圆锥曲线与方程测试题及答案
- 格式:doc
- 大小:288.50 KB
- 文档页数:6
高二数学圆锥曲线与方程试题答案及解析1.过抛物线的焦点的一直线交抛物线于两点,若线段的长为,则线段的长为 .【答案】【解析】根据题意,由于抛物线,可知焦点为(1,0),准线x=-1,则由于过抛物线的焦点的一直线交抛物线于两点,那么可知线段的长为,,那么设出直线PQ:y=k(x-1)与联立方程组得到,则可知=,故答案为【考点】抛物线的定义点评:解决的关键是理解抛物线定义中抛物线上点到焦点的距离等于到其准线的距离。
属于基础题。
2.已知动圆M与直线y =2相切,且与定圆C:外切,求动圆圆心M的轨迹方程.【答案】.【解析】设动圆圆心为M(x,y),半径为r,由题意可得M到C(0,-3)的距离与到直线y=3的距离相等,由抛物线的定义可知:动圆圆心的轨迹是以C(0,-3)为焦点,以y=3为准线的一条抛物线,其方程为.【考点】本题主要考查直线与圆的去位置关系,抛物线的定义,抛物线的标准方程。
点评:简单题,利用数形结合的方法,认识到“M到C(0,-3)的距离与到直线y=3的距离相等”,从而可利用抛物线的定义进一步求标准方程。
此乃常用方法。
3.双曲线的焦距为【答案】【解析】根据已知等轴双曲线,可知a=b=1,那么结合=2,因此可知其焦距2c的值为,故答案为。
【考点】本试题考查了双曲线的性质。
点评:解决该试题的关键是对于双曲线的方程中a,,b的求解,然后借助于平方关系式,得到结论,属于基础题。
4.已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,,则线段AB的中点到y轴的距离为__________ 。
【答案】【解析】设A、B的横坐标分别是m、n,由抛物线定义,得=m++n+= m+n+=3,故m+n=,,故线段AB的中点到y轴的距离为【考点】本题考查了抛物线的性质点评:抛物线的定义是解决抛物线的距离问题的常见方法5.设椭圆:的左、右焦点分别为,上顶点为,过点与垂直的直线交轴负半轴于点,且.(1)求椭圆的离心率;(2)若过、、三点的圆恰好与直线:相切,求椭圆的方程;(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于、两点,在轴上是否存在点使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围,如果不存在,说明理由.【答案】(1);(2);(3),0),由(c,0),A(0,b),知【解析】(1)设Q(x,由 ,可知为中点.从而得到,,进一步计算可求出记心率的值.(2)由⑴知,可求出△AQF的外接圆圆心为(-,0),半径r=|FQ|=,所以再利用圆心到直线l的距离等于半径a,可得到关于a的方程解出a值,从而得到椭圆C的方程.(3) 设,平行四边形是菱形可转化为,,所以,则,然后直线MN与椭圆方程联立,消y,再借助韦达定理来解决即可.,0),由(c,0),A(0,b)解:(1)设Q(x知,由于即为中点.故,故椭圆的离心率(4 分)(2)由⑴知得于是(,0) Q,△AQF的外接圆圆心为(-,0),半径r=|FQ|=所以,解得=2,∴c =1,b=,所求椭圆方程为(8 分)(3)由(Ⅱ)知:代入得设,则,(10分)由于菱形对角线垂直,则故则(12分)由已知条件知且故存在满足题意的点P且的取值范围是.(13分)6.设是三角形的一个内角,且,则方程表示的曲线是焦点在 _轴上的__ (填抛物线、椭圆、双曲线的一种)【答案】y、椭圆【解析】因为,所以,两边平方得:,因为是三角形的一个内角,所以,,所以。
高中数学选修2—1第二章《圆锥曲线与方程》单元测试题及参考答案(时间120分钟 总分150分)一、选择题(本大题共8小题,每小题5分,共40分。
每小题只有一个选项符合题目意思)1.设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32a x =上一点,12PF F ∆是底角为30的等腰三角形,则E 的离心率为 ( C ) A.12 B. 23 C.34 D.452.已知双曲线1C :22221(0,0)x y a b a b-=>>的离心率为2.若抛物线22:2(0)C x py p =>的焦点到双曲线1C 的渐近线的距离为2,则抛物线2C 的方程为 ( D )A.2833x y =B. 21633x y = C. 28x y = D. 216x y = 3.