数学必修二第一章知识点经典总结版
- 格式:docx
- 大小:93.81 KB
- 文档页数:2
高一数学必修二第一章知识点总结一、函数及其图像和性质1、函数的概念(考点):指自变量x与因变量y之间的一种关系,这个关系具有如下特征:( 1)是一种对应关系;( 2)表示了自变量和因变量之间的依赖与反依赖的关系。
2、二次函数及其图像和性质:(考点):其中表示第一个自变量,用x表示,表示第二个自变量,用y表示。
它们的图像叫做抛物线,其顶点坐标为( 0, 0)。
2、二次函数的图像的一般式: a、只含有正弦,余弦,正切,余切的情况(定义域)|3、抛物线与y轴交点为P的情形:|4、抛物线与y轴交点坐标为:|5、抛物线与x轴交点坐标为:|6、与y轴的交点坐标为:|7、与x轴的交点坐标为:|8、求抛物线与y轴的交点时,先把抛物线向y轴作图,看图像与y轴交点的横坐标是否为0,若是则取原点o的坐标为0,再进行计算。
1。
抛物线解析式a。
2。
二次函数解析式1。
设抛物线解析式为f(x) = kx+b其中, k为常数, b可取实数,且k>0。
2。
设抛物线解析式为f(x) = kx+b其中, k为常数, b可取实数,且k>0。
3。
设抛物线解析式为f(x) = kx+b其中, k为常数, b可取实数,且k>0。
由此得,代入解析式即得f(x)解析式的含义:将两个不等式放在同一坐标平面内,消去x得抛物线解析式。
两个不等式: y-kx>0即, a>0时, x>0,将x=0带入a中消去x得抛物线解析式。
定义域和值域在实际应用中,我们总会遇到不等式f(x) =kx+b 的求解问题,比如,求抛物线的解析式或方程f(x) =kx+b的值域。
利用两边取倒数法则直接求得答案。
对于这样的不等式,我们把不等号右边看成常数,左边当成变量,利用求导法则求导,就能够很快地求出该不等式的解。
解:注意题目条件,结合二次函数的解析式和顶点坐标,通过观察图像,并参照图像的对称轴,解得y-kx>0,即a>0,联立不等式组,解得a=0,即f(x)的解析式为a>0。
高中数学必修2知识点总结第一章:集合与函数1. 集合的基本概念- 元素和集合的关系- 集合的表示方法- 空集和全集2. 集合间的基本关系- 子集、真子集和幂集- 交集、并集和差集- 补集和集合的运算律3. 函数的概念与性质- 有限集合上的函数- 函数的定义域和值域- 函数的相等与合成- 一次函数和二次函数的图像特征第二章:二次函数与一元二次方程1. 二次函数的图像特征- 二次函数的函数图像- 二次函数的最值与对称轴- 二次函数的零点和判别式2. 一元二次方程的解法- 一元二次方程的基本形式- 一元二次方程的因式分解法- 一元二次方程的配方法- 一元二次方程的求根公式3. 二次函数与一元二次方程的应用 - 利用二次函数解决实际问题- 利用一元二次方程解决实际问题 - 二次函数与一元二次方程的关系第三章:等比数列与指数函数1. 等比数列的概念与性质- 等比数列的定义与通项公式 - 等比数列的前n项和- 等比数列的三项平均值2. 等比数列的应用- 等比数列在实际问题中的应用 - 等比数列与布朗运动的关系3. 指数函数与对数函数- 指数函数的概念与性质- 指数函数的图像与性质- 对数函数的概念与性质- 对数函数的图像与性质第四章:平面向量1. 平面向量的基本概念- 平面向量的定义与表示- 平面向量的加法和数乘- 平面向量的等量关系和共线关系2. 平面向量的坐标表示- 平面向量的坐标表示方法- 平面向量的数量积与几何应用3. 平面向量的运算与几何应用- 平面向量的加法和减法- 平面向量的数量积与几何应用第五章:解直线和解平面方程1. 直线的方程与性质- 一般式方程与截距式方程- 直线的斜率与倾斜角- 直线的性质与相互位置关系2. 平面的方程与性质- 齐次线性方程与一般线性方程 - 平面的倾斜角与法线向量- 引入坐标系的平面方程3. 直线与平面的位置关系- 直线与平面的相交关系- 直线与平面的平行、垂直关系- 直线与平面的夹角与距离综上所述,高中数学必修2中的知识点主要包含集合与函数、二次函数与一元二次方程、等比数列与指数函数、平面向量以及解直线和解平面方程。
数学必修二第一章知识点总结1.1 比例和比例的应用1.1.1 比例的定义比例是指两个相同类别的量之间的对应关系。
用数表示比例时,通常使用两个整数的比值来表示,例如 a:b。
1.1.2 比例的性质•比例具有等比例性质,即 a:b = c:d,其中等比例常数 k = a/b = c/d。
•比例可以通过交叉相乘来验证是否相等。
1.1.3 比例的应用比例在现实生活中有广泛的应用,例如货币兑换、图像的缩放、食谱的调整等等。
1.2 直角三角形与勾股定理1.2.1 直角三角形的概念直角三角形是指其中的一个角为直角(90度),另外两个角为锐角和钝角。
