第2章 特殊三角形单元测试卷(含解析)
- 格式:doc
- 大小:1.39 MB
- 文档页数:17
第2章特殊三角形单元检测试题B卷姓名:___________班级:___________考号:___________一、选择题(每题3分,共30分)1.下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=4,b=2,c=3 C.a=4,b=2,c=5 D.a=4,b=5,c=32.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是()A.75°或30° B.75° C.15° D.75°或15°3.如图,OD⊥AB于D,OP⊥AC于P,且OD=OP,则△AOD与△AOP全等的理由是()A.SSS B.ASA C.SSA D.HL4.有下列命题:①同位角相等,两直线平行;②全等三角形的周长相等;③直角都相等;④等边对等角.其中逆命题是真命题的有( )A.1个B.2个C.3个D.4个5.如图,已知D为△ABC边AB的中点,E在AC上,将△ABC沿着DE折叠,使A点落在BC上的F处.若∠B=65°,则∠BDF等于()A.65°B.50°C.60°D.57.5°6.如图,△ABM与△CDM是两个全等的等边三角形,MA⊥MD.有下列四个结论:(1)∠MBC=25°;(2)∠ADC+∠ABC=180°;(3)直线MB垂直平分线段CD;(4)四边形ABCD 是轴对称图形.其中正确结论的个数为()A.1个B.2个C.3个D.4个7.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2 B.错误!未找到引用源。
C.错误!未找到引用源。
D.2错误!未找到引用源。
8.如图,等边三角形ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点.若AE=2,当EF+CF取得最小值时,∠ECF的度数为( )A.20°B.25°C.30°D.45°9.如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,∠ADC+∠ABC=180°,有下列结论:①CD=CB;②AD+AB=2AE;③∠ACD=∠BCE;④AB-AD=2BE.其中正确的是( )A.②B.①②③C.①②④D.①②③④10.如图所示,错误!未找到引用源。
第2章特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、在等腰三角形中,有一个角是50°,它的一条腰上的高与底边的夹角是()A.25°B.25°或40°C.30°或40°D.50°2、如图,△ABC中,AB=AC,三条高AD,BE,CF相交于O,那么图中全等的三角形有()A.5对B.6对C.7对D.8对3、下列汽车标志不是轴对称图形的是()A. B. C. D.4、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为()A.30°B.40°C.45°D.50°5、等腰三角形的两边分别为5cm、4cm,则它的周长是()A.14cmB.13cmC.16cm或9cmD.13cm或14cm6、如图是清朝李演撰写的《仇章算术细草图说》中的“勾股圆方图”,四边形ABCD,四边形EBGF,四边形HNQD均为正方形,BG,NQ,BC是某个直角三角形的三边,其中BC是斜边,若HM:EM=8:9,HD=2,则AB的长为( )A. B. C.3 D.7、如图,将长方形ABCD沿对角线BD折叠,使点C落在点C′处,BC′交AD于E,AD=8,AB=4,则重叠部分(即)的面积为()A.6B.7.5C.10D.208、如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°9、如图,∠XOY=90°,OW平分∠XOY,PA⊥OX,PB⊥OY,PC⊥OW.若OA+OB+OC=1,则OC=()A.2-B. -1C.6-D. -310、如图,AB∥CD,AD=CD,∠1=55°,则∠2的度数是()A. B. C. D.11、如图,∠AOB=30°,点P在∠AOB的平分线上,PC⊥OB于点C,PD OB交OA于点D,若PD=6,则PC的长为()A.4B.3C.2D.112、如图,将一张矩形纸片沿对角线剪开得到两个直角三角形纸片,将这两个直角三角形纸片通过图形变换构成以下四个图形,这四个图形中是中心对称图形的是()A. B. C. D.13、如图,在△ABC中,BC=4,BC边上的中线AD=2,AB+AC=3+ ,则S△ABC等于()A. B. C. D.14、某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到设计方案有等腰三角形,正三角形,等腰梯形和菱形四种图形,你认为符合条件的是()A.等腰三角形B.正三角形C.等腰梯形D.菱形15、山西剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透空的感觉和艺术享受.下列四幅剪纸图案中,是轴对称图形的是( )A. B. C. D.二、填空题(共10题,共计30分)16、如图,在矩形ABCD中,AB=8,AD=10,按如图所示的折叠使点D落在BC上的点E处,则EF的长为________.17、如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD、CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为________。
单元测试(二)特殊三角形题号一二三总分合分人复分人得分一.1.(泰安中考)下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是( C )A.1B.2C.3D.42.(荆门中考)已知一个等腰三角形的两边长分别2和4,则该等腰三角形的周长为( C )A.8或10B.8C.10D.6或123.下列说法中,正确的是( A )A.每个命题都有逆命题B.假命题的逆命题一定是假命题C.每个定理都有逆定理D.假命题没有逆命题4.如图,字母B所代表的正方形的面积是( C )A.12B.13C.144D.194第4题图第5题图第7题图第8题图5.(内江中考)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB 的延长线于点E,若∠E=35°,则∠BAC的度数为( A )A.40°B.45°C.60°D.70°6.下列说法中,正确的个数是( C )①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的夹角对应相等的两个直角全角形全等;③一锐角和斜边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等.A.1B.2C.3D.47.(萧山区期中)如图,已知△ABC是等边三角形,点D.E分别在A C.BC边上,且AD=CE,AE与BD交于点F,则∠AFD的度数为( A )A.60°B.45°C.75°D.70°8.如图,在△ABC中,∠ACB=90°,AC=40,CB=9,点M,N在AB上,且AM=AC,BN=BC,则MN的长为( C )A.6B.7C.8D.99.如图,在△ABC中,∠B=∠C,点D在BC上,∠BAD=50°,AD=AE,则∠EDC的度数为( B )A.15°B.25°C.30°D.50°第9题图第10题图10.(下城区校级期中)如图,∠BAC=∠DAF=90°,AB=AC,AD=AF,点D.E为BC边上的两点,且∠DAE=45°,连结EF.BF,则下列结论:①△AED≌△AEF;②△AED为等腰三角形;③BE+DC>DE;④BE2+DC2=DE2,其中正确的有( B )A.4个B.3个C.2个D.1个二.填空题(每小题4分,共24分)11.若等腰三角形的顶角为50°,则它的一个底角为65°.12.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为96.13.如图,已知∠BAC=130°,AB=AC,AC的垂直平分线交BC于点D,则∠ADB=50°.14.小明想测量教学楼的高度.他用一根绳子从楼顶垂下,发现绳子垂到地面后还多了2 m,当他把绳子的下端拉开6 m后,发现绳子下端刚好接触地面,则教学楼的高为8m.15.(萧山区期中)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=9.16.做如下操作:在等腰△ABC中,AB=AC,AD平分∠BAC,交BC于点D.将△ABD作关于直线AD的轴对称变换,所得的像与△ACD重合.对于下列结论:①在同一个三角形中,等角对等边;②在同一个三角形中,等边对等角;③等腰三角形的顶角平分线.底边上的中线和高互相重合.由上述操作可得出的是②③(将正确结论的序号都填上).三.解答题(共66分)17.(6分)如图,请思考怎样把每个三角形纸片只剪一次,将它分成两个等腰三角形,试一试,在图中画出裁剪的痕迹.(1)(2)解:(1)如图所示:或(2)如图所示:18.(8分)(杭州中考)如图,在△ABC 中,AB =AC ,点E ,F 分别在AB ,AC 上,AE =AF ,BF 与CE 相交于点P .求证:PB =PC .并直接写出图中其他相等的线段.证明:在△ABF 和△ACE 中,⎩⎨⎧AB =AC ,∠BAF =∠CAE ,AF =AE ,∴△ABF ≌△ACE (SAS ). ∴∠ABF =∠ACE . ∵AB =AC ,∴∠ABC =∠ACB .∴∠ABC -∠ABF =∠ACB -∠ACE ,即∠PBC =∠PCB .∴PB =PC .图中相等的线段还有:PE =PF ,BF =CE ,BE =CF .19.(8分)(丽水中考)如图,已知△ABC ,∠C =90°,AC <BC ,D 为BC 上一点,且到A ,B 两点的距离相等.(1)用直尺和圆规,作出点D 的位置(不写作法,保留作图痕迹); (2)连结AD ,若∠B =37°,求∠CAD 的度数.解:(1)点D 的位置如图所示(D 为AB 中垂线与BC 的交点). (2)∵在Rt △ABC 中,∠B =37°, ∴∠CAB =53°.∵AD =BD ,∴∠BAD =∠B =37°.∴∠CAD =53°-37°=16°.20.(10分)如图,在等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,B ,P ,Q 三点在一条直线上,且∠ABP =∠ACQ ,BP =CQ ,问△APQ 是什么形状的三角形?试证明你的结论.解:△APQ 是等边三角形.证明: ∵△ABC 为等边三角形, ∴AB =AC .又∵∠ABP =∠ACQ ,BP =CQ , ∴△ABP ≌△ACQ (SAS ).∴AP =AQ ,∠BAP =∠CAQ .∵∠BAC =∠BAP +∠P AC =60°,∴∠P AQ =∠CAQ +∠P AC =∠BAP +∠P AC =∠BAC =60°. ∴△APQ 是等边三角形.21.(10分)如图,AB =AC ,∠BAC =90°,BD ⊥AE 于D ,CE ⊥AE 于E ,且BD >CE .求证:BD =EC +ED .证明:∵∠BAC =90°,CE ⊥AE ,BD ⊥AE ,∴∠ABD +∠BAD =90°,∠BAD +∠EAC =90°,∠BDA =∠E =90°. ∴∠ABD =∠EAC .