光伏电缆标准(第1部分)
- 格式:doc
- 大小:297.50 KB
- 文档页数:16
2 Pfg 1169/08.2007 Requirements forcables for use in photovoltaic-systemsContentsSeite Foreword (3)1Scope (3)2Normative references (3)3Terms and definitions (5)4Halogen-free PV-cable (6)4.1Code designation (6)4.2Characteristics (6)4.3Construction (6)4.4Test (8)4.5Guideline for use (informative) (8)4.6Current carrying capacity (8)Annex A (normative) Test of mutual influence (15)Annex B (normative) Test of absence of halogen (16)Annex C (normative) Determination of halogens – Elemental test (17)Annex D (normative) Test of long term resistance of insulation to D.C (19)Annex E (normative) Cold impact test (20)Annex F (normative) Dynamic penetration test (21)Annex G (normative) Notch propagation (23)Figure 1 – Arrangement of marking (8)Figure F.1 – Arrangement for penetration test (22)Table 1 – Current carrying capacity of PV-cables (9)Table 2 – Conversion factor for deviating temperatures (9)Table 3 – Tests for halogen free PV-cable (10)Table 4 – Requirements for halogen free insulation and sheath compounds (13)Table A.1 – Requirements (15)Table B.1 – Test method, measurement, requirements (16)Table B.2 – Test sequence (16)Table E.1 – Parameter for cold impact test (20)ForewordThis test specification contents the requirements listed in a manuscript of the working group AK 411.2.3 …Leitungen für PV-Systeme“ of the German committee for standardization (DKE). This manuscript is intended to be published as German pre-standard. Up to the date of publishing of the pre-standard this test-specification of TUV Rheinland will be used for test and assessment of cables for use in PV-systems (PV-cables).1 Scope2 PfG 1169/08.2007 applies to flexible single-core cables (cords) for use at the DC-side of photovoltaic-systems with a maximum permissible voltage of DC 1,8 kV (conductor/conductor, non earthed system). The cables are suitable for use in safety class II.It is permitted to connect these cables as multiple-construction.The cables are intended to operate at ambient temperature until 90°C2 Normative referencesThe following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.IEC 60364-5-52, Erection of low voltage installations –Part 5: Selection and erection of electrical equipment –Chapter 52: Wiring systemsEN 50267-2-1, Common test methods for cables under fire conditions – Tests on gases evolved during combustion of materials from cables – Part 2-1: Procedures – Determination of the amount of halogen acid gas;EN 50267-2-2, Common test methods for cables under fire conditions – Tests on gases evolved during combustion of materials from cables – Part 2-2: Procedures – Determination of degree of acidity of gases for materials by measuring pH and conductivity;EN 50305, Railway applications – Railway rolling stock cables having special fire performance – Test methodsEN 50395, Electrical test methods for low voltage energy cables;EN 50396, Electrical test methods for low voltage energy cables;EN 60068-2-78, Environmental testing - Part 2-78: Tests -Test Cab: Damp heat, steady state (IEC 60068-2-78)EN 60216-1, Electrical insulating materials - Properties of thermal endurance - Part 1: Ageing procedures and evaluation of test results (IEC 60216-1);EN 60216-2, Electrical insulating materials – Thermal endurance properties – Part 2: Determination of thermal endurance properties of electrical insulating materials – Choice of test criteria (IEC 60216-2);EN 60228, Conductor of insulated cables (IEC 60228)EN 60332-1-2, Tests on electric and optical fibre cables under fire conditions – Part 1-2: Test for vertical flame propagation for a single insulated wire or cable – Procedure for 1 kW pre-mixed flame; (IEC 60332-1-2)EN 60684-2, Flexible insulating sleeving – Part 2: Methods of test (IEC 60684-2)EN 60811-1-1, Insulating and sheathing materials of electric cables – Common test methods Part 1-1: General application – Measurement of thickness and overall dimensions – Test for determining the mechanical properties (IEC 60811-1-1)EN 60811-1-2, Insulating and sheathing materials of electric and optical cables – Common test methods. Part 1-2: General application. Thermal ageing methods (IEC 60811-1-2)EN 60811-1-3, Insulating and sheathing material of electric and optical cables – Common test methods – Part 1-3: General application – Methods for determining the density – Water absorption tests – Shrinkage test (IEC 60811-1-3)EN 60811-1-4, Insulating and sheathing materials of electric and optical cables – Common test methods. Part 1-4: General