(完整版)第11章变换的电磁场
- 格式:ppt
- 大小:39.19 MB
- 文档页数:65
第11讲 镜像原理 (I)镜像原理的基础是唯一性定理,即在某一特定区域,只要解满足该区域的支配方程和相应的边界条件,那么,这个解就是该区域的唯一正确解。
11.1 导体平面镜像原理设一点电荷放置在无限大接地导体平面的右半空间中,导体平面位于x =0处,点电荷位于x x =0处。
如图11-1(a)所示。
图11-1导体平面对点电荷的镜像原理(a ) 原问题 (b )镜像问题图11-1(a)中区域1的边界条件是在x =0导体平面上切向电场为零,图中的电力线也清楚地表明了这一点。
如果在区域2中x x =-0处放一点电荷-q ,并去掉导体平面,如图11-1(b)所示,则由电力线分布可以看出,这两个点电荷产生的电场在x =0平面上仍保持切向电场为零,并且也没有改变区域1中的电荷分布,所以由唯一性定理可知,区域1中电场保持不变,即就区域1而言,图11-1(a)与11-1(b)的两个问题是等效的。
注意就区域2而言,两个问题是不等效的,因为图11-1(b)区域1中多了一个点电荷-q 。
类比可知,对于点电荷,导体平面就如同一面镜子,故将这一原理称为镜像原理。
在x x =-0处的点电荷-q ,称为镜像电荷。
依照同一原理,可以导出导体平面对点磁荷qm的镜像原理。
所不同的是磁荷产生的磁场在导电平面上法向分量为零,所以镜像磁荷应与原磁荷值相同。
电流、磁流分别是由电荷、磁荷的流动形成的,所以利用点电荷和点磁荷的导体平面镜像原理。
可以导出导体平面对电流和磁流的镜像原理,如图11-2所示。
(a)(b)JMJM图11-2导体平面对电流和磁流的镜像原理应当注意的是,在应用镜像原理时,不仅要考虑源的镜像,有其他物体存在时还要考虑其他物体的镜像,使镜像问题维持对称,如图11-3所示。
PEC(a)(b)JJ图11-3有其他物体存在时的镜像原理上述导体平面镜像原理可以推广到多导体平面的镜像问题。
导体拐角的镜像原理如图11-4(a)在无限大导体直角内放置一点电荷q。
01课程介绍与教学目标Chapter《大学物理》课程简介0102教学目标与要求教学目标教学要求教材及参考书目教材参考书目《普通物理学教程》(力学、热学、电磁学、光学、近代物理学),高等教育出版社;《费曼物理学讲义》,上海科学技术出版社等。
02力学基础Chapter质点运动学位置矢量与位移运动学方程位置矢量的定义、位移的计算、标量与矢量一维运动学方程、二维运动学方程、三维运动学方程质点的基本概念速度与加速度圆周运动定义、特点、适用条件速度的定义、加速度的定义、速度与加速度的关系圆周运动的描述、角速度、线速度、向心加速度01020304惯性定律、惯性系与非惯性系牛顿第一定律动量定理的推导、质点系的牛顿第二定律牛顿第二定律作用力和反作用力、牛顿第三定律的应用牛顿第三定律万有引力定律的表述、引力常量的测定万有引力定律牛顿运动定律动量定理角动量定理碰撞030201动量定理与角动量定理功和能功的定义及计算动能定理势能机械能守恒定律03热学基础Chapter1 2 3温度的定义和单位热量与内能热力学第零定律温度与热量热力学第一定律的表述功与热量的关系热力学第一定律的应用热力学第二定律的表述01熵的概念02热力学第二定律的应用03熵与熵增原理熵增原理的表述熵与热力学第二定律的关系熵增原理的应用04电磁学基础Chapter静电场电荷与库仑定律电场与电场强度电势与电势差静电场中的导体与电介质01020304电流与电流密度磁场对电流的作用力磁场与磁感应强度磁介质与磁化强度稳恒电流与磁场阐述法拉第电磁感应定律的表达式和应用,分析感应电动势的产生条件和计算方法。
法拉第电磁感应定律楞次定律与自感现象互感与变压器电磁感应的能量守恒与转化解释楞次定律的含义和应用,分析自感现象的产生原因和影响因素。
介绍互感的概念、计算方法以及变压器的工作原理和应用。
分析电磁感应过程中的能量守恒与转化关系,以及焦耳热的计算方法。
电磁感应现象电磁波的产生与传播麦克斯韦方程组电磁波的辐射与散射电磁波谱与光子概念麦克斯韦电磁场理论05光学基础Chapter01光线、光束和波面的概念020304光的直线传播定律光的反射定律和折射定律透镜成像原理及作图方法几何光学基本原理波动光学基础概念01020304干涉现象及其应用薄膜干涉及其应用(如牛顿环、劈尖干涉等)01020304惠更斯-菲涅尔原理单缝衍射和圆孔衍射光栅衍射及其应用X射线衍射及晶体结构分析衍射现象及其应用06量子物理基础Chapter02030401黑体辐射与普朗克量子假设黑体辐射实验与经典物理的矛盾普朗克量子假设的提普朗克公式及其物理意义量子化概念在解决黑体辐射问题中的应用010204光电效应与爱因斯坦光子理论光电效应实验现象与经典理论的矛盾爱因斯坦光子理论的提光电效应方程及其物理意义光子概念在解释光电效应中的应用03康普顿效应及德布罗意波概念康普顿散射实验现象与经德布罗意波概念的提典理论的矛盾测不准关系及量子力学简介测不准关系的提出及其物理量子力学的基本概念与原理意义07相对论基础Chapter狭义相对论基本原理相对性原理光速不变原理质能关系广义相对论简介等效原理在局部区域内,无法区分均匀引力场和加速参照系。
