ0/fm的增大而明显降低,裂缝方向与水平方向夹角由87°增大到88°,但变化幅度不大。
第二批剪拉裂缝②则产生于受拉区最大拉应力边缘,其方向与水平方向夹角分别为40°,43°,45°。
第三批裂缝③是由剪切滑移所引起的,产生于墙底部受拉区拉应力较大处,其方向与水平方向的夹角随σ0/fm 增大而增大,分别为51°,54°,56°。
最后形成的剪压斜裂缝④处于墙体中部略偏下一点的剪拉区内,裂缝方向与水平方向夹角分别为65°,67°,69°。
该墙体的水平开裂荷载由砌体斜压破坏准则控制,亦即裂缝①形成时对应的水平荷载。
(4)当σ0/fm=0·8,0·9时,裂缝分布情况图4(d)与图4(c)类似:墙体内均可能出现上述四种裂缝,但其剪切滑移裂缝较剪拉裂缝早出现;第一批裂缝①均首先产生于受压区最大压应力边缘,对应的水平开裂荷载均随σ0/fm的增大而明显降低,裂缝方向与水平方向夹角随σ0/fm的增大而略有增大。
对于ψ=0·5,2的墙片,其裂缝分布及出现顺序如图5,6所示。
当墙片ψ=0·5,σ0/fm=0·1,0·2,0·3以及ψ=2,σ0/fm=0·1,0·2,0·3,0·4,0·5时均只可能出现三种裂缝,不可能出现剪压斜裂缝。
ψ愈大,截面弯曲拉应力愈大,只有当σ0/fm较大时才可能出现剪压斜裂缝。
对于ψ=0·5,σ0/fm=0·1~0·5以及ψ=2(或1),σ0/fm=0·1~0·4的墙片,墙体水平开裂荷载由剪拉破坏准则所控制,亦即裂缝①形成时对应的水平荷载。
此时墙体水平开裂荷载随着σ0/fm增大而增大,即垂直压应力增大反而对提高墙体开裂荷载有利,可推迟第一批裂缝的出现。
对于ψ=0·5,σ0/fm=0·6~0·9以及ψ=2·0(或1·0),σ0/fm=0·5~0·9的墙体,墙体水平开裂荷载由斜压破坏准则控制,即裂缝①形成时对应的水平荷载,此时墙体水平开裂荷载随σ0/fm的增大而明显降低,垂直压应力增大,将导致第一批裂缝过早出现,降低墙体的水平开裂荷载。
由截面正应力和剪应力的分布特点可以知道,无论σ0/fm是大还是小,墙体水平开裂荷载均随ψ增大而降低,其主要原因是由于ψ增大时会导致截面弯曲拉应力以及弯曲压应力显着增大,从而引起墙体第一批裂缝较早出现。
墙体在正常使用阶段时的垂直压应力σ0大约为0·4fm左右,亦即σ0/fm=0·4左右,此时墙体的水平开裂荷载,当ψ=0·5,1,2时,分别为0·998fv0,m,0·639fv0,m,0·356fv0,m;当σ0/fm=0·5时,墙体水平开裂荷载均达到最大值,ψ=0·5,1,2时,其值分别为1·204fv0,m,0·722fv0,m,0·399fv0,m。