application. Tests at low temperature. (IEC 60811-1-4)EN 60811-2-1, Insulating and sheathing materials of electric and optical cables – Common test methods – Part 2-1: Methods specific to elastomeric compounds – Ozone resistance, hot set and mineral oil immersion tests (IEC 60811-2-1)EN 60811-3-1, Insulating and sheathing materials of electric cables – Common test methods Part 3-1: Methods specific to PVC compounds – Pressure test at high temperature, test for resistance to cracking (IEC 60811-3-1)HD 22.13, Rubber insulated cables of rated voltages up to and including 450/750 V Part 13: Single and multicore flexible cables, insulated and sheathed with crosslinked polymer and having low emission of smoke and corrosive gases;HD 605, Power cables – Part 605: Additional test methodsHD 60364-7-712Electrical installations of buildings – Part 7-712: Requirements for special installations or locations – Solar photovoltaic (PV) power supply systems (IEC 60364-7-712, modified)3 Terms and definitionsFor the purposes of this document, following definitions apply.3.1 Terms for test procedure3.1.1Type test (symbol T)Tests required to be made before supplying a type of cable covered by this standard on a general commercial basis, in order to demonstrate satisfactory performance characteristics to meet the intended application. These tests are of such a nature that, after they have been made, they need not be repeated, unless changes are made in the cable materials or design or manufacturing process which might change the performance characteristics.3.1.2sample tests (symbol S)Tests made on samples of completed cable or components taken from a completed cable, at a specified frequency, so as to verify that the finished product meets the specified requirements.3.1.3Routine tests (symbol R)Tests made by the manufacturer on each manufactured length of cable to check that each length meets the specified requirements3.2Rated voltageThe rated voltage of the cable determines the construction and the tests of the cable with regard to the electrical properties.The rated voltage is designated by two values of frequency voltage: U0/U in VoltU0 rated power frequency voltage between conductor and earth (metallic screen of cable or ambient medium);U rated power frequency voltage between two conductors of a multipole cable or of a system of single core cables.The rated voltage of the cable for a given application shall be suitable for the operating conditions in the system in which the cable is used.This requirement is applicable for both U o and UThe rated voltage between two conductors in a DC-system shall not exceed the 1,5 time value of rated voltage U of the cable, and the rated voltage between conductor and earth shall not exceed the 1,5 time value of rated voltage U o of the cable.NOTE The operating voltage of a system may exceed is rated voltage permanent for 20%. A cable may be operated with a voltage which value is 20% higher than rated voltage under condition that the rated voltage is not less than the rated voltage of the system.3.3DC sidepart of a PV installation from a PV cell to the DC terminals of the PV inverter3.4open-circuit voltage under standard test conditions U OC STCvoltage under standard test conditions across an unloaded (open) PV module, PV string, PV array, PV generator or on the DC side of the PV inverter3.5short-circuit current under standard test conditions I SC TCshort-circuit current of a PV module, PV string, PV array or PV generator under standard test conditions4 Halogen free PV-cable4.1 Code designationPV1-F4.2 Characteristics4.2.1Rated voltageAC U 0/U 0,6/1 kVDC 1,8 kV (conductor-conductor, non earthed system, circuit not under load).If the cable is used in DC-systems the rated voltage between two conductors shall not exceed the 1,5 time value of rated voltage U of the cable. In with single-phase earthed DC-systems this value shall be multiplied with factor 0,5. 4.2.2Temperature rangeAmbient temperature:–40 °C to +90 °C Max. temperature at conductor:120 °CThe cables are intended to operate at ambient temperature until 90°C. For this a temperature index of120°C applies to the insulation and the sheath, bas ed on EN 60216-1 (20.000h, 50% residual elongation). NoteThe expected period of use is 25 years.The permitted short-circuit-temperature refer to a period of 5s is 200°C.4.3 Construction4.3.1Conductor Number of conductors: 1The conductor shall be class 5, according to EN 60228. The single wires must be tinned. Preferred diameters: 2,5, 4, 6, 10, 16 mm 24.3.2Separation layerA separation layer of a suitable halogen free material may be applied around the conductor.