已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠= ( C )A.14B.35C.34D.454.已知椭圆2222:1(0)x y C a b a b +=>>的离心学率为32.双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为 ( D )A.22182x y += B.221126x y += C.221164x y += D.221205x y += 5.已知双曲线22214x y b-=的右焦点与抛物线212y x =的焦点重合,则该双曲线的焦点到其渐近线的距离等于(A)A.5B.42C.3D.56.方程22ay b x c =+中的,,{2,0,1,2,3}a b c ∈-,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有 ( B ) A.28条 B.32条 C.36条 D.48条7.过抛物线24y x =的焦点F 的直线交抛物线于,A B 两点,点O 是原点,若3AF =; 则AOB ∆的面积为 ( C )A.22B.2C.322D.228.椭圆22221(0)x y a b a b+=>>的左、右顶点分别是A ,B ,左、右焦点分别是F 1,F 2。
专题15 《圆锥曲线的方程》单元测试卷一、单选题1.(2020·辽宁省高三月考(文))若抛物线上的点M 到焦点的距离为10,则M 点到y 轴的距离是( )A .6B .8C .9D .10【答案】C 【解析】抛物线的焦点,准线为,由M 到焦点的距离为10,可知M 到准线的距离也为10,故到M 到的距离是9,故选C .2.(2019·涟水县第一中学高二月考)椭圆的焦距为,则的值等于( )A .B .C .或D .【答案】C 【解析】若椭圆的焦点在轴上时,则有,解得;若椭圆的焦点在轴上时,则有,解得.综上所述,或.故选:C.3.(2018·镇原县第二中学高二期末(文))设抛物线的顶点在原点,准线方程为x=﹣2,则抛物线的方程是( )A .y 2=﹣8x B .y 2=8xC .y 2=﹣4xD .y 2=4x【答案】B 【解析】∵准线方程为x=﹣2∴=2∴p=424y x =24y x =()10F ,1x =-2214x y m +=2m 53538x 2=5m =y 2=3m =5m =3∴抛物线的方程为y 2=8x 故选B4.(2020·天津高三一模)设为抛物线的焦点,过且倾斜角为的直线交于,两点,则( )AB .C .D .【答案】C【解析】由题意,得.又因为AB 的方程为,与抛物线联立,得,设,由抛物线定义得,,选C .5.(2018·镇原县第二中学高二期末(文))已知,,则椭圆的标准方程是( )A .B .C .或D .【答案】C 【解析】由,,,可解得,,则当椭圆的焦点在轴上时,此时椭圆的标准方程为:;当椭圆的焦点在轴上时,椭圆的标准方程为:.故选:C6.(2018·镇原县第二中学高二期末(文))双曲线,则()F 2:3C y x =F 30o C A B AB =6123(,0)4F 0k tan 30==34y x =-2=3y x 21616890x x -+=1122(,),(,)A x y B x y 12AB x x p =++=168312162+=9a b +=3c =221259x y +=2212516x y +=2212516x y +=2251162x y+=221169x y +=9a b +=3c =222a b c =+225a =216b =x 2212516x y +=y 2251162x y +=()2221012x y b b-=>0+=b =A .3B .2CD .【答案】D 【解析】双曲线的焦点在轴,,渐近线方程是,,解得:.故选:7.(2018·民勤县第一中学高二期末(文))已知椭圆的一个焦点为F (0,1),离心率,则椭圆的标准方程为()A .B .C .D .【答案】D 【解析】由题意知,又离心率,所以,,即所求椭圆的标准方程,故选D .8.(2019·涟水县第一中学高二月考)设双曲线(a >0,b >0)的虚轴长为2,焦距为( )A.y =x B .y =±2xC .y =x D .y =±x【答案】C 【解析】由题意知∴,a 2=c 2-b 2x a =by x a=±0+=k ===b =D12e =2212x y +=2212y x +=22143x y +=22134x y +=1c =12e =2a =2223b a c =-=22134x y +=22221x y a b-=12∴渐近线方程为y=±x.