1.2.2 勾股定理的定义勾股定理是直角三角形中的一个基本定理,它表明直角三角形的两条边长的平方和等于斜边长的平方。
勾股定理可以表示为 a^2 + b^2 = c^2,其中 a 和 b 表示直角三角形的两条直角边,c 表示斜边。
1.2.3 勾股定理的应用勾股定理在解决实际问题中起着重要的作用,例如计算斜坡的倾斜度、计算物体的飞行距离等等。
1.3 三角形的面积和三角形的面积公式1.3.1 三角形的面积定义三角形的面积是指在一个平面上所围成的三角形图形的大小。
1.3.2 三角形的面积公式三角形的面积可以根据不同情况使用不同的公式来计算: - 直角三角形的面积公式为 S = 1/2 * a * b,其中 a 和 b 表示直角三角形的两条直角边。
- 一般三角形的面积公式为 S = 1/2 * a * b * sin(C),其中 a 和 b 表示两条边的长度,C 表示它们夹角的大小。
1.3.3 三角形的面积的应用三角形的面积广泛应用于工程测量、建筑设计、地图制作等领域。
1.4 相似三角形和相似三角形的性质1.4.1 相似三角形的概念相似三角形是指两个三角形中对应的角度相等,对应的边成比例。
1.4.2 相似三角形的判定两个三角形相似的判定方法有以下几种: - AA 判定法:两个三角形的两个角分别相等,则它们相似。
一、柱、台、锥、球的结构特征二、柱体、锥体、台体、球体的表面积、体积1、面积公式2、体积公式球体的表面积与体积S4πR2 V=4/3πR3 =习题:1.一个棱柱是正四棱柱的条件是 .A.底面是正方形,有两个侧面是矩形B.底面是正方形,有两个侧面垂直于底面C.底面是菱形,且有一个顶点处的三条棱两两垂直D.每个侧面都是全等矩形的四棱柱2.下列说法中正确的是 .A. 以直角三角形的一边为轴旋转所得的旋转体是圆锥B. 以直角梯形的一腰为轴旋转所得的旋转体是圆台C. 圆柱、圆锥、圆台的底面都是圆D. 圆锥侧面展开图为扇形,这个扇形所在圆的半径等于圆锥的底面圆的半3.下列说法错误的是 .A. 若棱柱的底面边长相等,则它的各个侧面的面积相等B. 九棱柱有9 条侧棱,9 个侧面,侧面为平行四边形C. 六角螺帽、三棱镜都是棱柱D. 三棱柱的侧面为三角形4.下列说法正确的是A. 平行于圆锥某一母线的截面是等腰三角形B. 平行于圆台某一母线的截面是等腰梯形C. 过圆锥顶点的截面是等腰三角形D. 过圆台上底面中心的截面是等腰梯形5.如果一个几何体的正视图是矩形,则这个几何体不可能是 .A. 棱柱B. 棱台C. 圆柱D. 圆锥6.下图所示为一简单组合体的三视图,它的左部和右部分别是A. 圆锥,圆柱B. 圆柱,圆锥C. 圆柱,圆柱D. 圆锥,圆锥7.下图是某个圆锥的三视图,请根据正视图中所标尺寸,则俯视图中圆的面积为_________,圆锥母线长为______.8.下列说法正确的是 .A.相等的线段在直观图中仍然相等B.若两条线段平行,则在直观图中对应的两条线段仍然平行C.两个全等三角形的直观图一定也全等D.两个图形的直观图是全等三角形,则这两个图形一定是全等三角形9.如图所示的直观图,其平面图形的面积为 .A. 3B. 6C. 3232 210.用长为4,宽为2 的矩形做侧面围成一个圆柱,此圆柱轴截面面积为 .11.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为 V1 和 V2 ,则 V1 : V2 = .A. 1: 3B. 1:1C. 2 :1D. 3 :112.如图,一个简单空间几何体的三视图其主视图与左视图是边长为2 的正三角形、俯视图轮廓为正方形,则其体积是 .13.已知棱长为a,各面均为等边三角形的四面体S ABC,求它的表面积.14.正方体的内切球和外接球的半径之比为 . A. 3:1 B. 3: 2 C. 2 : 3 D. 3: 315.若三个球的表面积之比是1: 4 : 9 ,则它们的体积之比是 .16. 某棱台上、下底面半径之比为1﹕2,则上、下底面的面积之比为 .A.1﹕2B.1﹕4C.2﹕1D.4﹕117. 下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是__________.18.如右图,求图中阴影部分绕AB 旋转一周所形成的几何体的表面积和体积.B C A D45 2。