额定电压导体工作温度导体绝缘4.3.3 InsulationThe insulation shall be a suitable halogen free material applied around the conductor.The insulation shall be extruded and shall consist of one or several adjacent adherent layers. It shall be solid and homogeneous, it must be possible to remove it without damage to the insulation itself, to the conductor and to the tin coating.The insulation shall be smooth, consistently applied and largely circular. Compliance shall be checked by inspection and by manual test.The wall thickness of insulation is specified by the manufacturer, but it must not fall short of the minimum value of 0,5mm.4.3.4 Separation layerA separation layer of a suitable halogen free material may be applied around the insulation.4.3.5 SheathThe core must be covered by a sheath.The sheath around the core must be of a suitable halogen free material.The sheath shall be extruded and shall consist of one or several adjacent adherent layers. The sheath shall be smooth and consistently applied.The wall thickness of sheath is specified by the manufacturer, but it must not fall short of the minimum value of 0,5mm.4.3.6 Outer diameterThe average value of the outer diameter shall be within the limits specified by the manufacturer.4.3.7 Multiple constructionEach single-core cable in a multiple construction shall pass the requirements of this document. Each additional component in a multiple construction shall pass the requirements of this document.4.3.8 Marking4.3.8.1 GeneralThe cable shall be marked as follows:a) Trademark;b) Code designation;c) Rated diameter.Marking may be by printing or by reproduction in relief on or in the sheath.4.3.8.2 TrademarkCables shall be provided with an indication of the manufacturer, which consist of a consecutively marking with company name or company sign or with (if trademarked) an identification number.4.3.8.3 Code designationCables shall be provided with an code designation according to 4.1 applied consecutively on sheath.4.3.8.4 Arrangement of markingEach marking is considered as consecutive if the spacing between the end of a marking and the begin of the following identical marking does not exceed following value:– 550mm, for marking on sheath or outer jacket.Following figure shows an example of marking on sheath.Figure 1 – Arrangement of marking4.3.8.5 DurabilityPrinted markings shall be durable. Compliance with this requirement shall be checked by the test given in 5.1 of EN 50396.4.3.8.6 LegibilityEach marking shall be legible.4.4 TestCompliance with the requirements of 4.3 shall be checked by visual inspection and tests according to table3.4.5 Guideline for use (informative)Cables according to this standard are intended for use in PV-systems according to EN 60364-7-712.4.6 Current carrying capacityAmbient temperature: 60°CMax. temperature at conductor: 120 °CTable 1 – Current carrying capacity of PV-cablesKind of installationRated diameter Single cable free inair Single cable onsurfacesTo cables adjacent onsurfacesmm2 A A A1,5 30 29 242,5 41 39 334 55 52 446 70 67 5710 98 93 7916 132 125 10725 176 167 14235 218 207 176Table 2 – Conversion factor for deviating temperaturesAmbient temperature Conversion factor°CUp to 60 1,0070 0,9180 0,8290 0,71100 0,58110 0,41Reduction factor for accumulation according to IEC 60364-5-52, Table B.52-17Table 3 – Tests for halogen free PV-cableNo. Test Requirementsof test standard clause5 Resistance against acid and alkalinesolutionT EN 60811-2-1 10 5.1Chemical stressacid: N-Oxal-acidalkaline solution: N-sodium hydroxide solutiontemperature °C 23duration h 1685.2Tensile strength:variation, max. % ± 305.3Elongation at break, min. % 1006 Test of influence T Annex A7 Cold impact test at –40 °C T Annex E8 Cold bending testDiameter of cable < 12,5 mmT EN 60811-1-4 8.2 8.1 Test conditions:– temperature °C –40 ± 2– duration of conditioning h 16 EN 60811-1-4 8.2.3 8.2 Results to be obtained Absence ofcracks9 Cold elongation testDiameter of cable ≥ 12,5 mmTable 3 10 Ozone resistance at complete cable T10.1 Method B EN 50396 8.1.3– temperature °C 40 ± 2– relative humidity % 55 ± 5– duration h 72– Ozone concentration %(by volume)(200 ± 50) × 10–610.2 Results to be obtained Absence ofcracks.11 Weathering/UV-resistance T HD 605/A1 2.4.20 11.1 Conditions:– duration h 720– temperature °C(Black-Standard-temperature)63– relative humidity % 65– min. power at W/m2wavelength 300 nm to 400 nm60 ± 2– duration spraying/drying