故选C.9.(2019·浙江省高二期中)如图,,,是椭圆上的三个点,经过原点,经过右焦点,若且,则该椭圆的离心率为( )A.BCD【答案】B【解析】取左焦点,连接,,根据椭圆的对称性可得:是矩形,设,中,即:解得:,则在中即:,.b a A B C 22221x y a b+=()0a b >>AB O AC F BF AC ^3BF CF =121F 111,,AF CF BF BF AC ^1AFBF 11,2,3,23,22CF m CF a m BF AF m AF a m AC a m ==-===-=-1Rt AF C D 22211AF AC CF +=222(3)(22)(2)m a m a m +-=-3am =1,AF a AF a ==1Rt AF F D 22211AF AF FF +=222(2)a a c +=222212,2c a c a ==故选:B10.(2018·安徽省合肥一中高三一模(文))已知椭圆的左、右焦点分别为,,是椭圆在第一象限上的一个动点,圆与的延长线,的延长线以及线段都相切,且为其中一个切点.则椭圆的离心率为( )ABCD【答案】B 【解析】设圆与的延长线相切于点,与相切于点,由切线长相等,得,,,,,由椭圆的定义可得,,,则,即,又,所以因此椭圆的离心率为.故选:B.二、多选题11.(2019·山东省青岛二中高二月考)(多选题)下列说法正确的是( )2221(1)x y a a+=>1F 2F A C 1F A 12F F 2AF ()3,0M C 1F A N 2AF T AN AT =11F N F M =22F T F M =1(,0)F c -2(,0)F c 122AF AF a +=()111223+22+F N F M c AF AN a AF AN a AN AT TF ==+==-+=+-222(3)a F M a c =-=--26a =3a =1b =c ==c e a ==A .方程表示两条直线B .椭圆的焦距为4,则C .曲线关于坐标原点对称D .双曲线的渐近线方程为【答案】ACD 【解析】方程即,表示,两条直线,所以A 正确;椭圆的焦距为4,则或,解得或,所以B 选项错误;曲线上任意点,满足,关于坐标原点对称点也满足,即在上,所以曲线关于坐标原点对称,所以C 选项正确;双曲线即,其渐近线方程为正确,所以D 选项正确.故选:ACD12.(2019·山东省高二期中)已知椭圆的中心在原点,焦点,在轴上,且短轴长为2,离心率,过焦点作轴的垂线,交椭圆于,两点,则下列说法正确的是( )A .椭圆方程为B .椭圆方程为C .D .的周长为【答案】ACD 【解析】2x xy x +=221102x y m m +=--4m =22259x y xy +=2222x y a b l -=b y xa=±2x xy x +=()10x x y +-=0x =10x y +-=221102x y m m +=--()1024m m ---=()2104m m ---=4m =8m =22259x y xy +=(),P x y 22259x y xy +=(),P x y (),P x y ¢--()()()()22259x y x y --+=--(),P x y ¢--22259x y xy +=22259x y xy +=2222x y a b l -=0l ¹b y x a=±C 1F 2F y 1F y C P Q 2213y x +=2213x y +=PQ =2PF Q D由已知得,2b =2,b =1,又,解得,∴椭圆方程为,如图:∴,的周长为.故选:ACD.13.(2019·江苏省苏州实验中学高二月考)已知双曲线过点且渐近线为,则下列结论正确的是( )A .的方程为B .C .曲线经过的一个焦点D .直线与有两个公共点【答案】AC 【解析】对于选项A :由已知,可得,从而设所求双曲线方程为,又由双曲线过点,从而,即,从而选项A 正确;对于选项B :由双曲线方程可知,,从而离心率为,所以B 选项错误;c a =222a b c =+23a =2213y x +=22b PQ a ===2PF Q D 4a =C (y x =C 2213x y -=C 21x y e -=-C 10x -=C y =±2213y x =2213x y l -=C (22133l ´-=1l =a =1b =2c =c e a ===对于选项C :双曲线的右焦点坐标为,满足,从而选项C 正确;对于选项D :联立,整理,得,由,知直线与双曲线只有一个交点,选项D 错误.