在△ABD 和△CAE 中,⎩⎨⎧∠ABD =∠EAC ,∠BDA =∠E ,AB =AC ,∴△ABD ≌△CAE (AAS ). ∴BD =AE ,AD =EC . ∵AE =AD +DE ,∴BD =EC +ED .22.(12分)如图1所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图2所示.已知展开图中每个正方形的边长为1.(1)求在该展开图中可画出最长线段的长度?这样的线段可画几条?(2)试比较立体图中∠BAC 与平面展开图中∠B ′A ′C ′的大小关系? 解:(1)在平面展开图中可画出最长的线段长为10.如图2中的A ′C ′,在Rt △A ′C ′D ′中,∵C ′D ′=1,A ′D ′=3,由勾股定理得A ′C ′=C′D′2+A′D′2=1+9=10.这样的线段可画4条.(2)∵立体图中∠BAC 为等腰直角三角形的一锐角,∴∠BAC =45°.在平面展开图中,连结B′C′,由勾股定理可得A′B′=5,B′C′= 5.又∵A′B′2+B′C′2=A′C′2,由勾股定理的逆定理可得△A′B′C′为直角三角形.又∵A′B′=B′C′,∴△A′B′C′为等腰直角三角形.∴∠B′A′C′=45°.∴∠BAC与∠B′A′C′相等.23.(12分)在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,AD=AE,∠DAE=∠BAC,连结CE.(1)如图1,当点D在线段BC上时,若∠BAC=90°,则∠BCE=90°.(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.②当点D在直线BC上移动时,α,β之间有怎样的数量关系?请直接写出你的结论.图1图2解:(2)①α+β=180°.理由:∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△ABD≌△ACE.∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB=∠BCE=β.∵α+∠B+∠ACB=180°,∴α+β=180°.②当点D在射线BC上时,α+β=180°;当点D在CB延长线上时,α=β.第二章特殊三角形单元测试一.单选题(共10题;共30分)1.已知,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.35海里D.40海里2.如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为()A.(1,2)B.(2,2)C.(3,2)D.(4,2)3.如图,Rt△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,DE⊥AB于E,若BC=9,CD=3,则△ADB的面积是()A.27B.18C.18D.94.如图所示,∠C=∠D=90°添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是()A.AC=ADB.AB=ABC.∠ABC=∠ABDD.∠BAC=∠BAD5.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()A.75°B.60°C.45°D.30°6.对于命题“如果a>b>0,那么a2>b2 . ”用反证法证明,应假设()A.a2>b2B.a2<b2C.a2≥b2D.a2≤b27.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A.B在围成的正方体中的距离是()A.0B.1C.D.8.用反证法证明命题:“如图,如果AB∥CD,AB∥EF,那么CD∥EF”,证明的第一个步骤是()A.假定CD∥EFB.已知AB∥EFC.假定CD不平行于EFD.假定AB不平行于EF9.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.10.在△ABC中,∠B=90°,若BC=a,AC=b,AB=c,则下列等式中成立的是()A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2﹣a2=b2二.填空题(共8题;共24分)11.用反证法证明“一个三角形中至多有一个钝角”时,应假设 ________12.在△ABC和△MNP中,已知AB=MN,∠A=∠M=90°,要使△ABC≌△MNP,应添加的条件是 ________ . (只添加一个)13.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是________14.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行________ 米.15.如图是一段楼梯,高BC是3米,斜边AC是5米,如果在楼梯上铺地毯,那么至少需要地毯________米.16.如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为________ m2 .17.在如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形的边长为7cm,则正方形a,b,c,d的面积之和是________ cm2 .18.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和38,则△EDF的面积为________.三.解答题(共5题;共40分)19.已知直线m.n是相交线,且直线l1⊥m,直线l2⊥n.求证:直线l1与l2必相交.20.在一个直角三角形中,如果有一个锐角为30度,且斜边与较小直角边的和为18cm,求斜边的长.21.如图,在B港有甲.乙两艘渔船,若甲船沿北偏东30°的方向以每小时8海里速度前进,乙船沿南偏东60°的方向以每小时6海里速度前进,两小时后,甲船到M岛,乙船到N岛,求M岛到N岛的距离.22.如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于多少cm?23.如图所示,△ABC中,D为BC边上一点,若AB=13cm,BD=5cm,AD=12cm,BC=14cm,求AC的长.四.综合题(共1题;共6分)24.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,AB=16,BC=12.(1)△ABD与△CBD的面积之比为________;(2)若△ABC的面积为70,求DE的长.答案解析一.单选题1.【答案】D【考点】勾股定理的应用【解析】【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了32,24.再根据勾股定理,即可求得两条船之间的距离。
第2章特殊三角形一、选择题1.若等腰三角形的顶角为40°,则它的底角度数为()A.40° B.50° C.60° D.70°2.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为()A.35° B.45° C.55° D.60°3.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35° B.40° C.45° D.50°4.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15° B.17.5°C.20° D.22.5°5.若一个等腰三角形的两边长分别是2和5,则它的周长为()A.12 B.9 C.12或9 D.9或76.若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C.7或9 D.9或127.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或128.如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为()A.80° B.90° C.100°D.105°9.如图,△ABC、△ADE中,C、D两点分别在AE、AB上,BC与DE相交于F点.若BD=CD=CE,∠ADC+∠ACD=114°,则∠DFC的度数为何?()A.114 B.123 C.132 D.14710.已知等腰△ABC的两边长分别为2和3,则等腰△ABC的周长为()A.7 B.8 C.6或8 D.7或811.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或1712.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30° B.40° C.45° D.60°13.已知等腰三角形△ABC中,腰AB=8,底BC=5,则这个三角形的周长为()A.21 B.20 C.19 D.1814.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD=()A.30° B.45° C.60° D.90°15.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40° B.45° C.60° D.70°16.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或1717.如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD=()A.36° B.54° C.18° D.64°18.如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A.36° B.60° C.72° D.108°19.如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A.150°B.160°C.130°D.60°20.在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为()A .B .C .D .二、填空题21.等腰三角形的一个外角是60°,则它的顶角的度数是______.22.如图,△ABC 中,D 是BC 上一点,AC=AD=DB ,∠BAC=102°,则∠ADC=______度.23.如图,a ∥b ,∠ABC=50°,若△ABC 是等腰三角形,则∠α=______°(填一个即可)24.一个等腰三角形的两边长分别是2cm 、5cm ,则它的周长为______cm .25.若等腰三角形的两条边长分别为7cm 和14cm ,则它的周长为______cm .26.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是______.27.如图,∠BOC=9°,点A 在OB 上,且OA=1,按下列要求画图:以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1;再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2;再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3;…这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n=______.第2章特殊三角形参考答案一、选择题1.D;2.C;3.A;4.A;5.A;6.B;7.C;8.B;9.B;10.D;11.A;12.B;13.A;14.B;15.A;16.D;17.B;18.C;19.A;20.A;二、填空题21.120°;22.52;23.130;24.12;25.35;26.110°或70°;27.9;。