min 18/102Results to be obtained Absence ofcracks.12 Dynamic penetration test T Annex F13 Notch propagation T Annex GNo. Test Requirementsof test standard clause14 Shrinkage test at complete cable T EN 60811-1-3 11((sheath)) 14.1 Conditions:– temperature °C 120– duration h 1– Distance L of sample mm 30014.2 Results to be obtained:– Maximum shrinkage. % 215 Test under fire conditions15.1 Test for vertical flame propagation at completecableT, S EN 60332-1-215.2 Assessment of halogen T, S15.2.1 Absence of halogen Annex B 15.2.2 Determination of halogens – Annex CTable 4 – Requirements for halogen free insulation and sheath compounds1 2 3 4 5 6 7Test method described in Type of compoundRef. No. Test Unitstandard clause insulation sheath1 Mechanical characteristics1.1 Properties before ageing EN 60811-1-1 9.21.1.1 Values to be obtained for the tensile strength:– median, min. N/mm26,5 8,01.1.2 Values to be obtained for the elongation atbreak:– median, min. % 125 125 1.2 Properties after ageing in oven EN 60811-1-2 8.11.2.1 Ageing conditions:– temperature °C 150 ± 2 150 ± 2 – duration of treatment h 7 × 24 7 × 24 1.2.2 Values to be obtained for the tensile strength:c– median, min. N/mm2– – – variation, max. % –30a–30a1.2.3 Values to be obtained for the elongation atbreak:c– median, min. % – – – variation, max. % – 30a– 30a 1.3 Hot set test d EN 60811-2-1 91.3.1 Conditions– Temperature °C 200± 3 200± 3 – Time under load min 15 15 – mechanical stress N/cm220 20 1.3.2 Values to be obtained– elongation under load, max. % 100 100 – permanent elongation after cooling, max. % 25 25 1.4 Thermal endurance properties EN 60216-21.4.1 ConditionsEither test of elongation at break or bending testshall be performed.– Temperature index 120 120 – elongation at break c% 50 50 – bending test EN 50305 7.2 2 D 2 D 1.5 Cold elongation test EN 60811-1-4 8.41.5.1 Conditions:– temperature °C –40 ± 2 –40 ± 2 – duration h EN 60811-1-4 8.4.4 und 8.4.5 b b 1.5.2 Values to be obtained:– elongation at break, min. % 30 301 2 3 4 5 6 7Test method described in Type of compoundRef. No. Test Unitstandard clause insulation sheatha No positive value for variation fixed.b See test method in column 4 and 5.c This test shall be performed at test samples of insulation and sheath compound.d This test shall be performed only at cross-linked insulation and sheath compoundTest of mutual influenceA.1 ConditionsTest samples must be aged for 7 days at (135 ± 2) °C at conditions according to table 2A.2 RequirementsAfter ageing the insulation and the sheath shall pass the requirements of table A.1.Table A.1 – RequirementsTests units insulation sheathTensile strength – median, min. N/mm2– –– variation a, max. % ± 30 –30 b Elongation at break – median, min. % – –– variation a, max. % ± 30 ± 30a Variation: difference between the median value obtained after ageing and the median value obtained without ageing expressed as apercentage of the latter.b Positive tolerances are not limited.Test of absence of halogenB.1 Requirements of extruded materialsInsulation and sheath shall pass the requirements as follows: a) Type testThe material must be tested as described in table B.1.Table B.1 – Test method, measurement, requirementsTest methodMeasurementrequirements1 EN 50267-2-2 pH and conductivity pH ≥ 4,3 undconductivity ≤ 10 µS/mm a 2 EN 50267-2-1 Chlorine- and Bromine content, expressed in HCI ≤ 0,5 %3aAnnex CHalogen: FluorideIf negative the test should be finished. No further test is necessary.The material shall be accepted.If positive, test of 3b shall be performed 3bEN 60684-2Fluoride content≤ 0,1 %a If discrepancies regarding conductivity appear, e.g. the recommended value is exceeded even if there is compliance with therecommended ph-value, other test method may be applied after agreement with all participants.b) Selection testThe material shall be tested according to test sequence of table B.2.Table B.2 – Test sequenceTest method MeasurementValue ResultIf negative the test should be finished. No further test is necessary.The material shall be accepted. Phase 0 HD 22.13,Annex CHalogen: Fluoride, Chloride and BromideIf positive continue with phase 1.