故选AC 三、填空题14.(2019·江苏省高三三模)双曲线的焦距为______.【答案】【解析】双曲线的焦距为.故答案为:.15.(2019·重庆巴蜀中学高二期中(理))若双曲线的左焦点在抛物线的准线上,则的值为________.【答案】6【解析】双曲线的左焦点为,即,故.故答案为:.16.(2020·浙江省高三二模)已知椭圆,F 为其左焦点,过原点O 的直线l 交椭圆于A ,B 两点,点A 在第二象限,且∠FAB =∠BFO ,则直线l 的斜率为_____.【答案】【解析】设,则,,且,()2,021x y e -=-221013x x y ì-=ïí-=ïî220y +=2420D =-´=C 2212x y -=2212x y -=2c ==22154x y -=22y px =p 22154x y -=()3,0-32p -=-6p =622197x y C +=:()00,A x y ()00,B x y --00x <00y >2200197x y +=∵F 为其左焦点,∴,AB 的斜率.经分析直线AF 的斜率必存在,设为则,又,,∴,又,,可解得:,,∴直线l的斜率为.故答案为:17.(2019·乐清市知临中学高二期末)已知抛物线的焦点为,定点.若抛物线上存在一点,使最小,则点的坐标为________,最小值是______.【答案】 【解析】根据题意,作垂直于准线,画出几何关系如下图所示:()F tan BFO Ð=10y k x =2k =1212tan 1k k FAB k k -Ð==+FAB BFO Ð=Ð=220002x y ++=2200197x y +=0(3,0)x Î-0x =0y =00y x =22y x =F ()32A ,M MA MF +M ()22,72MH根据抛物线定义可知,,因而当在同一直线上时,的值最小,此时,的纵坐标为2,代入抛物线解析式可知,所以的横坐标为2,即,故答案为:,;四、解答题18.(2018·镇原县第二中学高二期末(文))已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上.(1)求双曲线的焦点坐标;(2)求双曲线的标准方程.【答案】(1);(2)【解析】因为抛物线的准线方程为,则由题意得,点是双曲线的左焦点.(1)双曲线的焦点坐标.(2)由(1)得,又双曲线的一条渐近线方程是,所以,,所以双曲线的方程为:.19.(2019·湖南省衡阳市八中高二月考)已知抛物线的焦点为,点在抛物线上,且点的横坐标为,.MF MH =,,A M H MA MF +72MA MF AH +==M 42x =M ()2,2M ()2,2M 72()222210,0x y a b a b-=>>y =224y x =()6,0F ±221927x y-=224y x =6x =-()16,0F -()6,0F ±22236a b c +==y =ba=29a =227b =221927x y -=22(0)y px p =>F M M 45MF =(1)求抛物线的方程;(2)设过焦点且倾斜角为的交抛物线于两点,求线段的长.【答案】(1);(2).【解析】(1)由题意得,∴,故抛物线方程为.(2)直线的方程为,即.与抛物线方程联立,得,消,整理得,其两根为,且.由抛物线的定义可知,.所以,线段的长是.20.(2020·陕西省西安市远东一中高二期末(理))已知抛物线C 的顶点为坐标原点O ,对称轴为x 轴,其准线过点.(1)求抛物线C 的方程;(2)过抛物线焦点F 作直线l ,使得抛物线C 上恰有三个点到直线l 的距离都为l 的方程.【答案】(1);(2)【解析】(1)由题意得,抛物线的焦点在轴正半轴上,设抛物线C 的方程为,因为准线过点,所以,即. 所以抛物线C 的方程为.(2)由题意可知,抛物线C 的焦点为.当直线l 的斜率不存在时,C 上仅有两个点到l 的距离为当直线l 的斜率存在时,设直线l 的方程为,F 45°l A B 、AB 24y x =8452p MF +==2p =24y x =l 0tan 45(1)y x -=°⋅-1y x =-214y x y x =-ìí=îy 2610x x -+=12,x x 126x x +=12||628AB x x p =++=+=AB 8()2,1--28y x =20x y ±-=x 22y px =()2,1-22p =4p =28y x =()2,0F ()2y k x =-要满足题意,需使在含坐标原点的弧上有且只有一个点P 到直线l 的距离为,过点P 的直线平行直线且与抛物线C 相切.