第2章特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、下列图形中,既是中心对称图形,又是轴对称图形的个数是()A.1B.2C.3D.42、如图,以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若大圆半径为10cm,小圆半径为6cm,则弦AB的长为()A.2cmB.4cmC.8cmD.16cm3、如图,在中,,,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则=()A. B. C. D.4、在下列图形中,既是轴对称图形,又是中心对称图形的是()A. 直角三角形B. 正五边形C. 正方形 D. 等腰梯形5、我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米6、如图,△ABC是等边三角形,BC⊥CD,且AC=CD,则∠BAD的度数为()A.50°B.45°C.40°D.35°7、如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为D,E是边BC的中点,AD=ED=3,则BC的长为()A.3B.3C.6D.68、下面四个图形中不是轴对称图形的是()A. B. C. D.9、下列图形中,是轴对称图形的是()A. B. C. D.10、在等腰三角形ABC中,AB=4,BC=2,则△ABC的周长为()A.8B.10C.8或10D.6或811、如图,在△ACB的边BC所在直线上找一点P,使得△ABP为等腰三角形,则满足条件的点P共有()A.2个B.3个C.4个D.5个12、四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使三角形AMN周长最小时,则∠AMN+∠ANM的度数为()A.80°B.90°C.100°D.130°13、如图,直线AB与⊙O相切于点A,⊙O的半径为2,若∠OBA = 30°,则OB的长为()A. B.4 C. D.214、如图,在正方形ABCD中,E、F分别在CD、AD边上,且CE=DF,连接BE、CF相交于G 点。
浙教版八年级上册数学第二章特殊三角形一、选择题1.下列关于体育运动的图标是轴对称图形的为( )A.B.C.D.2.已知△ABC中,a、b、c分别是∠A,∠B,∠C的对边,下列条件不能判断△ABC是直角三角形的是( )A.∠A=∠C-∠B B.a2=b2-c2C.a:b:c=2:3:4D.a=34,b=54,c=13.等腰三角形的顶角是50°,则这个三角形的底角的大小是( )A.50°B.65°或50°C.65°D.80°4.在锐角△ABC中,AB=15,AC=13,高AD=12,则BC的长度为( )A.16B.15C.14D.135.下列命题的逆命题是真命题的是( )A.直角都相等B.全等三角形的对应角相等C.在Rt△ABC中,30°角所对的边是斜边的一半D.在△ABC中,a、b、c为三角形三边的长,若a2=(b+c)(b―c),则△ABC是直角三角形6.如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于( )A.5B.4C.3D.27.如图,在△ABC中,∠C=90°,AC=4cm,BC=3cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则CD的长为( )A .1cmB .43cmC .53cmD .2cm8.《九章算术》中记录了这样一则“折竹抵地”问题:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)如果我们假设折断后的竹子高度为x 尺,根据题意,可列方程为( )A .x 2+42=102B .(10―x)2+42=102C .(10―x)2+42=x 2D .x 2+42=(10―x)29.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于 12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的中垂线上;④S △DAC :S △ABC =1:3.A .1B .2C .3D .410.如图,在△ABC 中,AB =2,∠B =60°,∠A =45°,点D 为BC 上一点,点P 、Q 分别是点D 关于AB 、AC 的对称点,则PQ 的最小值是( )A.6B.8C.4D.2二、填空题11.在三角形ABC中,∠C=90°,AB=7,BC=5,则AC的长为 .12.命题“两直线平行,同位角相等.”的逆命题是 .13.小明同学将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件是 .14.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,则∠DBC= °.15.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M,P是直线MN上一动点,点H 为BC中点.若BC=5,△ABC的面积是30,则PB+PH的最小值为 .16.如图,等边△ABC中,BF是AC边上中线,点D为BF上一动点,连接AD,在AD的右侧作等边△ADE,连接EF,当△AEF周长最小时,则∠CFE的大小是 .三、解答题17.如图,AB⊥BC于点B,AD⊥DC于点D,BC=DC.求证:∠1=∠2.18.如图,在△ABC中,AD⊥BC于D,AC=5,BC=9,AD=4,求AB的长.19.如图,△ABC中,CA=CB,D是AB的中点,∠B=42°,求∠ACD的度数.20.如图所示,若MP和NQ 分别垂直平分AB和AC.(1)若△APQ的周长为12,求BC的长;(2)∠BAC=105°,求∠PAQ 的度数.21.如图,在△ABC中,AB=AC=5,BC=6,点D在AC边上,BD=AB.(1)求△ABC的面积;(2)求AD的长.22.(1)如图1,点D、E分别是等边△ABC边AC、AB上的点,连接BD、CE,若AE=CD,求证:BD=CE (2)如图2,在(1)问的条件下,点H在BA的延长线上,连接CH交BD延长线于点F,.若BF=BC,求证:EH=EC.23.如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD=3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动,设点P的运动时间为t,连接AP.(1)当t=3秒时,求AP的长度;(2)当△ABP为等腰三角形时,求t的值;(3)过点D作DE⊥AP于点E,连接PD,在点P的运动过程中,当PD平分∠APC时,直接写出t的值.答案解析部分1.【答案】A2.【答案】C3.【答案】C4.【答案】C5.【答案】C6.【答案】B7.【答案】B8.【答案】D9.【答案】D10.【答案】A11.【答案】2612.【答案】同位角相等,两直线平行13.【答案】∠A=60°(答案不唯一)14.【答案】3015.【答案】1216.【答案】90°17.【答案】证明:∵AB⊥BC,AD⊥DC∴∠B=∠D=90°又∵在Rt△ABC和Rt△ADC中AC=AC BC=DC,∴Rt△ABC≌Rt△ADC(HL).∴∠1=∠2.18.【答案】21319.【答案】48°20.【答案】(1)12;(2)30°.21.【答案】(1)解:过点A作AM⊥BC于点M,如图所示:∵AB =AC ,AM ⊥BC ,∴M 是BC 的中点,∵AB =5,BC =6,∴BM =CM =3,∴AM =AB 2―BM 2=52―32=4,∴△ABC 的面积=12BC•AM =12×6×4=12;(2)解:过点B 作BN ⊥AC 于点N ,如图所示:∵BD =AB ,∴AN =DN =12AD ,∵△ABC 的面积=12AC•BN =12×5•BN =12;∴BN =245,AN =AB 2―BN 2=75∴AD =2AN =145.22.【答案】(1)证明:∵△ABC 是等边三角形,∴AB=BC=AC ,∠A=∠ABC=∠BCA.∴在△AEC 和△CDB 中AE =CD ∠EAC =∠DCB AC =CB∴△AEC ≌△CDB (SAS )∴BD=CE.(2)证明:如图:由(1)△AEC≌△CDB,∴∠ACE=∠CBD.∴60°-∠ACE=60°-∠CBD,即∠ABD=∠ECB.∵BC=CF,∴∠BCF=∠BFC,又∵∠BCF=∠ECB+∠ECH,∠BFC=∠ABD+∠H,∴∠ECH=∠H,∴EH=EC.23.【答案】(1)241(2)当△ABP为等腰三角形时,t的值为45、16、5;(3)当t的值为5或11时,PD平分∠APC.。
特殊三角形单元培优卷一、选择题(每题3分,共30分)1.若等腰三角形的两边长分别为2和5,则它的周长为( )A.9 B.7C.12 D.9或122.如图,等边△ABC的边长为4,点E是边AB的中点,且BE=CF,则CD的长为( )第2题图第4题图第5题图A.4B.3C.2D.1 3.在△ABC中,∠ABC=30°,AB边长为4,AC边的长度可以,1、2、3、4、5中取值,满足这些条件的互不全等的三角形的个数是( ).A.3个B.4个C.5个D.6个4.如图,△ABC的面积为6,AB=5,AD平分∠BAC.若E,F分别是AC,AD上的动点,则FE+FC的最小值( )A.245B.125C.52D.35.如图,等边△ABC中,D为AC中点,点P、Q分别为AB、AD上的点,BP=AQ=4,QD=3,在BD上有一动点E,则PE+QE的最小值为( )A.7B.8C.10D.12 6.如图:点C在AB上,△DAC、△EBC均是等边三角形,AE、BD分别与CD、CE交于点M,N,则下列结论①AE=DB,②CM=CN,③△CMN为等边三角形,④MN//BC.正确的有个.( )第6题图第7题图第8题图A.1个B.2个C.3个D.4个7.如图,Rt△ABC中,∠C=90°,分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S4.若已知AC×BC=12,则S1+S2+S3+S4的值为( )A.18B.24C.25D.36 8.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90∘;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD,四个结论中成立的是( )A.①②④B.①②③C.③④D.①③9.如图,已知∠AOB=120°,点D是∠AOB的平分线上的一上定点,点E,F分别在射线OA和射线OB上,且∠EDF=60°.下列结论:①△DEF是等边三角形;②四边形DEOF的面积是一个定值;①当DE⊥OA时,△DEF的周长最小;④当DE∥OB时,DF也平行于OA. 