< 4,3 The material shall be revised. pH ≥ 4,3Conductivity shall be tested. conductivity ≤ 2,5 µS/mmThe material shall be accepted. No further test is necessary.conductivity > 10 µS/mm The material shall be revised.Phase 1 EN 50267-2-2 conductivity (s)> 2,5 µS/mm but ≤ 10 µS/mm Test according to EN 50267-2-1 shall be performed > 0,5 % The material shall be revised.Phase 2 EN 50267-2-1Chlorine- and Bromine content, expressed in HCI≤ 0,5 % Test according to EN 60684-2 shall be performed. > 0,1 % The material shall be revised. Phase 3 EN 60684-2Fluoride content≤ 0,1 %The material shall be accepted.Determination of halogens – Elemental testWarningOwing to its potentially hazardous nature, the fusion operation should be carried out in a fume cupboard, using a safety screen.C.1 EquipmentBunsen burner3 small/medium soda glass test tubes (approximately 50 mm x 10 mm)Test tube holderEvaporating basin/mortarWire gauze;FunnelFilter paperC.2 MaterialsUnknown sampleSodium metalDilute nitric acid (5 %)Aqueous silver nitrate (5 %)Dilute ammonia (10 %)Freshly made up zirconium-alizarin red S reagentGlacial acetic acidAcid/pH indicator papersC.3 ProcedureC.3.1 Sodium fusionPlace 200 mg – 250 mg of the sample into the bottom of a small soda glass test tube. Add 10 ml of distilled/de-ionized water to the evaporating basin and place this in the fume cupboard behind the safety screen. Whilst holding the test tube firmly with the test tube holder at an angle of 45° - 60° to the vertical, introduce a piece of freshly cut, clean sodium (about the size of a small pea) (200 mg – 250 mg) into the mouth of the test tube without allowing it to come into contact with the sample. With the safety screen in place, heat the sodium gently until it melts and runs down on to the sample (there may be a vigorous reaction when the molten sodium reaches the sample if halogens are present). Heat the tube gently for about 1 min, then more strongly until the lower 20 mm of the tube glows red hot. Plunge the red hot tube into the water in the evaporating basin, immediately placing the gauze on top. (The gauze prevents any loss of material when the tube shatters on contact with the water.) Allow any non reacted sodium to react before grinding up the solution and glass. Filter, and separate the filtrate into two equal portions.C.3.2 Chlorine and bromineTo the first portion of the filtrate, add sufficient nitric acid to make the solution acidic. Boil this solution until its total volume has been reduced by half (this is to remove any HCN or H2S, if present, which would interfere with the test). Add 1 ml silver nitrate solution; a white or yellowish-white precipitate indicates the presence of halogen (Cl, Br) in the original sample. (If the liquor is decanted, and the precipitate is white and readily soluble in dilute ammonia, then chloride is present.)C.3.3 FluorineTo the second portion of the filtrate, acidify with glacial acetic acid. Boil this solution until its total volume has been reduced by half. Add 2 to 3 drops freshly prepared zirconium lake reagent (equal volumes of: a) Alizarin solution: 0,05 g Alizarin Red-S in 50 ml distilled water, b) Zirconium solution: 0,05 g zirconium nitrate in 10 ml concentrated HCl diluted with 50 ml distilled water). Heat at 40 °C for 1 h. The presence of fluoride is indicated by the red/pink colouration being bleached to yellow.Test of long term resistance of insulation to D.C.A test sample with a length of minimum 5m shall be immersed into water containing 3 % NaCl. Further on minimum 300mm of the sample shall stick out of the water. The water-bath shall be retained for (240 ± 2) h at a high temperature of (85 ± 2) °C and a D.C.-vol tage 0,9kV shall be applied between conductor and water whereby the conductor shall be connected to the positive potential.The current of this circuit shall be measured with a period of not more than 24h. If possible a continuous measurement shall be preferred.The measured values shall be recorded in a time-current-curve which identifies a stable progress.NOTE A stable progress is e.g. an increase of less than 10% of leakage current on the average for a time of 24h (This is part of the inspection based on practical experiences)After storing the samples shall be taken out of the salt-water-solution and a voltage test according to Ref.