高三物理 第十一章 交变电流 电磁场和电磁波一、正弦交变电流1.正弦交变电流的产生当闭合线圈由中性面位置(图中O 1O 2位置)开始在匀强磁场中匀速转动时,线圈中产生的感应电动势随时间而变的函数是正弦函数:e =E m sin ωt ,其中E m =nBS ω。
这就是正弦交变电流。
通过转动轴而跟磁感线垂直的平面叫中性面。
线圈通过中性面时刻的特点是:磁通量ф的瞬时值最大是BS ,感应电动势的瞬时值e 为零,感应电流的瞬时值I 为零。
2.交变电流的有效值交变电流的有效值是根据电流的热效应规定的:让交流和直流通过相同阻值的电阻,如果它们在相同的时间内产生的热量相等,就把这一直流的数值叫做这一交流的有效值。
⑴只有正弦交变电流的有效值才一定是最大值的22倍。
⑵通常所说的交变电流的电流、电压;交流电表的读数;交流电器的额定电压、额定电流;保险丝的熔断电流等都指有效值。
(电容器的耐压值是交流的最大值。
)3.正弦交变电流的最大值、有效值、瞬时值和平均值的区别正弦交变电流的电动势、电压和电流都有最大值、有效值、瞬时值和平均值,特别要注意它们之间的区别。
以电动势为例:最大值用E m 表示,有效值用E 表示,瞬时值用e 表示,平均值用E 表示。
它们的关系为:m E E 22=,e =E m sin ωt 。
平均值不常用,必要时要用法拉第电磁感应定律直接求:t n E ∆∆Φ=。
特别要注意,有效值和平均值是不同的两个物理量,千万不可混淆。
生活中用的市电电压为220V ,其最大值为U m =2202V=311V (有时写为310V ),频率为50H Z ,所以其电压即时值的表达式为u =311sin314t V 。
例1.交流发电机的转子由B ∥S 的位置开始匀速转动,与它并联的电压表的示数为14.1V ,那么当线圈转过30º时刻,交流电压的瞬时值为____V 。
解:电压表的示数是交流电压的有效值U ,由此最大值为U m =2U =20V 。
高中物理11章知识点归纳总结### 高中物理第十一章知识点归纳总结第十一章:电磁场和电磁波1. 电磁场的基本概念- 电场:电荷周围存在的一种特殊物质,能够对电荷施加力。
- 磁场:磁体或运动电荷周围存在的一种特殊物质,对磁体或运动电荷产生力的作用。
- 场强:描述场的强弱和方向的物理量,电场强度和磁感应强度是描述电磁场的基本物理量。
2. 电场和磁场的产生- 静电场:由静止电荷产生的电场。
- 感应电场:由变化的磁场产生的电场。
- 恒定磁场:由永久磁体或电流产生的磁场。
3. 电磁感应- 法拉第电磁感应定律:描述变化磁场产生感应电动势的规律。
- 楞次定律:描述感应电流方向的规律,即感应电流的磁场总是阻碍原磁场的变化。
4. 麦克斯韦方程组- 高斯定律:描述电场和电荷的关系。
- 高斯磁定律:描述磁场和电流的关系。
- 法拉第电磁感应定律:描述变化的磁场产生电场的规律。
- 安培定律:描述电流和磁场的关系,包括位移电流。
5. 电磁波- 电磁波的产生:由变化的电场和磁场相互激发产生。
- 电磁波的性质:包括波长、频率、速度等。
- 电磁波谱:包括无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线。
6. 电磁波的传播- 波的传播:电磁波在介质中传播时,电场和磁场交替变化,形成波形。
- 波的反射、折射和干涉:电磁波在不同介质界面上发生的反射、折射和干涉现象。
7. 电磁波的应用- 通信:无线电波用于无线通信。
- 医疗:X射线用于医学成像。
- 能源传输:太阳能电池板将太阳光转化为电能。
8. 电磁波的防护- 电磁污染:电磁波可能对人体健康和电子设备产生影响。
- 防护措施:包括屏蔽、吸收和距离等方法。
9. 电磁场的能量和动量- 能量守恒:电磁场的能量在传播过程中守恒。
- 动量守恒:电磁波具有动量,可以对物体产生推动作用。
通过以上知识点的归纳总结,我们可以看到电磁场和电磁波在物理学中的重要性,它们不仅在理论研究中占有重要地位,而且在实际应用中也发挥着巨大作用。