其中正确的个数是( )第9题图第10题图A.1个B.2个C.3个D.4个10.如图,任意画一个∠A=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD相交于点P,连接AP,以下结论:①∠BPC=120°;②AP平分∠BAC;③AP=PC;④BD+CE=BC;⑤SΔPBA:SΔPCA=AB:AC,正确的有( )A.5个B.4个C.3个D.2个二、填空题(每题4分,共24分)11.如图,阴影部分是两个正方形,其他三个图形是一个正方形和两个直角三角形,则阴影部分的面积之和为 .第11题图第13题图第14题图12.等腰三角形一腰上的高与另一腰的夹角为52°,则该三角形的底角的度数为 .13.如图,在△ACD中,∠ACD=90°,∠A=30°,AC=b,CD=a,以C为圆心,CD为半径画弧,交斜边AD于点B,AB=c,则下列说法正确的是 .(填序号)①△BCD是等边三角形,②a+c<b,③a=c,④b=2a14.如图,在四边形ABCD中,∠B=∠D=90°,∠C=55°,M,N分别是边BC,CD上的动点,当△AMN的周长最小时,∠MAN= °.15.如图,在△ABC中,AH是高,AE//BC,AB=AE,在AB边上取点D,连接DE,DE=AC,若S△ABC=5S△ADE,BH=1,则BC= .第15题图第16题图16.如图,有一直角三角形纸片ABC,∠ACB=90°,∠B=30°,AC=1,CD⊥AB于点D.F,G分别是线段AD,BD上的点,H,Ⅰ分别是线段AC,BC上的点,沿HF,GI折叠,使点A,B恰好都落在线段CD上的点E处.当FG=EG时,AF的长是 .三、综合题(17-19每题6分,20-21题每题8分,22题12分,共46分)17.如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5,求:(1)△ABC的周长;(2)△ABC是否是直角三角形?为什么?18.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:BE=BF;(2)若∠CAE=30°,求∠ACF度数.19.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且∠ABD=∠ACD,∠EAD=∠BAC.(1)求证:AE=AD;(2)若∠ACB=65°,求∠BDC的度数.20.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AC=8,BC=6,E,F分别是直线AC,AB上的动点,连结EF.(1)求CD的长.(2)若点E在边AC上,且3AE=2CE,EF⊥AC,求证:CF平分∠ACD.(3)是否存在点E,F,使得以C,E,F为顶点的三角形与△CDF全等?若不存在,请说明理由;若存在,求出所有符合条件的DF的长.21.在△ABC中,∠B=40°,∠ACB=110°,D为边BC延长线上一点,连接AD.(1)如图1,当∠D=∠B时,求证:AB=CD;(2)如图2,当∠D=2∠B时,求证:AB=AD+CD;、(3)如图3,当AB=CD时,求证:∠D=∠B.22.概念学习规定:如果一个三角形的三个角分别等于另一个三角形的三个角,那么称这两个三角形互为“等角三角形”.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原来三角形是“等角三角形”,我们把这条线段叫做这个三角形的“等角分割线”.(1)理解概念如图1,在Rt△ABC中,∠ACB=90°,CD⊥AB,请写出图中两对“等角三角形”(2)概念应用如图2,在△ABC中,CD为角平分线,∠A=40°,∠B=60°.求证:CD为△ABC的等角分割线.(3)在△ABC中,∠A=42°,CD是△ABC的等角分割线,直接写出∠ACB的度数.答案解析部分1-5.【答案】CDCBC6-10.【答案】DAACB11.【答案】6412.【答案】71°或19°13.【答案】①③14.【答案】7015.【答案】5216.【答案】2517.【答案】(1)解:∵AD⊥BC,AD=12,BD=16∴AB= AD2+BD2=122+162=20同理:AC= AD2+CD2=122+52=13∴△ABC的周长为AC+BC+AB=AC+BD+DC+AB=13+16+5+20=54;(2)解:∵BC2=(BD+DC)2=212=441,AB2=202=400,AC2=132=169 ∴BC2≠AB2+ AC2∴△ABC不是直角三角形.18.【答案】(1)证明:∵∠ABC=90°,∴∠CBF=∠ABE=90°,在Rt△ABE和Rt△CBF中{AE=CFAB=BC,∴Rt△ABE≌Rt△CBF(HL),∴BE=BF.(2)解:∵AB=BC,∠ABC=90°,∴∠CAB=∠ACB=45°,又∵∠BAE=∠CAB−∠CAE=45°−30°=15°,由(1)知:Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=15°,∴∠ACF=∠BCF+∠ACB=15°+45°=60°.19.【答案】(1)证明:∵∠BAC=∠EAD∴∠BAC﹣∠EAC=∠EAD﹣∠EAC即:∠BAE=∠CAD在△ABE 和△ACD 中{∠ABD =∠ACD AB =AC ∠BAE =∠CAD,∴△ABE ≌△ACD (ASA ),∴AE =AD ;(2)解:∵∠ACB =65°,AB =AC ,∴∠ABC =∠ACB =65°,∴∠BAC =180°﹣∠ABC ﹣∠ACB =180°﹣65°﹣65°=50°,∵∠ABD =∠ACD ,∠AOB =∠COD ,∴∠BDC =∠BAC =50°.20.【答案】(1)解:∵∠ACB=90°,AC=8,BC=6,∴AB =62+82=10.∵CD ⊥AB 于点D ,∴S △ABC =12AC·BC =12AB·CD ,∴ 10CD=6×8,即CD =245.(2)解:如图1,∵3AE=2CE ,AC=8,CD =245,∴CE =35×8=245,即CE=CD.∵CD ⊥AB ,EF ⊥AC ,∴∠CDF=∠CEF=90°.∵CF=CF ,∴△CEF ≌△CDF(HL),∴∠ECF=∠DCF ,∴CF平分∠ACD.(3)解:存在点E,F,使得以C,E,F为顶点的三角形与△CDF全等.由题意,以C,E,F为顶点的三角形与△CDF全等,CF是公共边,有四种情形:①如图2,若点E,F在线段AC,AD上.当CE=CD,∠CDF=∠CEF=90°时,∵CF=CF,∴△CEF≌△CDF,∴CE=CD=245,AE=8−245=165.∵EF=FD,EF2+AE2=AF2,∴FD2+(165)2=(325−FD)2,∴FD=125.②如图3,若点E,F在射线AC,AB上.同①可得△CEF≌△CDF,∴CE=CD=245,AE=8+245=645.∵EF=FD,EF2+AE2=AF2,∴FD2+(645)2=(FD+325)2,∴FD=485.③如图4,若点E在线段AC上,点F在线段BD上.当EF=CD,∠CDF=∠CEF=90°时,∵CF=CF,∴△CEF≅△FDC,∴EF=CD=245,CE=FD.∵E F2+A E2=A F2,∴(245)2+(8−FD)2=(325+FD)2,∴FD=85.④如图5,若点E在射线CA上,点F在射线BA上.当EF=CD,∠CDF=∠CEF=90°时,∵CF=CF,∴△CEF≅△FDC,此时△ACD≅△AFE,∴FD=AF+AD=AC+AD=8+325=725.综上,所有符合条件的DF的长是85,125,485,725.21.【答案】(1)证明:∵∠ACB=110°,∴∠ACD=180°−∠ACB=70°,∵∠D=∠B=40°,∴AB=AD,∠CAD=180°−∠D−∠ACD=70°,∴∠ACD=∠CAD,∴CD=AD,∴AB=CD;(2)证明:如图所示,在AB上截取一点E使得AE=AD,连接CE,∵∠ACB=110°,∴∠ACD=180°−∠ACB=70°,∵∠D=2∠B=80°,∴∠CAD=180°−∠ACD−∠ADC=30°,∵∠BAC=180°−∠B−∠ACB=30°,∴∠CAE=∠CAD,又∵AE=AD,AC=AC,∴△CAE≌△CAD(SAS),∴CD=CE,∠AEC=∠D,∵∠AEC=∠D=2∠B=∠B+∠BCE,∴∠B=∠BCE,∴BE=CE,∴BE=CD,∵AB=AE+BE∴AB=AD+CD;(3)证明:如图所示,在射线CD上取一点H,使得AB=AH,连接AH,∴∠B=∠AHB由(1)同理可证明AB=CH,又∵AB=CD,∴CH=CD,∴点H和点D重合,∴∠B=∠ADB.22.【答案】(1)解:△ABC与△ACD,△ABC与△BCD,△ACD与△BCD是“等角三角形”;(2)证明:∵在△ABC中,∠A=40°,∠B=60°∴∠ACB=180°−∠A−∠B=80°∵CD为角平分线,∠ACB=40°,∴∠ACD=∠DCB=12∴∠ACD=∠A,∠DCB=∠A,∴CD=DA,∵在△DBC中,∠DCB=40°,∠B=60°,∴∠BDC=180°−∠DCB−∠B=80°,∴∠BDC=∠ACB,∵CD=DA,∠BDC=∠ACB,∠DCB=∠A,∠B=∠B,∴CD为△ABC的等角分割线;(3)解:∠ACB的度数为111°或84°或106°或92°.。
第二章特殊三角形单元测试一、单选题(共10题;共30分)1、已知,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A、25海里B、30海里C、35海里D、40海里2、如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为()A、(1,2)B、(2,2)C、(3,2)D、(4,2)3、如图,Rt△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,DE⊥AB于E,若BC=9,CD=3,则△ADB的面积是()A、27B、18C、18D、94、如图所示,∠C=∠D=90°添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是()A、AC=ADB、AB=ABC、∠ABC=∠ABDD、∠BAC=∠BAD5、在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()A、75°B、60°C、45°D、30°6、对于命题“如果a>b>0,那么a2>b2.”用反证法证明,应假设()A、a2>b2B、a2<b2C、a2≥b2D、a2≤b27、图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B在围成的正方体中的距离是()A、0B、1C、D、8、用反证法证明命题:“如图,如果AB∥CD,AB∥EF,那么CD∥EF”,证明的第一个步骤是()A、假定CD∥EFB、已知AB∥EFC、假定CD不平行于EFD、假定AB不平行于EF9、如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M 是OP的中点,则DM的长是()A、2B、C、D、10、在△ABC中,∠B=90°,若BC=a,AC=b,AB=c,则下列等式中成立的是()A、a2+b2=c2B、b2+c2=a2C、a2+c2=b2D、c2﹣a2=b2二、填空题(共8题;共24分)11、用反证法证明“一个三角形中至多有一个钝角”时,应假设 ________12、在△ABC和△MNP中,已知AB=MN,∠A=∠M=90°,要使△ABC≌△MNP,应添加的条件是 ________ .