设该切线方程为,代入,可得.由,得.,整理得,又,解得,即.因此,直线l 方程为.21.(2019·会泽县第一中学校高二月考(理))设抛物线:的焦点为,是上的点.(1)求的方程:(2)若直线:与交于,两点,且,求的值.【答案】(1)(2).【解析】(1)因为是上的点,所以, 因为,解得,抛物线的方程为.(2)设,,由得,则,,():2l y k x =-y kx m =+24y x =()222280k x km x m +-+=()2222840km k m D =--=2km =224m k =2km =21k =1k =±20x y ±-=C 22(0)x py p =>F (,1)M p p -C C l 2y kx =+C A B 13AF BF ⋅=k 24x y =1k =±(),1M p p -C ()221p p p =-0p >2p =C 24x y =()11,A x y ()22,B x y 224y kx x y=+ìí=î2480x kx --=216320k D =+>124x x k +=128x x =-由抛物线的定义知,,,则,,,解得.22.(2018·民勤县第一中学高二期末(文))在直线:上任取一点,过作以,为焦点的椭圆,当在什么位置时,所作椭圆长轴最短?并求此椭圆方程.【答案】,【解析】设关于:的对称点,则,,连交于,点即为所求点.:,即,解方程组,,当点取异于的点时,.满足题意的椭圆的长轴最短时,,所以,,.椭圆的方程为:.11AF y =+21BF y =+()()()()12121133AF BF y y kx kx ⋅=++=++()2121239k x x k x x =+++24913k =+=1k =±l 90x y -+=M M ()13,0F -()23,0F M ()5,4M -2214536x y +=()13,0F -l 90x y -+=(),F x y 3909220613x y x y y x -ì-+=ï=-ìïÞíí-=îï=-ï+î()9,6F -2F F l M M 2F F 1(3)2y x =--230x y +-=2305904x y x x y y ì+-==-ìÞíí-+==îî()5,4M -'M M 22''FM M F FF +>22a FF ===a =3c =22245936b a c =-=-=2214536x y +=23.(2019·安徽省高二期末(理))已知点为坐标原点椭圆的右焦点为,离心率为,点分别是椭圆的左顶点、上顶点,的边.(1)求椭圆的标准方程;(2)过点的直线交椭圆于两点直线分别交直线于两点,求.【答案】(1);(2)0.【解析】(1)如图所示由题意得为直角三角形,且,所以则所以椭圆的标准方程为:.O 2222:1(0)x y C a b a b+=>>F 12,P Q C POQ △PQ C F l A B 、PA PB 、2x a =M N 、FM FN ⋅uuuu r uuu r 22143x y +=POQ △PQ PQ =222a b c =+=ïïî1a b c ìï=íï=î22143x y +=(2)由题意,如图设直线的方程为:,,,则,,联立方程化简得.则.由三点共线易得,化简得,同理可得..l 1x my =+()11,A x y ()22,B x y ()34,M y ()44,N y 221143x my x y =+ìïí+=ïî22(34)690m y my ++-=122122634934m y y m y y m ì+=-ïï+íï⋅=-ï+î,,P A M ()31100422y y x --=--+13163y y my =+24263y y my =+1234341266(3,)(3,)9933y y FM FN y y y y my my ⋅==+=+⋅++uuuu r uuu r g ()122121236939y y m y y m y y =++++2222222936()36934990969189(34)()3()93434m m m m m m m m m --´+=+=+=--++-+-+++。