数学必修二第一章知识点总结数学必修二第一章知识1一、集合(一)集合有关概念1.集合的含义2.集合的中元素的三个特性:确定性、互异性、无序性3.集合的表示: (1)常用数集及其记法 (2)列举法 (3)描述法4、集合的分类:有限集、无限集、空集5.常见集合的符号表示(二)集合间的基本关系1.子集、真子集、空集;2.有n个元素的集合,含有2n个子集,2n-1个真子集;3.空集是任何集合的子集,是任何非空集合的真子集.(三)集合的运算二、函数(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x 叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.定义域:能使函数式有意义的实数x的集合称为函数的定义域.2.常用的函数表示法及各自的优点:解析法:必须注明函数的定义域;图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;列表法:选取的自变量要有代表性,应能反映定义域的特征.优点:解析法:便于算出函数值.列表法:便于查出函数值.图象法:便于量出函数值.相同函数的判断方法:(以下两点必须同时具备)(1)表达式相同(与表示自变量和函数值的字母无关);(2)定义域一致.求函数值域方法:(先考虑其定义域)(1)函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2)应熟练掌握一次函数、二次函数、指数函数、对数函数的值域,它是求解复杂函数值域的基础.(3)求函数值域的常用方法有:直接法、换元法、配方法、分离常数法、判别式法、单调性法等.2. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据.(2) 画法:描点法;图象变换法常用变换方法有三种:平移变换;对称变换;3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.映射对于映射f:A→B来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象.5.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数;(2)各部分的自变量的取值情况;(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.(二)函数的性质1.函数的单调性(局部性质)(1)定义设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间d上是增函数.区间d称为y=f(x)的单调增区间.< p="">如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质.(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.数学必修二第一章知识2函数单调区间与单调性的判定方法(A) 定义法:任取x1,x2∈D,且x1<x2;< p="">作差f(x1)-f(x2);变形(通常是因式分解和配方);定号(即判断差f(x1)-f(x2)的正负);下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.2.函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2)奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.数学必修二第一章知识3利用定义判断函数奇偶性的步骤:首先确定函数的定义域,并判断其是否关于原点对称;确定f(-x)与f(x)的关系;作出相应结论:若f(-x) = f(x) 或f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x)或f(-x)+f(x) = 0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定.3.函数的解析表达式(1)函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:凑配法; 待定系数法;换元法;消参法.如果已知函数解析式的构造时,可用待定系数法;已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)4.函数最大(小)值(1)利用二次函数的性质(配方法)求函数的最大(小)值;(2)利用图象求函数的最大(小)值;(3)利用函数单调性的判断函数的最大(小)值:函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b).数学必修二第一章知识点。
【导语】如果把⾼中三年去挑战⾼考看作⼀次越野长跑的话,那么⾼中⼆年级是这个长跑的中段。
与起点相⽐,它少了许多的⿎励、期待,与终点相⽐,它少了许多的掌声、加油声。
它是孤⾝奋⽃的阶段,是⼀个耐⼒、意志、⾃控⼒⽐拚的阶段。
但它同时是⼀个厚实庄重的阶段,这个时期形成的优势有实⼒。