(只添加一个)13、如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是________14、如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行________ 米.15、如图是一段楼梯,高BC是3米,斜边AC是5米,如果在楼梯上铺地毯,那么至少需要地毯________米.16、如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为________ m2.17、在如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形的边长为7cm,则正方形a,b,c,d的面积之和是________ cm2.18、如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和38,则△EDF的面积为________.三、解答题(共5题;共40分)19、已知直线m、n是相交线,且直线l1⊥m,直线l2⊥n.求证:直线l1与l2必相交.20、在一个直角三角形中,如果有一个锐角为30度,且斜边与较小直角边的和为18cm,求斜边的长.21、如图,在B港有甲、乙两艘渔船,若甲船沿北偏东30°的方向以每小时8海里速度前进,乙船沿南偏东60°的方向以每小时6海里速度前进,两小时后,甲船到M岛,乙船到N岛,求M岛到N岛的距离.22、如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于多少cm?23、如图所示,△ABC中,D为BC边上一点,若AB=13cm,BD=5cm,AD=12cm,BC=14cm,求AC的长.四、综合题(共1题;共6分)24、如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,AB=16,BC=12.(1)△ABD与△CBD的面积之比为________;(2)若△ABC的面积为70,求DE的长.答案解析一、单选题1、【答案】D【考点】勾股定理的应用【解析】【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了32,24.再根据勾股定理,即可求得两条船之间的距离。
浙教版初中数学八年级上册第二单元《特殊三角形》单元测试卷考试范围:第二单元;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。
在每小题列出的选项中,选出符合题目的一项)1.如图,△AOD关于直线l进行轴对称变换后得到△BOC,则以下结论中不正确的是( )A. ∠1=∠2B. ∠3=∠4C. l垂直平分AB,且l垂直平分CDD. AC与BD互相平分2.如图,六边形ABCDEF是轴对称图形,CF所在的直线是它的对称轴.若∠AFC+∠BCF=150∘,则∠AFE+∠BCD的大小是( )A. 150∘B. 300∘C. 210∘D. 330∘3.如图,等边三角形ABC的三条角平分线相交于点O,OD//AB,交BC于点D,OE//AC,交BC于点E.图中等腰三角形共有( )A. 6个B. 7个C. 8个D. 9个4.如图,∠MON=6∘,点A在OM上,设OA=a.按下列要求作图:以A为圆心,a为半径向右作弧,交ON于点A1,得第1条线段AA1;再以A1为圆心,a为半径向右作弧,交OM于点A2,得第2条线段A1A2;再以A2为圆心,a为半径向右作弧,交ON于点A3,得第3条线段A2A3⋯⋯这样作下去,直到得到第m条线段后就不能再作出符合要求的线段了,则m的值为.( )A. 12B. 13C. 14D. 155.如图所示,在△ABC中,点D,E,F分别在BC,AB,AC上,且BD=BE,CD=CF,∠EDF=50°,则∠A的度数为( )A. 65°B. 80°C. 40°D. 30°6.如图,在△ABC中,AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是( )A. 15°B. 30°C. 50°D. 65°7.如图,在下列三角形中,若AB=AC,则不能被一条直线分成两个小等腰三角形的是( )A. B.C. D.8.命题“如果|x|−|y|=0,那么x,y互为相反数”的逆命题是( )A. 如果|x|,|y|互为相反数,那么x−y=0B. 如果x,y互为相反数,那么|x|−|y|=0C. 如果x−y=0,那么|x|,|y|互为相反数D. 如果|x|−|y|=0,那么x−y=09.在△ABC中,若∠A:∠B:∠C=2:3:5,则△ABC是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形10.如图所示,已知△ABC中,AB=6,AC=9,AD⊥BC于D,M为AD上任一点,则MC2−MB2等于( )A. 9B. 35C. 45D. 无法计算11.如图,AD//BC,AB⊥BC,CD⊥DE,CD=ED.若AD=2,BC=3,则△ADE的面积为.( )A. 1B. 1.5C. 2D. 312.如图,在△ABC中,AB=AC,AE是经过点A的一条直线,且点B,C在AE的两侧,BD⊥AE于点D,CE⊥AE于点E,AD=CE,则∠BAC的度数为( )A. 45∘B. 60∘C. 90∘D. 120∘第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.如下图,在等腰△ABC中,AB=AC,点D在BC边上,连接AD,且CD=5,AD=13,直线EF是腰AC的垂直平分线,若点M在EF上运动,则△CDM周长的最小值为.14.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN//BC,交AB于点M,交AC于点N.若BM+CN=12,则线段MN的长为.15.如图,在△ABC中,AB=AC,BC=6,AF⊥BC于点F,BE⊥AC于点E,且D是AB的中点.若△DEF的周长是11,则AB=.16.在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R,S,PR=PS,AQ=PQ,则下面三个结论:①AS=AR;②PQ//AR;③△BRP≌△CSP.其中正确的是______.三、解答题(本大题共9小题,共72分。
特殊三角形单元检测参考答案与试题解析一.选择题(共10小题)1.在△ABC中,AB=AC,若∠A=40°,则∠C为()A.40°B.70°C.40°或70°D.100°【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形;推理能力.【答案】B【分析】根据等腰三角形两底角相等列式计算即可得解.【解答】解:∵AB=AC,∴∠B=∠C,又∵∠A=40°,∴∠C=(180°﹣∠A)=(180°﹣40°)=70°.故选:B.【点评】本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等的性质,熟记性质是解题的关键.2.下列图形中,只有一条对称轴的是()A.B.C.D.【考点】轴对称的性质;轴对称图形.【专题】平移、旋转与对称;几何直观.【答案】A【分析】根据轴对称图形的概念,分别分析四个选项的对称轴,再作答.【解答】解:A、等腰三角形只有一条对称轴,故此选项符合题意;B、菱形有2条对称轴,故此选项不符合题意;C、正五边形有5条对称轴,故此选项不符合题意;D、矩形有2条对称轴,故此选项不符合题意;故选:A.【点评】本题考查了轴对称图形.解题的关键是掌握轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.这条直线叫做对称轴.3.线段AB在如图所示的8×8网格中(点A、B均在格点上),在格点上找一点C,使△ABC 是以∠B为顶角的等腰三角形,则所有符合条件的点C的个数是()A.4B.5C.6D.7【考点】等腰三角形的判定.【专题】等腰三角形与直角三角形;几何直观.【答案】C【分析】根据题意可得,以点B为圆心,BA长为半径画圆,圆与格点的交点即为符合条件的点C.【解答】解:如图所示:使△ABC是以∠B为顶角的等腰三角形,所以所有符合条件的点C的个数是6个.故选:C.【点评】本题考查了等腰三角形的判定,解决本题的关键是掌握等腰三角形的判定.4.已知△ABC中,AB=AC,求证:∠B<90°,下面写出运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.④③①②B.③④②①C.①②③④D.③④①②【考点】等腰三角形的性质;反证法.【专题】反证法;推理能力.【答案】D【分析】根据反证法的一般步骤判断即可.【解答】解:运用反证法证明这个命题的四个步骤:1、假设在△ABC中,∠B≥90°,2、由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°,3、∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾,4、因此假设不成立.∴∠B<90°,故选:D.【点评】本题考查的是反证法,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.如图,在△ABC中,AB=AC,分别以点A、点B为圆心,以大于AB长为半径画弧,两弧交点的连线交AC于点D,交AB于点E,连接BD,若∠A=40°,则∠DBC=()A.40°B.30°C.20°D.10°【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形;运算能力.【答案】B【分析】根据等腰三角形的性质和三角形的内角和即可得到结论.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°﹣40°)=70°,∵AD=BD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=30°,故选:B.【点评】本题考查基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形内角和定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.6.如图,数轴上的点A表示的数是﹣2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A.B.+2C.﹣2D.2【考点】实数与数轴;勾股定理.【专题】计算题;实数;等腰三角形与直角三角形;运算能力;推理能力.【答案】C【分析】根据题意,利用勾股定理可以求得AC的长,从而可以求得AD的长,进而可以得到点D表示的数.【解答】解:由题意可得,AB=3,BC=2,AB⊥BC,∴AC===,∴AD=.∴点D表示数为﹣2.故选:C.【点评】本题考查实数与数轴,解答本题的关键是熟练掌握勾股定理.7.如图,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC,当用反证法证明时,第一步应假设()A.AB≠AC B.PB=PC C.∠APB=∠APC D.∠B≠∠C【考点】反证法.【专题】反证法;应用意识.