-No. 1.2 of table 1 shall be performed. The test voltage shall be the rated voltage (U) of the cable.Cold impact testThe cold impact test shall be performed at –40°C ac cording to clause 8.5 of EN 60811-1-4, but the mass of hammer, the mass of test probe and the height shall comply with table 2.Table E.1 – Parameter for cold impact testDiameter of cable (D) Mass of hammer Mass of test probe height mm g g mmD < 15 1 000 200 10015 < D≤ 25 1 500 200 150D > 25 2 000 200 200The inner and outer surface of sheath shall be inspected with normal or corrective visual faculty without magnification. Only the outer surface of the insulation shall be inspected. No cracks must be determinedAnnex F(normative)Dynamic penetration testA test apparatus for pull test (or a equivalent apparatus) shall be operated in pressure modus and shall be equipped with a measuring device which is able to record the force of penetration of the spring-steel-needle (see figure F.1b) through the insulation or sheath of a completed cable. A circuit with low voltage which finish the test at the moment when the needle penetrates the insulation or the sheath and makes contact with the conductor shall be added.The test shall be performed at room temperature. The force applying to the needle shall be increased continuously with 1 N/s until contact with the conductor has been made. 4 tests at each sample shall be performed and the force at the moment of contact shall be recorded. After each test the sample shall be moved forward and shall be turned clockwise for 90°.The mean value of the 4 test results must not be less than the minimum value F determined with following formulaF = 50 ⋅DD diameter of cable in mmDimensions in mma) detail X(edges not broken or rounded, without ridge)b) detail YCaption 1 N.A. 2 N.A. 3 Load 4 Clamp 5 Sample6Mounting surface7 Fixing screw 8 Blade9 Shoulder with sufficient depth for testing the insulation 10 Needle of spring steel 11SampleFigure F.1 – Arrangement for penetration testAnnex G(normative)Notch propagationThree samples of the cable shall be notched, to a depth of 0,05 mm of the insulation or sheathing, at four points equally spaced with respect to one another around the circumference and 25 mm apart along the length, and in a plane mutually perpendicular to the conductor.One of the samples shall be conditioned at -15 °C, one at ambient temperature and one at 85 °C, in all cases for 3 h, after which time they shall be wound on to a mandrel, (3 ± 0,3) times the minimum specified diameter of the cable, whilst at the conditioning temperature. The notched sample shall be wrapped around the mandrel such that at least one notch is on the outside of the cable.The sample shall be allowed to return to ambient temperature and then subjected to the voltage test given in no. 1.2 of Table 1 but at half the rated voltage U0.。
4、电线电缆技术参数表4.1、1kV电缆技术参数和性能要求运行条件系统标称电压和频率:(1)0.6/1kV,50Hz(2)DC1000V系统接地方式:中性点直接接地系统。
环境条件:环境温度:-32.2℃~+40℃。
敷设条件:敷设环境有直埋、管槽、排管、沟道、隧道、桥架、竖井等多种方式。
地下敷设时电缆局部可能完全浸于水中。
运行要求电缆导体的长期最高额定温度:交联聚乙烯为90℃。
短路时(不小于5S)电缆导体的最高温度不超过:交联聚乙烯为250℃。
电缆最小弯曲半径应满足:多芯电缆≤12D。
其中D为电缆外径。
电缆地下敷设时需满足局部可能完全浸于水中的运行要求。
技术要求本次采购的0.6/1kV铠装交联聚乙烯绝缘电力电缆,其技术参数除应符合GB/T 12706.1-2008的要求以外,还应满足本标书以下要求。
(1)导体表面应光洁、无油污、无损伤绝缘的毛刺、锐边,无凸起或断裂的单线,并符合GB/T3956-1997标准。
铜导体材料为无氧圆铜杆(铜的纯度≥99.9%),并注明铜杆的来源地。
(2)聚乙稀电力电缆绝缘层应为挤包制成,交联聚乙烯电力电缆绝缘层应为添加交联剂后挤包交联而成。
绝缘标称厚度应符合GB/T 12706.1-2008的规定,绝缘层的横断面上应无目力可见的气泡和沙眼等缺陷,禁止使用翻新料。
(3)钢带铠装应采用双层镀锌钢带,钢带应采用具有商品质量认可的热轧或冷轧钢带,绕包应圆整光滑。
(投标时应注明镀锌)(4)电力电缆的外护套性能符合现行国家标准要求。
(5)成品电缆的表面应连续、清晰地印刷厂名、型号规格、电压、制造年份、计米长度标志。
(6)承包方应用铁木结构电缆盘。
电缆盘应能承受所有在运输,现场搬运或在任何气象条件下户外至少储存3年期间可能遭受的外力作用。
并且电缆盘应承受在安装或处理电缆时所可能遭受的外作用力不会损伤电缆及盘本身。
电缆盘筒体最小直径应符合电缆最小弯曲半径。
1kV电缆技术参数表承包方根据以下表格填写规格参数4.2、10kV交流电缆技术性能要求基本要求电缆外皮上以0米起点,以1米为单位打上长度标尺及型号规格、电压等级等参数,且能保证不易磨掉。
光伏电缆太阳能专用电缆光伏电缆的特性是由其电缆专用绝缘料和护套料决定的,我们称之为交联PE,通过辐照加速器辐照以后,光伏电缆料的分子结构会发生改变,从而提供其个方面的性能。
电站中常见的光伏电缆及材料的用途和使用环境做详细的介绍。
电缆按照光伏电站的系统可分为直流电缆及交流电缆,依照用途及使用环境的不同分类如下:1.光伏电缆直流电缆(1)组件与组件之间的串联电缆。
(2)组串之间及其组串至直流配电箱(汇流箱)之间的并联电缆。
(3)直流配电箱至逆变器之间电缆。
以上电缆均为直流电缆,户外敷设较多,需防潮、防暴晒、耐寒、耐热、抗紫外线,某些专门的环境下还需防酸碱等化学物质。
2.光伏电缆交流电缆(1)逆变器至升压变压器的连接电缆。
(2)升压变压器至配电装置的连接电缆。
(3)配电装置至电网或用户的连接电缆。
此部分光伏电缆为交流负荷电缆,户内环境敷设较多,可按照一样电力电缆选型要求选择。
3.光伏专用电缆光伏电缆光伏电站中大量的直流电缆需户外敷设,环境条件恶劣,其电缆材料应依照抗紫外线、臭氧、剧烈温度变化和化学腐蚀情形而定。
一般材质电缆在该种环境下长期使用,将导致电缆护套易碎,甚至会分解电缆绝缘层。
这些情形会直截了当损坏电缆系统,同时也会增大电缆短路的风险,从中长期看,发生火灾或人员损害的可能性也更高,大大阻碍系统的使用寿命。
因此,在光伏电站中使用光伏专用电缆和部件是专门有必要的。
随着光伏产业的不断进展,光伏配套部件市场逐步形成,就电缆而言,已开发出了多种规格的光伏专业电缆产品。
近期研制开发的电子束交叉链接电缆,额定温度为120℃,可抵御恶劣气候环境和经受机械冲击。
亚太电缆是依照国际标准IEC216研制的一种太阳能专用电缆,在户外环境下,使用寿命是橡胶电缆的8倍,是PVC电缆的32倍。
光伏专用电缆和部件不仅具有最佳的耐风雨性、耐紫外线和臭氧腐蚀性,而且能承担更大范畴的温度变化(例如:从-40~125℃)。
在欧洲,技术人员通过测试,屋顶上可测得出的温度值高达100~110℃。
+VenteranceCEEIAICS K 中国电器工业协会标准CEEIA B 218.1-2012光伏发电系统用电缆技术条件第1部分:一般规定Technology requirements of cable used in photovoltaic systemPart 1: General requirements(送审稿)2012-0×-××发布 2012-0×-××实施中国电器工业协会 发布CEEIA B218.1—2012前言中国电器工业协会(CEEIA)是我国电工领域全国性的行业组织,具有社会团体法人资格。
按照科学发展观,探索标准化工作新机制,实现标准化事业为电工行业技术发展服务,是协会的工作内容之一。
中国境内的任何个人、组织、会员单位均可提出制、修定中国电器工业协会标准的建议并参与有关工作。
中国电器工业协会标准按照《中国电器工业协会标准制定工作管理办法》进行管理。
中国电器工业协会标准草案向行业广泛征求意见,并通过上述管理办法的工作程序,方可作为中国电器工业协会标准予以发布。
考虑到本标准中的某些条款可能涉及专利,协会不负责对任何该类专利权的鉴别。