⾼⼆频道为你整理了《⾼⼀数学必修⼆各章知识点总结》,学习路上,为你加油! 【第⼀章空间⼏何体】 1.1空间⼏何体的结构 1.2空间⼏何体的三视图和直观图 阅读与思考画法⼏何与蒙⽇ 1.3空间⼏何体的表⾯积与体积 探究与发现祖暅原理与柱体、椎体、球体的体积 实习作业 ⼩结 复习参考题 【第⼆章点、直线、平⾯之间的位置关系】 2.1空间点、直线、平⾯之间的位置关系 2.2直线、平⾯平⾏的判定及其性质 2.3直线、平⾯垂直的判定及其性质 阅读与思考欧⼏⾥得《原本》与公理化⽅法 ⼩结 复习参考题 【第三章直线与⽅程】 3.1直线的倾斜⾓与斜率 探究与发现魔术师的地毯 3.2直线的⽅程 3.3直线的交点坐标与距离公式 阅读与思考笛卡⼉与解析⼏何 ⼩结 复习参考题 【第四章圆与⽅程】 4.1圆的⽅程 阅读与思考坐标法与机器证明 4.2直线、圆的位置关系 4.3空间直⾓坐标系 信息技术应⽤⽤《⼏何画板》探究点的轨迹:圆 ⼩结 复习参考题 【函数知识点】 ⼀、定义与定义式: ⾃变量x和因变量y有如下关系: y=kx+b 则此时称y是x的⼀次函数。
特别地,当b=0时,y是x的正⽐例函数。
即:y=kx(k为常数,k≠0) ⼆、⼀次函数的性质: 1.y的变化值与对应的x的变化值成正⽐例,⽐值为k 即:y=kx+b(k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。
三、⼀次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出⼀次函数的图像——⼀条直线。
因此,作⼀次函数的图像只需知道2点,并连成直线即可。
必修二数学知识点归纳第一章空间几何1. 直线和平面的方程2. 直线与平面的位置关系3. 直线与平面的交点4. 直线与平面的夹角和距离5. 空间中的平行和垂直关系6. 直线与空间中的曲面的位置关系7. 空间中的投影和距离第二章解析几何1. 平面直角坐标系2. 点、直线和曲线的坐标表示3. 点、直线和曲线的性质4. 直线的斜率和截距5. 直线的倾斜角和斜率的关系6. 直线与圆的位置关系7. 圆的标准方程和一般方程8. 曲线的一般方程和特殊方程第三章函数与导数1. 函数的概念和表示方法2. 函数的性质和分类3. 函数的图像与性质4. 极坐标系和参数方程5. 函数的单调性和极值点6. 幂函数、指数函数与对数函数7. 三角函数及其性质8. 函数的复合与反函数9. 导数的定义和性质10. 导数的计算和应用第四章导数的应用1. 函数的极值与最值2. 函数的单调性与凹凸性3. 高阶导数与函数的泰勒展开式4. 函数的图形与导数5. 函数的极限和连续性6. 驻点和拐点的判断7. 函数的应用问题:最优化问题,曲线的切线与法线,函数的估值与逼近第五章不等式与函数图像1. 代数不等式的基本性质2. 一元二次不等式的解法3. 高次多项式不等式的解法4. 绝对值不等式的解法5. 不等式的证明方法6. 函数图像的性质与变化趋势7. 函数的奇偶性与对称性8. 根据函数的图像作函数不等式的解第六章概率与统计1. 随机事件与样本空间2. 概率的基本概念和性质3. 条件概率与乘法定理4. 全概率公式与贝叶斯公式5. 随机变量的概念和性质6. 随机变量的分布函数与概率密度函数7. 期望值与方差的概念和计算8. 典型离散分布和连续分布9. 抽样分布与统计推断10. 统计图表和统计量的应用。
【最新】高一数学必修二各章知识点总结高一数学必修二各章知识点总结如下:第一章:函数与二次函数1. 函数的概念及性质:定义域、值域、奇偶性、单调性等。
2. 二次函数的基本性质:顶点、对称轴、单调性、零点、图像的开口方向。
3. 一次函数与二次函数的比较与关系:求解一次函数与二次函数的交点等。
4. 二次函数的图像与方程:画出给定二次函数的图像,根据图像确定二次函数的方程等。
5. 二次函数与根式、指数、对数的应用。
第二章:三角函数1. 角度制与弧度制的转换。
2. 弧度制下的任意角的三角函数值的计算。
3. 三角函数的简单性质及其关系:同角三角函数的相互关系、倒数三角函数的相互关系等。
4. 三角函数的图像与性质:正弦函数、余弦函数、正切函数的图像与性质等。
5. 三角函数的应用:三角函数在几何、物理、工程等领域的应用。
第三章:指数与对数函数1. 指数的定义、性质及运算规律:指数与乘法、除法、乘方运算规律等。
2. 对数的定义、性质及运算规律:对数与指数的关系、对数运算法则等。
3. 指数函数与对数函数的简单性质与图像:指数函数与对数函数的基本性质、图像和性质等。
4. 指数函数与对数函数的应用:指数与对数在增长与衰减、微积分、金融等领域的应用。
第四章:数列1. 数列的概念与性质:等差数列、等比数列、通项公式、前n 项和等。
2. 数列的运算:数列的加减乘除等。