【答案】B【分析】假设结论PB≠PC不成立,PB=PC成立.【解答】解:假设结论PB≠PC不成立,即:PB=PC成立.故选:B.【点评】本题考查反证法,解题的关键是熟练掌握反证法的步骤.8.如图,在△ABC中,AB=6,BC=8,∠B=90°,若P是AC上的一个动点,则AP+BP+CP 的最小值是()A.14.8B.15C.15.2D.16【考点】垂线段最短;勾股定理.【专题】动点型;解直角三角形及其应用;应用意识.【答案】A【分析】利用勾股定理求出AC,根据垂线段最短,求出BP的最小值即可解决问题.【解答】解:∵∠B=90°,AB=6,BC=8,∴AC===10,∵AP+BP+PC=BP+AC=BP+10,根据垂线段最短可知,当BP⊥AC时,BP的值最小,最小值BP===4.8,∴AP+BP+CP的最小值=10+4.8=14.8,故选:A.【点评】本题考查解直角三角形,勾股定理,动点问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.如图,△ABC中,∠ACB=90°,分别以三边为底向形外作等腰直角三角形,它们的面积依次为S1、S2、S3,则下列关系式正确的是()A.S1>S2+S3B.S1<S2+S3C.S1=S2+S3D.S12=S22+S32【考点】勾股定理.【专题】等腰三角形与直角三角形;推理能力;应用意识.【答案】C【分析】根据等腰直角三角形的性质,可以分别表示出S1、S2、S3,然后根据勾股定理,即可得到S1、S2、S3之间的关系,从而可以解答本题.【解答】解:如右图所示,△ABC中,∠ACB=90°,分别以三边为底向形外作等腰直角三角形,∴S1==,同理可得,S2=,S3=,∵∠ACB=90°,∴a2+b2=c2,∴S1=S2+S3,故选:C.【点评】本题考查勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.10.如图所示,凸四边形ABCD中,∠A=90°,∠C=90°,∠D=60°,AD=3,AB=,若点M、N分别为边CD,AD上的动点,则△BMN的周长最小值为()A.2B.3C.6D.3【考点】勾股定理;轴对称﹣最短路线问题.【专题】计算题;转化思想;等腰三角形与直角三角形;几何直观;运算能力;推理能力.【答案】C【分析】由轴对称知识作出对称点,连接两对称点,由两点之间线段最短证明B'B''最短,多次用勾股定理求出相关线段的长度,平角的定义及角的和差求出角度的大小,最后计算出△BMN的周长最小值为6.【解答】解:作点B关于CD、AD的对称点分别为点B'和点B'',连接B'B''交DC和AD于点M和点N,DB,连接MB、NB;再DC和AD上分别取一动点M'和N'(不同于点M和N),连接M'B,M'B',N'B和N'B'',如图1所示:∵B'B''<M'B'+M'N'+N'B'',B'M'=BM',B''N'=BN',∴BM'+M'N'+BN'>B'B'',又∵B'B''=B'M+MN+NB'',MB=MB',NB=NB'',∴NB+NM+BM<BM'+M'N'+BN',∴l△BMN=NB+NM+BM时周长最小;连接DB,过点B'作B'H⊥DB''于B''D的延长线于点H,如图示2所示:∵在Rt△ABD中,AD=3,AB=,∴==2,∴∠2=30°,∴∠5=30°,DB=DB'',又∵∠ADC=∠1+∠2=60°,∴∠1=30°,∴∠7=30°,DB'=DB,∴∠B'DB''=∠1+∠2+∠5+∠7=120°,DB'=DB''=DB=2,又∵∠B'DB''+∠6=180°,∴∠6=60°,∴HD=,HB'=3,在Rt△B'HB''中,由勾股定理得:===6.∴l△BMN=NB+NM+BM=6,故选:C.【点评】本题综合考查了轴对称﹣最短路线问题,勾股定理,平角的定义和两点之间线段最短等相关知识点,重点掌握轴对称﹣最短路线问题,难点是构建直角三角形求两点之间的长度.二.填空题(共6小题)11.等腰三角形有一边长为2cm,周长为12cm,则该等腰三角形的腰长为5cm.【考点】三角形三边关系;等腰三角形的性质.【专题】等腰三角形与直角三角形;几何直观.【答案】5.【分析】题目给出等腰三角形有一条边长为2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分两种情况讨论:当已知长是2cm的边是底边时,腰长==5(cm),当已知长是2cm的边是腰时,三边长是2cm,2cm,8cm不满足三边关系定理.故等腰三角形腰长是5cm.故答案为:5.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.12.如图,AD是△ABC的高,且AB+BD=DC,∠BAD=40°,则∠C的度数为25°.【考点】等腰三角形的判定与性质.【专题】等腰三角形与直角三角形;推理能力.【答案】25°.【分析】在线段DC上取一点E,使DE=DB,连接AE,先由线段垂直平分线的性质得AB=AE,则∠EAD=∠BAD=40°,∠AEB=∠B=50°,再由AB+BD=DC,得到△ACE 是等腰三角形,得∠EAC=∠C,然后由三角形的外角性质即可得出结论.【解答】解:在线段DC上取一点E,使DE=DB,连接AE,∵AD是△ABC的高,∴AD⊥BC,∴AD垂直平分BE,∴AB=AE,∴∠EAD=∠BAD=40°,∠AEB=∠B=90°﹣∠BAD=50°,∵AB+BD=DC,DE+CE=DC,∴AB=CE,∴AE=CE,∴∠EAC=∠C,∵∠AEB=∠EAC+∠C=2∠C,∴∠C=∠AEB=25°,故答案为:25°.【点评】本题考查了等腰三角形的判定与性质、线段垂直平分线的性质、三角形的外角性质等知识;熟练掌握等腰三角形的判定与性质是解题的关键.13.如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A →B的路径运动,且速度为每秒1cm,设出发的时间为t秒.问t为6或12或13或10.8时,△PBC构成等腰三角形?【考点】等腰三角形的判定;勾股定理.【专题】等腰三角形与直角三角形;几何直观.【答案】6或12或13或10.8.【分析】先由勾股定理求出AC=8cm,再由①P在AC上,易知PC=BC,t=6,②P在AB上时,分三种情形分类讨论即可解决问题.【解答】解:在△ABC中,∠C=90°,AB=10cm,BC=6cm,∴AC===8(cm),①若P在边AC上时,BC=CP=6cm,如图2所示:此时用的时间为6秒,△PBC为等腰三角形;②若P在AB边上时,有三种情况:a、若BP=BC=6cm,如图3所示:此时AP=4cm,AC+AP=12(cm),即P运动的路程为12cm,所以用的时间为12秒,∴t=12时,△PBC为等腰三角形;b、若CP=BC=6cm,过C作斜边AB的高CD,如图4所示:则BD=PD,由面积法得:CD===4.8(cm),∴BD===3.6(cm),∴BP=2BD=7.2(cm),∴P运动的路程为:AC+AB﹣BP=8+10﹣7.2=10.8(cm),∴t=10.8,△PBC为等腰三角形;c、若BP=CP时,如图5所示:则∠PCB=∠PBC,∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴P A=PC,∴P A=PB=AB=5(cm).∴P运动的路程为:AC+AP=8+5=13(cm),∴t=13时,△PBC为等腰三角形;∴t为6或12或13或10.8时,△PBC为等腰三角形.故答案为:6或12或13或10.8.【点评】考查了勾股定理、等腰三角形的判定与性质的计算等知识,熟练掌握等腰三角形的判定与性质,进行分类讨论是解决问题的关键.14.如图,已知Rt△ABC中,∠C=90°,BC=8,AC=6,CD是斜边AB上的高,求AD 的长度为.【考点】勾股定理.【专题】等腰三角形与直角三角形;应用意识.【答案】见试题解答内容【分析】根据勾股定理求出AB,根据三角形的面积公式求出CD,最后根据勾股定理计算,得到答案;也可以利用三角形相似得AD的长.【解答】解:Rt△ABC中,∠C=90°,∴AB===10,∴S△ABC=×AC×BC=×AB×CD,即×6×8=×10×CD,解得,CD=在Rt△ACD中,AD===,故答案为:.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.15.如图,点P是∠AOB内任意一点,OP=3cm,点M和点N分别是射线OA和射线OB 上的动点,∠AOB=30°,则△PMN周长的最小值是3cm.【考点】轴对称﹣最短路线问题.【专题】平移、旋转与对称;推理能力.【答案】3cm.【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点M、N在CD上时,△PMN的周长最小.【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=3cm,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=3(cm).∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=3cm.故答案为3cm.【点评】此题主要考查轴对称﹣﹣最短路线问题,熟知两点之间线段最短是解答此题的关键.16.如图,点P是∠AOB内任意一点,OP=8,M、N分别是射线OA和OB上的动点,若△PMN周长的最小值为8,则∠AOB=30°.【考点】轴对称﹣最短路线问题.【专题】平移、旋转与对称;推理能力.【答案】30°.【分析】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,由对称的性质得出PM=DM,OP=OC,∠COA=∠POA;PN=CN,OP=OD,∠DOB=∠POB,得出∠AOB=∠COD,证出△OCD是等边三角形,得出∠COD=60°,即可得出结果.【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,关于OB的对称点为C,∴PM=DM,OP=OD,∠DOA=∠POA;∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD,∠AOB=∠COD,∵△PMN周长的最小值是8,∴PM+PN+MN=8,∴DM+CN+MN=8,即CD=8=OP,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°,故答案为:30°.【点评】本题考查了轴对称的性质、最短路线问题、等边三角形的判定与性质;熟练掌握轴对称的性质,证明三角形是等边三角形是解决问题的关键.三.解答题(共7小题)17.如图,四边形ABCD中,AB∥CD,点E为CD上一点,连接BE,AE,且BE、AE分别平分∠ABC、∠BAD.求证:CD=AD+BC.【考点】等腰三角形的判定.【专题】证明题;等腰三角形与直角三角形;推理能力.【答案】见试题解答内容【分析】由角平分线的性质可得出∠DAE=∠BAE,∠ABE=∠EBC,由平行线的性质得出∠BAE=∠DEA,∠ABE=∠BEC,则可得出AD=DE,BC=CE,再利用等量代换可得CD=AD+BC.【解答】证明:∵AE平分∠DAB,BE平分∠ABC,∴∠DAE=∠BAE,∠ABE=∠EBC,∵AB∥CD,∴∠BAE=∠DEA,∠ABE=∠BEC,∴∠DAE=∠DEA,∠EBC=∠BEC,∴AD=DE,BC=CE.∴CD=DE+CE=AD+BC.