《光伏发电系统用电缆技术条件》分为四个部分:第一部分:一般规定第二部分:光伏发电系统用交直流传输电力电缆第三部分:光伏发电系统用控制电缆第四部分:光伏发电系统用数据传输电缆本部分为第一部分。
本协会标准由中国电器工业协会标准化工作委员会提出。
本协会标准由xxxxxxxx归口。
本协会标准由xxxx负责解释。
本协会标准负责起草单位:上海金友金弘电线电缆有限公司、北京鉴衡认证中心。
本协会标准参加起草单位:本协会标准起草人:本协会标准于⨯⨯⨯⨯年⨯⨯月⨯⨯日发布。
本协会标准在实施过程中,如发现需要修改或补充之处,请将意见和有关资料寄给中国电器工业协会标准化工作委员会秘书处,以便修订工作。
光伏发电系统用电缆技术条件第一部分:一般规定1 范围本技术规范规定了光伏发电系统系列电缆的技术要求、试验方法、检验规则、使用范围、使用寿命、交货长度及其包装和标志。
pv1-f光伏电缆标准PV1-F光伏电缆是用于太阳能电池板系统的电缆,它是一种特殊的低压电缆,用于连接太阳能电池板和逆变器、控制器等电气设备。
PV1-F光伏电缆的特殊设计使其满足了太阳能电池板系统的特殊要求,例如电池板之间的高电压和高温度。
1. 标准名称:GB/T 19942-2005“太阳能电池板系统用电缆”2. 适用范围:该标准适用于太阳能电池板系统用的电缆,包括PV1-F光伏电缆。
3. 术语和定义:3.1 PV1-F光伏电缆:用于太阳能电池板系统的低压电缆,连接太阳能电池板和逆变器、控制器等电气设备。
3.2 额定电压:电缆能够安全工作的电压等级。
3.3 额定温度:电缆可以安全运行的最高温度。
3.4 额定电流:电缆可以承受的最大电流负载。
3.5 绝缘:电缆的绝缘材料能够隔离电缆内电线和与之相邻的电导体或外界接触。
3.6 护套:电缆的外层材料,用于保护电缆内部电路不受损害。
4. 规格和性能要求:4.1 PV1-F光伏电缆的额定电压应符合IEC 60228中规定的划分标准。
4.2 PV1-F光伏电缆的额定温度应不低于-40℃,不高于90℃。
4.3 PV1-F光伏电缆的额定电流应按照IEC 60287中规定的公式计算,计算公式如下:Iz = k × S × nIz为电缆的额定电流(A),k为系数,取决于电缆的散热方式,S为电缆的截面积(mm²),n为电缆的导体数。
4.4 PV1-F光伏电缆的绝缘层应采用聚烯烃复合材料或交联聚乙烯材料,绝缘电阻应不低于5×1014Ω·cm。
4.5 PV1-F光伏电缆的护套应采用聚烯烃复合材料或交联聚乙烯材料,护套的综合力学性能应符合IEC 60811-1-1中规定的要求。
4.6 PV1-F光伏电缆的直流电电阻应符合IEC 60287中规定的要求。
4.7 PV1-F光伏电缆的耐热老化性能应符合IEC 60684-2中规定的要求。
用于光伏系统的电缆标准光伏系统的电缆标准在确保系统正常运行和安全使用方面起到了至关重要的作用。
本文将结合国际标准和国内标准,详细解读光伏系统电缆标准的相关要求和规范,并探讨其在光伏系统中的应用。
一、光伏系统电缆标准的基本概念光伏系统电缆标准是指在设计、安装和运行光伏系统时,需要符合的国际和国内规范的集合。
这些标准主要涉及电缆选型、安装要求、绝缘强度、耐候性以及火焰传播性等方面。
光伏系统电缆标准的制定旨在保证系统的可靠性、安全性和稳定性,以适应光伏系统的特殊工作环境和需求。
二、国际光伏系统电缆标准1. 国际电工委员会(IEC)标准:IEC是国际上最有影响力的电工领域标准制定机构,其编制的标准被广泛接受和采用。
对于光伏系统电缆,IEC 制定了IEC 60227、IEC 60332和IEC 60502等一系列标准,其中包括了电力、控制、通信等各类电缆的标准规范。
2. 国际能源机构(IRENA)标准:IRENA是一个专注于可再生能源领域的国际机构,提供可再生能源领域的标准和指南。
IRENA制定了一系列关于光伏系统电缆的标准,包括电缆安装指南、选型指南和性能测试要求等。
三、中国光伏系统电缆标准1. 国家能源局标准:中国国家能源局发布了一系列关于太阳能发电和光伏系统的标准规范,其中包括电缆选型、安装和绝缘强度等要求。
这些标准为光伏系统电缆的设计、选用和使用提供了指导。
2. 国家电缆标准:中国国家标准委员会制定并发布了一系列涵盖电力、通信和控制等各类电缆标准,其中包括光伏系统电缆的相关要求。
这些标准规定了电缆的结构、材料、性能和使用环境等方面要求,确保光伏系统电缆的质量和安全。
四、光伏系统电缆标准的应用1. 选材要求:光伏系统电缆要求具有较高的绝缘强度和耐候性能,能够在复杂的户外环境下长期使用。
根据标准的要求,应选择具有良好绝缘材料和抗紫外线和耐火的外护套材料的电缆。
2. 安装要求:光伏系统电缆的安装要求主要包括敷设方式、敷设路径、排列方式等。
光伏工程中电缆选配方法和要求1.光伏系统电缆种类选择光伏发电系统电缆种类主要有:光伏专用电缆、动力电缆、控制电缆、通信电缆、射频电缆。
(1)光伏专用电缆:PV1-F 1*4mm²组串到汇流箱的电缆一般用:光伏专用电缆PV1-F 1*4mm²。
特点:光伏电缆,结构简单,其使用的聚烯烃绝缘材料具有极好的耐热、耐寒、耐油、耐紫外线,可在恶劣的环境条件下使用,具备一定的机械强度。
敷设:可穿管中加以保护,利用组件支架作为电缆敷设的通道和固定,降低环境因素的影响。
(2)动力电缆:ZRC-YJV22钢带铠装阻燃交联电缆ZRC-YJV22广泛应用于:汇流箱到直流柜,直流柜到逆变器,逆变器到变压器,变压器到配电装置的连接电缆,配电装置到电网的连接电缆。
光伏发电系统中比较常见的ZRC-YJV22电缆标称截面有:2.5mm²、4mm²、6mm²、10mm²、16mm²、25mm²、35mm²、50mm²、70mm²、95mm²、120mm²、150mm²、185mm²、240mm²、300mm ²。
其特点如下:①质地较硬,耐温等级90℃,使用方便,具有介损小、耐化学腐蚀和敷设不受落差限制的特点。
②具有较高机械强度,耐环境应力好,良好的热老化性能和电气性能。
敷设:可直埋,适用于固定敷设,适应不同敷设环境(地下,水中,沟管及隧道)的需要。
(3)动力电缆:NH-VVNH-VV铜芯聚氯乙烯绝缘聚氯乙烯护套耐火电力电缆。
适合于额定电压0.6/1KV。
使用特性:长期允许工作温度为80℃。
敷设时允许的弯曲半径:单芯电缆不小于20倍电缆外径,多芯电缆不小于12倍电缆外径。
电缆在敷设时环境温度不低于0摄氏度的条件下,无须预先加热。
电压敷设不受落差限制。
敷设:适合于有耐火要求的场合,可敷设在室内,隧道及沟管中。
ul4703标准(一)
UL4703标准
什么是UL4703标准?
•UL4703是一项电气标准,用于评估太阳能光伏(PV)电缆的电气性能和安全性。
UL4703标准的重要性
•UL4703标准确保了光伏电缆的质量和安全性,对于保障太阳能发电系统的正常运行至关重要。
UL4703标准的要求
根据UL4703标准,光伏电缆需要满足以下要求:
1.导体:使用高质量的铜材或铝材,确保导电性能优异。
2.绝缘材料:采用耐高温、耐紫外线和耐腐蚀的优质绝
缘材料,以提供有效的电气绝缘性能。
3.护套材料:使用抗紫外线、耐磨损和耐腐蚀的护套材
料,保护电缆免受外界环境的影响。
4.电缆结构:光伏电缆采用多芯结构,增加电缆的耐用
性和灵活性。
5.安全认证:通过UL认证,确保光伏电缆符合标准的
要求,安全可靠。
UL4703标准的应用范围
•UL4703标准适用于各类太阳能光伏系统,包括住宅、商业和工业用途。
•光伏电缆是连接太阳能电池板和逆变器的关键部件,UL4703标准的应用范围直接关系到整个光伏发电系统的性能和安
全。
结论
通过遵守UL4703标准,能够确保光伏电缆的质量和安全性,提高太阳能发电系统的效率和可靠性。
光伏电缆制造商和安装公司应该理
解UL4703标准的要求,并严格按照标准进行生产和安装,以确保光伏
电缆在各种环境条件下都能正常运行。
近年来,太阳能(PV)发电的应用日趋广泛,发展迅速,在光伏电站建设过程中除主要设备,如光伏组件、逆变器、升压变压器以外,配套连接的光伏电缆材料对光伏电站的整体盈利的能力、运行的安全性、是否高效,同样起着至关重要的作用,下面就对光伏电站中常见的电缆及材料的用途和使用环境做详细的介绍。
电缆按照光伏电站的系统可分为直流电缆及交流电缆,根据用途及使用环境的不同分类如下:1.直流电缆(1)组件与组件之间的串联电缆。
(2)组串之间及其组串至直流配电箱(汇流箱)之间的并联电缆。
(3)直流配电箱至逆变器之间电缆。
以上电缆均为直流电缆,户外敷设较多,需防潮、防暴晒、耐寒、耐热、抗紫外线,某些特殊的环境下还需防酸碱等化学物质。
2.交流电缆(1)逆变器至升压变压器的连接电缆。
(2)升压变压器至配电装置的连接电缆。
(3)配电装置至电网或用户的连接电缆。
此部分电缆为交流负荷电缆,户内环境敷设较多,可按照一般电力电缆选型要求选择。
3.光伏专用电缆光伏电站中大量的直流电缆需户外敷设,环境条件恶劣,其电缆材料应根据抗紫外线、臭氧、剧烈温度变化和化学侵蚀情况而定。
普通材质电缆在该种环境下长期使用,将导致电缆护套易碎,甚至会分解电缆绝缘层。
这些情况会直接损坏电缆系统,同时也会增大电缆短路的风险,从中长期看,发生火灾或人员伤害的可能性也更高,大大影响系统的使用寿命。
因此,在光伏电站中使用光伏专用电缆和部件是非常有必要的。
随着光伏产业的不断发展,光伏配套部件市场逐步形成,就电缆而言,已开发出了多种规格的光伏专业电缆产品。
近期研制开发的电子束交叉链接电缆,额定温度为120℃,可抵御恶劣气候环境和经受机械冲击。
又如RADOX电缆是根据国际标准IEC216研制的一种太阳能专用电缆,在户外环境下,使用寿命是橡胶电缆的8倍,是PVC电缆的32倍。
光伏专用电缆和部件不仅具有最佳的耐风雨性、耐紫外线和臭氧侵蚀性,而且能承受更大范围的温度变化(例如:从-40~125℃)。
山地光伏项目电缆长度设计标准
由于不同的使用环境和技术要求,太阳能光伏发电系统的低压直流输电部分中使用的光伏电缆对不同部件的连接有不同的要求。
要考虑的总体因素是:电缆的绝缘性能,耐热和阻燃性能,参与老化性能和线径规格。
具体要求如下:
1.太阳能电池模块和模块之间的连接电缆通常直接与连接到模块接线盒的连接电缆连接。
当长度不够时,也可以使用特殊的延长电缆。
根据组件的功率,这种类型的连接电缆具有三种规格,截面积分别为
2.5m㎡,4.0m㎡和6.0m㎡。
这种类型的连接电缆使用双层绝缘,对紫外线,水,臭氧,酸和盐具有出色的抵抗力,并且具有出色的全天候能力和耐磨性。
2.电池和逆变器之间的连接电缆要求使用通过UL测试的多股软线,并尽可能将其连接。
选择短而粗的电缆可以减少系统损耗,提高效率并增强可靠性。