3. 等差数列与等差中项:等差数列的通项公式、等差数列的求和公式、等差数列的奇数项和、以及奇数和与偶数和等。
4. 等比数列与等比中项:等比数列的通项公式、等比数列的求和公式、等比数列的前n项和、无穷等比级数等。
5. 等差数列与等差中项的应用:等差数列在等价代换、简化形式、利润计算等方面的应用。
第五章:排列与组合1. 排列与组合的基本概念:排列、组合的定义与计算方法等。
2. 排列与组合的计算:排列与组合的计算公式、乘法原理、加法原理等。
3. 排列与组合的应用:排列与组合在概率、几何、数学问题解法等领域的应用。
第1章 空间几何体11 .1柱、锥、台、球的结构特征 1. 2空间几何体的三视图和直观图11 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 22 画三视图的原则:长对齐、高对齐、宽相等33直观图:斜二测画法 44斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。
5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+=4 圆台的表面积22R Rl r rl S ππππ+++=5 球的表面积24R S π= (二)空间几何体的体积 1柱体的体积 h S V ⨯=底2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上(4球体的体积 334R V π=第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系222r rl S ππ+=2.1.11 平面含义:平面是无限延展的2 平面的画法及表示(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
3 三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为A ∈LB ∈L => L α A ∈αB ∈α公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α, 使A ∈α、B ∈α、C ∈α。
高一数学必修2知识点
1、圆柱是由矩形旋转得到,圆锥是由直角三角形旋转得到,圆台是由直角梯形旋转得到,球是由半圆旋转得到.
2、中心投影的投影线相交于一点,平行投影的投影线互相平行.
3、圆柱的正视图和侧视图都是矩形,俯视图是圆;圆锥的正视图和侧视图都是等腰三角形,俯视图是圆和圆心;圆台的正视图和侧视图都是等腰梯形,俯视图是两个同心圆;球的三视图都是圆.
4、空间几何体的表面积:
(1)直棱柱的侧面展开图是矩形;设棱柱的高为h ,底面多边形的
周长为c ,则直棱柱的侧面积S ch =直棱柱侧面积;
(2)正棱锥的侧面展开图是全等的等腰三角形;设正棱锥底面正多
边形的边长为a ,底面周长为c ,斜高为h ',则正n 棱锥的侧面积1
1''22
S nah ch ==正棱柱侧面积;
(3)正棱台的侧面展开图是全等的等腰梯形;设正n 棱台的上底面、
下底面边长分别为a '、a ,对应的周长分别为c '、c ,斜高为h ',则正n 棱台的侧面积()()1122
n a a h c c h ''''=+=+正棱台侧面积S
(4)圆柱的侧面展开图是矩形;设圆柱的底面半径为r ,母线长为l ,
则圆柱的底面面积为2
r π,侧面积为2rl π,圆柱的表面积
()2r r l S
π=+圆柱表面积
;
(5)圆锥的侧面展开图是扇形;设圆锥的底面半径为r ,母线长为l ,
则圆锥的侧面积为rl π,表面积()r r l S π=+圆锥表面积;
(6)圆台的侧面展开图是扇环;设圆台的两底面半径分别为r '、r ,
母线长为l ,则圆台的侧面积为()r r l π'+,表面积
22('')S r r r l rl π=+++圆台表面积;
(7)设球的半径为R ,则球的表面积24S r π=表面积. 5、空间几何体的体积:
(1)设柱体(棱柱、圆柱)的底面积为S ,高为h ,则柱体的体积Sh V =柱体; (2)设锥体(棱锥、圆锥)的底面积为S ,高为h ,则锥体的体积
1
3Sh V =锥体;
(3)设台体(棱台、圆台)的上、下底面积分别为S '、S ,高为h ,
则台体的体积()13
h S S V '=+台体;
(4)设圆柱的底面半径为r ,高为h ,则圆柱的体积2r h V π=圆柱; (5)设圆锥的底面半径为r ,高为h ,则圆锥的体积21
3
r h V π=圆锥; (6)设圆台的上、下底面半径分别为r '、r ,高为h ,则圆台的体积
()
2
2/13
h r rr r V π'=++圆台; (7)设球的半径为R ,则球的体积343
R V π=球.。