【点评】此题主要考查了平行线的性质,角平分线的性质,等腰三角形的判定,熟练掌握等腰三角形的判定是解题的关键.18.如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于D;以点A为圆心,AD长为半径画弧,交线段AC于点E,连接CD.(1)若∠A=28°,求∠ACD的度数;(2)设BC=3,AC=4.求AD的长.【考点】勾股定理.【专题】等腰三角形与直角三角形;应用意识.【答案】见试题解答内容【分析】(1)根据三角形内角和定理求出∠B,根据等腰三角形的性质求出∠BCD,计算即可;(2)根据勾股定理求出AB,根据线段的和差可得结论.【解答】解:(1)∵∠ACD=90°,∠A=28°,∴∠B=62°.∵BD=BC,∴∠BCD=∠BDC==59°.∴∠ACD=90°﹣∠BCD=90°﹣59°=31°;(2)∵∠ACB=90°,BC=3,AC=4,由勾股定理得:AB===5,∵AB=AD+BD,BD=BC=3,∴AD=5﹣3=2.【点评】本题考查的是勾股定理,三角形的内角和定理,掌握勾股定理是解题的关键.19.用一条长为35cm的细绳围成一个等腰三角形.(1)如果底边长是腰长的一半,求各边长;(2)能围成有一边长为9cm的等腰三角形吗?如果能,请求出它的另两边.【考点】三角形三边关系;等腰三角形的判定.【专题】等腰三角形与直角三角形;运算能力;应用意识.【答案】(1)7cm、14cm、14cm;(2)能围成有一边长为9cm的等腰三角形,三角形的另外两边长为9cm、17cm或13cm、13cm.【分析】(1)根据题意和底边长是腰长的一半,即可列出相应的方程,从而可以求得各边的长;(2)先判断能否围成有一边长为9cm的等腰三角形,然后利用分类讨论的方法可以求得三角形另外两边的长.【解答】解:(1)设底边长为xcm,则腰长为2xcm,由题意可得,x+2x+2x=35,解得x=7,∴2x=14,即各边的长为7cm、14cm、14cm;(2)能围成有一边长为9cm的等腰三角形,当腰长为9cm时,则底边长为35﹣9×2=17(cm),∵9+9>17,∴能围成有腰长为9cm的等腰三角形,∴三角形的另外两边长为9cm、17cm;当底边长为9cm时,则腰长为(35﹣9)÷2=13(cm),∵13+9>13,∴能围成有底边长为9cm的等腰三角形,∴三角形的另外两边长为13cm、13cm;由上可得,三角形的另外两边长为9cm、17cm或13cm、13cm.【点评】本题考查等腰三角形的性质、三角形三边关系,解答本题的关键是明确题意,利用分类讨论的数学思想解答.20.如图,在△ABC中,AB=AC,M,N分别是AB,AC边上的点,并且MN∥BC.(1)△AMN是否是等腰三角形?说明理由;(2)点P是MN上的一点,并且BP平分∠ABC,CP平分∠ACB.①求证:△BPM是等腰三角形;②若△ABC的周长为a,BC=b(a>2b),求△AMN的周长(用含a,b的式子表示).【考点】列代数式;平行线的性质;等腰三角形的判定与性质.【专题】整式;线段、角、相交线与平行线;等腰三角形与直角三角形;推理能力.【答案】(1)△AMN是否是等腰三角形;(2)①见解析;②a﹣b.【分析】(1)由等腰三角形的性质得到∠ABC=∠ACB,由平行线的性质得到∠AMN=∠ABC,∠ANM=∠ACB,于是得到∠AMN=∠ANM,根据等角对等边即可证得结论;(2)①由角平分线的定义得到∠PBM=∠PBC,由平行线的性质得到∠MPB=∠PBC,于是得到∠PBM=∠MPB,根据等角对等边即可证得结论;②由①知MB=MP,同理可得:NC=NP,故△AMN的周长=AB+AC,再根据已知条件即可求出结果.【解答】(1)解:△AMN是是等腰三角形,理由如下:∵AB=AC,∴∠ABC=∠ACB,∵MN∥BC,∴∠AMN=∠ABC,∠ANM=∠ACB,∴∠AMN=∠ANM,∴AM=AN,∴△AMN是等腰三角形;(2)①证明:∵BP平分∠ABC,∴∠PBM=∠PBC,∵MN∥BC,∴∠MPB=∠PBC∴∠PBM=∠MPB,∴MB=MP,∴△BPM是等腰三角形;②由①知MB=MP,同理可得:NC=NP,∴△AMN的周长=AM+MP+NP+AN=AM+MB+NC+AN=AB+AC,∵△ABC的周长为a,BC=b,∴AB+AC+b=a,∴AB+AC=a﹣b∴△AMN的周长=a﹣b.【点评】本题主要考查了等腰三角形的性质和判定,平行线的性质,列代数式,能够灵活应用这些性质是解决问题的关键.21.如图,△ABC中,∠ABC=∠ACB.(1)作图:作点A关于BC的对称点D;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BD,AD,AD交BC于点O.求证:BD=AC.【考点】等腰三角形的性质;作图﹣轴对称变换.【专题】作图题;几何直观.【答案】见试题解答内容【分析】(1)作AE⊥BC于O,在射线OE上截取OD=OA即可.(2)证明AB=AC,BD=BA即可.【解答】(1)解:如图,点D即为所求.(2)证明:∵∠ABC=∠ACB,∴AB=AC,∵AD⊥BC,OA=OD,∴BA=BD,∴AC=BD.【点评】本题考查作图﹣轴对称变换,等腰三角形的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.22.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,当两个全等的直角三角形如图摆放时,也可以用面积法来证明,请将下面说理过程补充完整:证明:连接DB,过点D作BC边上的高DF,交BC的延长线与点F,则四边形DFCE为长方形,所以DF=EC=b﹣a.(用含字母的代数式表示)因为S四边形ABCD=S△ACD+S△ABC=+;S四边形ABCD=S△ADB+S△DCB=;所以;所以a2+b2=c2.【考点】勾股定理的证明.【专题】等腰三角形与直角三角形;几何直观.【答案】b﹣a;S△ABC;;S△DCB;;;;a2+b2=c2.【分析】根据面积公式和勾股定理的证明解答即可.【解答】证明:连接DB,过点D作BC边上的高DF,交BC的延长线与点F,则四边形DFCE为长方形,所以DF=EC=b﹣a.(用含字母的代数式表示)因为S四边形ABCD=S△ACD+S△ABC=+;S四边形ABCD=S△ADB+S△DCB=;所以;所以a2+b2=c2.故答案为:b﹣a;S△ABC;;S△DCB;;;;a2+b2=c2.【点评】此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键.23.如图,在△ABC中,∠ACB=90°,点D是直线BC上一点.(1)如图1,若AC=BC=2,点D是BC边的中点,点M是线段AB上一动点,求△CMD周长的最小值;(2)如图2,若AC=4,BC=8,是否存在点D,使以A,D,B为顶点的三角形是等腰三角形,若存在,请直按写出线段CD的长度:若不存在,请说明理由.【考点】等腰三角形的判定;勾股定理;轴对称﹣最短路线问题.【专题】等腰三角形与直角三角形;平移、旋转与对称;推理能力.【答案】见试题解答内容【分析】(1)作C关于AB的对称点E,连接DE交AB于M,此时,△CMD周长的值最小,连接BE,根据勾股定理即可得到结论;(2)根据勾股定理得到AB==4,当AD1=AB时,△AD1B的等腰三角形,当BD2=AB=4时,△AD2B的等腰三角形,当AD3=D3B时,△AD3B的等腰三角形,当BD4=AB=4时,△AD4B的等腰三角形,根据等腰三角形的性质即可得到结论.【解答】解:(1)作C关于AB的对称点E,连接DE交AB于M,此时,△CMD周长的值最小,∵AC=BC,∠ACB=90°,∴∠BCE=45°,连接BE,∴BC=BE=2,∴△CBE是等腰直角三角形,∴DE===,∴△CMD周长的最小值=1+;(2)存在,∵AC=4,BC=8,∴AB==4,当AD1=AB时,△AD1B的等腰三角形,∵AC⊥BC,∴CD1=BC=8;当BD2=AB=4时,△AD2B的等腰三角形,∴CD2=4﹣8;当AD3=D3B时,△AD3B的等腰三角形,∴BD3=8﹣CD3,∴AC2+CD=BD,∴42+CD=(8﹣CD3)2,解得:CD2=3,当BD4=AB=4时,△AD4B的等腰三角形,∴CD4=8+4,综上所述,以A,D,B为顶点的三角形是等腰三角形,线段CD的长度为8或4﹣8或3或8+4.【点评】本题考查的是轴对称﹣最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.。
绝密★启用前第二章特殊三角形单元测试卷题号一二三总分得分第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共10小题,每小题3分,共30分)1.Rt△ABC中,∠C=90°,∠B=36°,则∠A=()A.44°B.34°C.54°D.64°2.已知x、y为正数,且|x﹣4|+(y﹣3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为直径的圆的面积为()A.5πB.25πC.7πD.6.25π3.如图,将∠BAC沿DE向∠BAC内折叠,使AD与A′D重合,A′E与AE重合,若∠A=30°,则∠1+∠2=()A.50°B.60°C.45°D.以上都不对4.在△ABC中,∠B=30°,点D在BC边上,点E在AC边上,AD=BD,DE=CE,若△ADE 为等腰三角形,则∠C的度数为()A.20°B.20°或30°C.30°或40°D.20°或40°5.如图,在4×4方格中,以AB为一边,第三个顶点也在格点上的等腰三角形可以作出()A.7个B.6个C.4个D.3个6.如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A对应点为A′,且B′C=3,则AM的长是()A.1.5 B.2 C.2.25 D.2.57.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为()A.169 B.25 C.19 D.138.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.69.历史上对勾股定理的一种证法采用了下列图形:其中两个全等的直角三角形边AE、EB在一条直线上.证明中用到的面积相等关系是()A.S△EDA=S△CEB B.S△EDA+S△CEB=S△CDBC.S四边形CDAE=S四边形CDEB D.S△EDA+S△CDE+S△CEB=S四边形ABCD10.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图的直角梯形,其中三边长分别为,3,4,则原直角三角形纸片的斜边长是()A.10 B.C.10或D.10或第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共8小题,每小题3分,共24分)11.等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为.12.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为.13.如图,在△ABC中,D为AB上一点,AD=CD=BC,若∠ACD=40°,则∠B=°.14.一个三角形有一内角为48°,如果经过其一个顶点作直线能把其分成两个等腰三角形,那么它的最大内角可能是.15.