3.电池阵列与控制器或DC接线盒之间的连接电缆也需要使用通过UL测试的多股软线。
横截面积规格由方形阵列的最大电流输出确定。
+VenteranceCEEIAICS K 中国电器工业协会标准CEEIA B 218.1-2012光伏发电系统用电缆技术条件第1部分:一般规定Technology requirements of cable used in photovoltaic systemPart 1: General requirements(送审稿)2012-0×-××发布 2012-0×-××实施中国电器工业协会 发布CEEIA B218.1—2012前言中国电器工业协会(CEEIA)是我国电工领域全国性的行业组织,具有社会团体法人资格。
按照科学发展观,探索标准化工作新机制,实现标准化事业为电工行业技术发展服务,是协会的工作内容之一。
中国境内的任何个人、组织、会员单位均可提出制、修定中国电器工业协会标准的建议并参与有关工作。
中国电器工业协会标准按照《中国电器工业协会标准制定工作管理办法》进行管理。
中国电器工业协会标准草案向行业广泛征求意见,并通过上述管理办法的工作程序,方可作为中国电器工业协会标准予以发布。
考虑到本标准中的某些条款可能涉及专利,协会不负责对任何该类专利权的鉴别。
《光伏发电系统用电缆技术条件》分为四个部分:第一部分:一般规定第二部分:光伏发电系统用交直流传输电力电缆第三部分:光伏发电系统用控制电缆第四部分:光伏发电系统用数据传输电缆本部分为第一部分。
本协会标准由中国电器工业协会标准化工作委员会提出。
本协会标准由xxxxxxxx归口。
本协会标准由xxxx负责解释。
本协会标准负责起草单位:上海金友金弘电线电缆有限公司、北京鉴衡认证中心。
本协会标准参加起草单位:本协会标准起草人:本协会标准于⨯⨯⨯⨯年⨯⨯月⨯⨯日发布。
本协会标准在实施过程中,如发现需要修改或补充之处,请将意见和有关资料寄给中国电器工业协会标准化工作委员会秘书处,以便修订工作。
光伏发电系统用电缆技术条件第一部分:一般规定1 范围本技术规范规定了光伏发电系统系列电缆的技术要求、试验方法、检验规则、使用范围、使用寿命、交货长度及其包装和标志。
本技术规范规定了光伏发电系统各部分连接的电缆分类,光伏发电组件与汇流、逆变之间的直流传输连线,逆变到主变间的交流传输连线,以及发电系统中数据采集、自动监控系统,气象和运行数据、自动检测、远程数据传输、自动跟踪系统用电缆。
本技术规范规定了光伏发电系统电缆应满足位于高寒、沙漠、沿海、滩涂、草原、屋顶等不同气候环境下不同类型光伏电站的分类选用。
本技术规范增加了电缆寿命评定内容,规定电缆使用寿命为25年。
2 规范性引用文件下列文件中的条款通过本标准的引用而成为本规范的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,凡是不注日期的引用文件,其最新版本适用于本规范。
GB/T 2900.10-2001 电工术语电缆(IEC 60050(461):1984,IDT)GB/T 12706.1-2008 额定电压1kV(Um=1.2kV)到35kV(Um=40.5kV)挤包绝缘电力电缆及附件第1部分:额定电压1kV(Um=1.2kV)和3kV(Um=3.6kV)电缆GB/T 9330-2008 塑料绝缘控制电缆GB/T 2423.17-2008 电工电子产品试验第2部分:试验方法试验Ka:盐雾UL 1581.1200-2008 电线电缆和软线参考标准GB/T 3956-2009 电缆的导体GB/T 6995.3-2008 电线电缆识别标志第3部分电线电缆识别标志(neq IEC 60227:1979)1〕GB/T 18380.1 电缆在火焰条件下的燃烧试验第1部分:单根绝缘电线或电缆的垂直燃烧试验方法JB/T 8137-1999 电线电缆交货盘GB/T 19216-2008 在火焰条件下电缆或光缆的线路完整性试验3 定义、符号3.1 术语和定义GB/T 12706-2008中确定的术语和定义适用于本规范。
3.1.1额定电压额定电压是电缆设计和电性能试验用的基准电压。
额定电压用U0/U表示。
U0—任意一相导体和大地(金属屏蔽,金属护层或周围介质)之间的电压有效值。
U—为多芯电缆或单芯电缆系统任何两相导体之间的电压有效值。
在交流系统中,电缆的额定电压应至少等于使用电缆的系统的标称电压,这个条件对U0和U值都适用;在直流系统中,该系统的标称电压应不大于电缆额定电压的1.5倍。
系统的工作电压应不大于系统标称电压的1.2倍。
4 产品代号、标记及示例4.1 产品代号4.1.1 系列代号——GF4.1.2 电缆类别代号电力电缆——省略控制电缆——K计算机数据传输电缆——D4.1.3 材料特征代号铜导体——T(省略)交联聚乙烯绝缘——YJ辐照交联聚烯烃绝缘——Y(F)J辐照交联聚烯烃护套——F4.1.4 结构特征代号软电缆——R钢带铠装——2钢丝铠装——3不锈钢钢带——6铜丝编织屏蔽——P铜带或铜塑带屏蔽——P2铝带或铝塑带屏蔽——P34.1.5 燃烧特性代号无卤阻燃——W耐火——N4.1.6 耐热特性代号90℃——90105℃——105125℃——1254.2 产品规格电缆规格见表1。
表1 产品规格4.3 产品表示方法示例用产品型号和规格(额定电压、芯数、标称截面)表示。
示例额定电压450/750V无卤阻燃辐照交联聚烯烃绝缘及护套耐热125℃钢带铠装控制软电缆,六芯,截面为6mm2,表示为:PVW-KY(F)JRF2-125 450/750V 6×6mm2。
示例额定电压300/500V无卤阻燃辐照交联聚烯烃绝缘及护套钢带铠装数字传输软电缆,两芯,截面为2.5mm2,表示为:PVW-DY(F)JRF2 300/500V 2×2.5mm2。
5 技术要求5.1 使用特性5.1.1 太阳能光伏发电系统系列电缆的额定电压U0/U为300/500V(DC 450V)、450/750V(DC 675V)、600/1000V(DC 900V)。
5.1.2 太阳能光伏发电系统系列电缆的使用的环境温度:低温为-40℃,高温90℃。
5.1.3 电缆的允许弯曲半径应不小于电缆外径的:非铠装电缆为电缆直径的 8倍;铠装电缆为电缆直径的 12倍5.2 材料5.2.1 导体用圆铜丝应符合GB/T 3956规定。
5.2.2 绝缘采用90℃交联聚乙烯,105℃、125℃辐照交联无卤低烟阻燃聚烯烃,其性能应符合表10的规定。
5.2.3 护套采用105℃、125℃辐照交联无卤低烟阻燃聚烯烃,其性能应符合表10的规定。
5.3 导体5.3.1 导体应符合GB/T 3956规定。
导体材料应为退火软铜线,可以镀锡或不镀锡。
5.3.2 导体表面应光洁、无油污、无损伤绝缘的毛刺,以及凸起或断裂的单线。
5.3.3 导体20℃时的直流电阻应符合GB/T 3956的规定。
5.4 隔离层允许在导体外面包覆一层由非吸湿性材料制成的隔离层。
5.5 绝缘5.5.1 绝缘应紧密挤包在导体上,且应容易剥离而不损伤导体或镀层。
绝缘表面应平整、色泽均匀,断面无目力可见的气泡和杂质。
5.5.2 耐火型电缆应在导体上绕包云母带,耐火云母带的性能可参见本标准附录C的规定。
并且允许绝缘层可以减薄,但减薄后的厚度应不小于原标准厚度的80%。
5.5.3 绝缘厚度的标称值应符合表2的规定,绝缘厚度的平均值应不小于标称值,其最薄处厚度应不小于标称值的90%-0.1mm。
5.5.4 绝缘的标识应符合GB/T 6995中的规定。
单芯电缆绝缘线芯优选为黑色。
5.5.5 电缆绝缘线芯应按GB/T 3048的规定经受表3的火花试验作为中间检验。
5.6 对绞、成缆5.6.1 数据传输电缆1.5mm2及以下的对绞节距应不大于100mm;2.5 mm2及耐火型电缆最大绞合节距应不大于120mm。
5.6.2 成缆方向为右向,且应采用与工作温度相适应的非吸湿性材料填充和绕包,以保证电缆外观的圆整。
5.6.3 用于固定敷设的硬结构电缆应不大于成缆外径的20倍,用于移动场合的软电缆成缆节距应不超过此电缆平均外径的16倍。
5.7 金属屏蔽屏蔽型电缆在缆芯外应由一根或多根金属带绕包或金属丝编织结构组成金属屏蔽。
必要时允许采用其他合适的屏蔽材料和形式,但应在后续部分中规定。
屏蔽和缆芯之间应重叠绕包二层非吸湿性带或挤包内衬层。
屏蔽后允许绕包一层非吸湿性带。
5.7.1 铜带绕包采用0.05mm~0.10mm的软铜带重叠绕包。
5.7.2 铝/塑复合薄膜带绕包采用0.05mm~0.10mm铝/塑复合薄膜带重叠绕包。
绕包时应在铝/塑复合薄膜带下纵向放置一根标称截面不小于0.20mm2的圆铜线或镀锡圆铜线构成的引流线,移动敷设软电缆的引流线应为多根结构的绞合软线。
5.7.3 金属编织编织屏蔽由软圆铜线或镀锡圆铜线构成,其编织密度应不小于80%。
编织层不允许整体连续,露出的铜线头应修齐。
每1m长度上允许更换金属线锭一次。
编织用圆铜线或镀锡圆铜线的标称直径应符合表4的规定。
5.7.4 编织密度计算编织层覆盖密度按公式(1)计算式中:P ——编织层覆盖密度,%p ——单向覆盖系数。
式中:D ——编织层的节圆直径,mm;d ——编织铜线的直径,mm;m ——编织机同一方向的锭数;n——每锭的编织线根数;L——编织节距,mm。
编织前假定直径d/mm 标称直径/mmd≤10 10<d≤20 10<d≤30 30<d 0.15 0.20 0.25 0.305.8 内衬层5.8.1 内衬层可以挤包或绕包。
5.8.2 内衬层所用材料应与电缆绝缘材料相容。
5.8.3 内护套应挤包在绝缘线芯上并允许嵌入绝缘线芯之间的空隙形成实际上的圆形,或均匀挤包在绕包层上,挤包的内护套应不粘连绝缘线芯或绕包隔离层。
5.8.4 挤包内衬层的标称厚度应符合表5的规定。
5.8.5 绕包内衬层厚度缆芯假设直径为40mm及以下时,绕包内衬层的近似厚度取0.4mm;如大于40mm时,则取0.6mm。
5.9 金属铠装5.9.1 金属铠装类型本部分包括铠装类型如下:a)钢带铠装b)不锈钢钢带铠装c)钢丝铠装5.9.2 铠装材料的选择与使用在选择铠装材料的时,尤其是铠装作为屏蔽层使用时,应特别考虑存在腐蚀的可能性,这不仅为了机械安全,而且也为了电气安全。
除特殊结构外,用于交流回路的单芯电缆铠装应采用非磁性材料。
5.9.3 电缆直径与铠装层尺寸的关系铠装圆金属丝的标称直径金和铠装金属带的标称厚度应分别不小于表6和表7规定的数值。
5.10 外护套5.10.1 护套应紧密挤包在绝缘线芯或包复层上。
并且不与绝缘相粘连。
有铠装层时应挤包在铠装层上。
护套表面应光洁,圆整、色泽基本一致,断面应无目力可见的气泡和杂质。