如图所示,已知△ABC中,∠ACB=90°,AB=5cm,BC=3cm,CD⊥AB于D,则CD的长为cm.16.如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知DE=5,AB=8,则BF=.17.如图,A、B是网格中的两个格点,点C也是网格中的一个格点,连接AB、BC、AC,当△ABC为等腰三角形时,格点C的不同位置有处,设网格中的每个小正方形的边长为1,则所有满足题意的等腰三角形ABC的面积之和等于.18.如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1,还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去…,经过第2017次操作后得到的折痕D2016E2016,到BC的距离记为h2017;若h1=1,则h2017的值为.评卷人得分三.解答题(共6小题,共46分)19.(6分)在Rt△ABC中,∠C=90°,∠A=2∠B,求出∠A,∠B的度数.20.(6分)阅读下列材料,并回答问题.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方,这个结论就是著名的勾股定理.请利用这个结论,完成下面活动:(1)一个直角三角形的两条直角边分别为6、8,那么这个直角三角形斜边长为.(2)如图1,AD⊥BC 于D,AD=BD,AC=BE,AC=3,DC=1,求BD的长度.(3)如图2,点A在数轴上表示的数是,请用类似的方法在图2数轴上画出表示数的B点(保留作图痕迹).21.(8分)已知:△ABC中,∠B、∠C的角平分线相交于点D,过D作EF∥BC交AB 于点E,交AC于点F,求证:BE+CF=EF.22.(8分)如图:E在△ABC的AC边的延长线上,D点在AB边上,DE交BC于点F,DF=EF,BD=CE.求证:△ABC是等腰三角形.(过D作DG∥AC交BC于G)23.(8分)ABCD是长方形纸片的四个顶点,点E、F、H分别是边AB、BC、AD上的三点,连结EF、FH.(1)将长方形纸片的ABCD按如图①所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D′,点B′在F C′上,则∠EFH的度数为;(2)将长方形纸片的ABCD按如图②所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D′(B′、C′的位置如图所示),若∠B′FC′=18°,求∠EFH的度数;(3)将长方形纸片的ABCD按如图③所示的方式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B′、C′、D′(B′、C′的位置如图所示),若∠EFH=β°,求∠B′FC′的度数为.24.(10分)如图1,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4,(1)试说明△ABC是等腰三角形;(2)已知S=40cm2,如图2,动点M从点B出发以每秒1cm的速度沿线段BA向点A △ABC运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.设点M运动的时间为t(秒),①若△DMN的边与BC平行,求t的值;②若点E是边AC的中点,问在点M运动的过程中,△MDE能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.参考答案与试题解析1.解:∵Rt△ABC中,∠C=90°,∠B=36°,∴∠A=90°﹣∠B=90°﹣36°=54°,故选:C.2.解:依题意得:x﹣4=0,y﹣3=0,则x=4,y=3,斜边长==5,故以这个直角三角形的斜边为直径的圆的面积为π×()2=6.25π.故选:D.3.解:∵∠1=180﹣2∠ADE;∠2=180﹣2∠AED.∴∠1+∠2=360°﹣2(∠ADE+∠AED)=360°﹣2(180°﹣30°)=60°.故选:B.4.解:如图所示,∵AD=BD,∠B=30°,∴∠ADC=60°,∵DE=CE,∴可设∠C=∠EDC=α,则∠ADE=60°﹣α,∠AED=2α,根据三角形内角和定理可得,∠DAE=120°﹣α,分三种情况:①当AE=AD时,有60°﹣α=2α,解得α=20°;②当DA=DE时,有120°﹣α=2α,解得α=40°;③当EA=ED时,有120°﹣α=60°﹣α,方程无解,综上所述,∠C的度数为20°或40°,故选:D.5.解:如图所示,分别以A、B为圆心,AB长为半径画弧,则圆弧经过的格点C1、C2、C3、C4、C5、C6、C7即为第三个顶点的位置;作线段AB的垂直平分线,垂直平分线未经过格点.故以AB为一边,第三个顶点也在格点上的等腰三角形可以作出7个.故选:A.6.解:设AM=x,连接BM,MB′,在Rt△ABM中,AB2+AM2=BM2,在Rt△MDB′中,B′M2=MD2+DB′2,∵MB=MB′,∴AB2+AM2=BM2=B′M2=MD2+DB′2,即92+x2=(9﹣x)2+(9﹣3)2,解得x=2,即AM=2,故选:B.7.解:∵大正方形的面积13,小正方形的面积是1,∴四个直角三角形的面积和是13﹣1=12,即4×ab=12,即2ab=12,a2+b2=13,∴(a+b)2=13+12=25.故选:B.8.解:如图所示:∵(a+b)2=21,∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选:C.9.解:∵由S△EDA+S△CDE+S△CEB=S四边形ABCD.可知ab+c2+ab=(a+b)2,∴c2+2ab=a2+2ab+b2,整理得a2+b2=c2,∴证明中用到的面积相等关系是:S△EDA +S△CDE+S△CEB=S四边形ABCD.故选:D.10.解:如图所示:当A为DE中点,AB⊥CB,则AB=CD,∵AB=,CD=4,∴此时不合题意;;如图所示:因为BE==5,点E是斜边AB的中点,所以AB=2BE=10,∴原直角三角形纸片的斜边长是10.故选:A.11.解:在△ABC中,AB=AC,①当∠A=70°时,则∠ABC=∠C=55°,∵BD⊥AC,∴∠DBC=90°﹣55°=35°;②当∠C=70°时,∵BD⊥AC,∴∠DBC=90°﹣70°=20°;故答案为:35°或20°.12.解:∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°∴∠ACB=∠DEC∵∠ABC=∠CDE,AC=CE,在△ABC和△CDE中,∴△ABC≌△CDE(AAS),∴BC=DE∴(如上图),根据勾股定理的几何意义,b的面积=a的面积+c的面积∴b的面积=a的面积+c的面积=5+11=16.13.解:∵AD=CD,∠ACD=40°,∴∠A=∠ACD=40°,∴∠BDC=∠A+∠ACD=80°,∵CD=BC,∴∠B=∠BDC=80°,故答案为:80.14.解:如图①所示,当∠BAC=48°时,那么它的最大内角是90°当∠ACB=48°时,有以下4种情况,故答案为:88°,90°,99°,108°,116°15.解:∵△ABC是直角三角形,AB=5,BC=3,由勾股定理有:AC2=AB2﹣BC2.∴AC==4.=AB•CD=BC•AC,又∵S△ABC得CD==(cm).∴CD的长是cm.16.解:由折叠的性质知:AD=AF,DE=EF=5;在Rt△CEF中,∵EF=DE=5,CE=8﹣5=3,∴CF===4,设AD=AF=BC=x,则BF=x﹣4;在Rt△ABF中,由勾股定理可得:82+(x﹣4)2=x2,解得x=10,∴BF=BC﹣CF=10﹣4=6.故答案为:6.17.解:格点C的不同位置分别是:C、C′、C″,∵网格中的每个小正方形的边长为1,∴S△ABC=×4×3=6,S△ABC′=20﹣2×3﹣=6.5,S△ABC″=2.5,∴S△ABC +S△ABC′+S△ABC″=6+6.5+2.5=15.故答案分别为:3;15.18.解:如图,连接AA1.由折叠的性质可得:AA1⊥DE,DA=DA1,又∵D是AB中点,∴DA=DB,∴DB=DA1,∴∠BA1D=∠B,∴∠ADA1=2∠B,又∵∠ADA1=2∠ADE,∴∠ADE=∠B,∴DE∥BC,∴AA1⊥BC,∵AA1=2×1=2,∴h2=2﹣,h3=2﹣×=2﹣,…E n﹣1到BC的距离h n=2﹣.∴经过第n次操作后得到的折痕D n﹣1∴h2017=2﹣.故答案为:2﹣.19.解:∵在Rt△ABC中,∠C=90°,∴∠A+∠B=90°;∵∠A=2∠B,∴2∠B+∠B=90°,∴3∠B=90°,解得∠B=30°,∴∠A=90°﹣30°=60°,综上,可得∠A=60°,∠B=30°.20.解:(1)直角三角形的两条直角边分别为6、8,则这个直角三角形斜边长==10,故答案为:10;(2)在Rt△ADC中,AD==2,∴BD=AD=2;(3)点A在数轴上表示的数是:﹣=﹣,由勾股定理得,OC=,以O为圆心、OC为半径作弧交x轴于B,则点B即为所求,故答案为:﹣.21.证明:∵BD平分∠ABC,∴∠EBD=∠DBC,∵EF∥BC,∴∠EDB=∠DBC,∴∠EDB=∠EBD,∴DE=BE,同理CF=DF,∴EF=DE+DF=BE+CF,即BE+CF=EF.22.证明:过点D作DG∥AC交BC于点G,如图所示.∵DG∥AC,∴∠GDF=∠E,∠DGB=∠ACB.在△GDF和△CEF中,,∴△GDF≌△CEF(ASA),∴GD=CE.∵BD=CE,∴BD=GD,∴∠B=∠DGB=∠ACB,∴△ABC是等腰三角形.23.解:(1)∵沿EF,FH折叠,∴∠BFE=∠B'FE,∠CFH=∠C'FH,∵点B′在F C′上,∴∠EFH=(∠BFB'+∠CFC')=×180°=90°,故答案为:90°;(2)∵沿EF,FH折叠,∴可设∠BFE=∠B'FE=x,∠C'FH=∠CFH=y,∵2x+18°+2y=180°,∴x+y=81°,∴∠EFH=x+18°+y=99°;(3)∵沿EF,FH折叠,∴可设∠BFE=∠B'FE=x,∠C'FH=∠CFH=y,∴∠EFH=180°﹣∠BFE﹣∠CFH=180°﹣(x+y),即x+y=180°﹣β°,又∵∠EFH=∠EFB'﹣∠B'FC'+∠C'FH=x﹣∠B'FC'+y,∴∠B'FC'=(x+y)﹣∠EFH=180°﹣β°﹣β=180°﹣2β°,故答案为:180°﹣2β°.24.(1)证明:设BD=2x,AD=3x,CD=4x,则AB=5x,在Rt△ACD中,AC==5x,∴AB=AC,∴△ABC是等腰三角形;(2)解:S=×5x×4x=40cm2,而x>0,△ABC∴x=2cm,则BD=4cm,AD=6cm,CD=8cm,AC=10cm.①当MN∥BC时,AM=AN,即10﹣t=t,∴t=5;当DN∥BC时,AD=AN,得:t=6;∴若△DMN的边与BC平行时,t值为5或6.②当点M在BD上,即0≤t<4时,△MDE为钝角三角形,但DM≠DE;当t=4时,点M运动到点D,不构成三角形当点M在DA上,即4<t≤10时,△MDE为等腰三角形,有3种可能.如果DE=DM,则t﹣4=5,∴t=9;如果ED=EM,则点M运动到点A,∴t=10;如果MD=ME=t﹣4,过点E做EF垂直AB于F,因为ED=EA,所以DF=AF=AD=3,在Rt△AEF中,EF=4;因为BM=t,BF=7,所以FM=t﹣7则在Rt△EFM中,(t﹣4)2﹣(t﹣7)2=42,∴t=.综上所述,符合要求的t值为9或10或.。