选修2-1数学第2章圆锥曲线与方程单元练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 某几何体是由直三棱柱与圆锥的组合体,起直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为()A.√2B.12C.√24D.√222. 如图,已知双曲线E:x2a2−y2b2=1(a>0,b>0),长方形ABCD的顶点A,B分别为双曲线E的左、右焦点,且点C,D在双曲线E上,若|AB|=6,|BC|=52,则此双曲线的离心率为()A.√2B.32C.52D.√53. 设椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为B.若|BF2|=|F1F2|=2,则该椭圆的标准方程为()A.x24+y23=1 B.x23+y2=1 C.x22+y2=1 D.x24+y2=14. 已知双曲线C:x2a2−y2b2=1(a>0,b>0)的顶点和焦点到C的同一条渐近线的距离之比为12,则双曲线C的离心率是()A.√2B.2C.√3D.35. 已知点A(0,1),抛物线C:y2=ax(a>0)的焦点为F,射线FA与抛物线相交于M,与其准线相交于点N,若|FM|:|MN|=2:√5,则a=()A.2B.4C.6D.86. 焦点为(0,2)的抛物线的标准方程是()A.x2=8yB.x2=4yC.y2=4xD.y2=8x7. 椭圆x2+4y2=1的离心率为()A.√32B.34C.√22D.238. 若双曲线x24−m +y2m−2=1的渐近线方程为y=±13x,则m的值为()A.1B.74C.114D.59. 抛物线y=2x2的通径长为( )A.2B.1C.12D.1410. 已知双曲线C:x24−y2=1,则C的渐近线方程为 ( )A.y=±14x B.y=±13x C.y=±12x D.y=±x11. 椭圆x24+y25=1的离心率是()A.3 5B.√55C.25D.1512. 已知双曲线C:x2a2−y2b2=1(a>0,b>0)的右焦点为F,过F作直线l与两条渐近线交于A,B两点.若△OAB为等腰直角三角形(O为坐标原点)则△OAB的面积为( )A.a2B.2a3C.2a2或a2D.2a2或12a213. 已知椭圆x29+y25=1的左焦点为F,点P在椭圆上且在x轴的上方,若线段PF的中点在以原点O为圆心,|OF|为半径的圆上,则直线PF的斜率是________.14. 若直线y=x+b与曲线x=√1−y2恰有一个公共点,则b的取值范围是________.15. 与椭圆x25+y23=1共焦点的等轴双曲线的方程为________.16. 已知双曲线x2−y28=1上有三个点A,B,C,且AB,BC,AC的中点分别为D,E,F,用字母k表示斜率,若k OD+k OE+k OF=−8(点O为坐标原点,且k OD,k OE,k OF均不为零),则1k AB +1k BC+1k AC=________.17. 设命题p:方程x2a+6+y2a−7=1表示中心在原点,焦点在坐标轴上的双曲线;命题q:存在x∈R,使得x2−4x+a<0.若“p∧(¬q)”为真,求实数a的取值范围.18. 回答下列问题:(1)求过点(2,−2)且与双曲线x 22−y2=1有公共渐近线的双曲线的方程;(2)求双曲线x 24−y25=1的焦点到其渐近线的距离.19. 如图,已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点A为椭圆C上任意一点,A关于原点O的对称点为B,有|AF1|+|BF1|=4,且∠F1AF2的最大值为π3.(1)求椭圆C的标准方程;(2)若A′是A关于x轴的对称点,设点N(4,0),连接NA与椭圆C相交于点E,问直线A′E与x轴是否交于一定点,如果是,求出该定点坐标;如果不是,说明理由.20. 已知椭圆的焦点在α轴上,一个顶点为(0,1),离心率为e=√5,过椭圆的右焦点F的直线1与坐标轴不垂直,且交椭圆于A,B两点.(1)求椭圆的方程.(2)设点C是点A关于x轴的对称点,在α轴上是否存在一个定点N,使得C,B,N三点共线?若存在,求出定点N的坐标;若不存在,说明理由.21. 已知直线l:x−y+1=0与焦点为F的抛物线C:y2=2px(p>0)相切.(1)求抛物线C的方程;(2)过点F的直线m与抛物线C交于A,B两点,求A,B两点到直线l的距离之和的最小值.22. 已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右顶点分别为A,B,离心率为12,点P(1, 32)为椭圆上一点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)如图,过点C(0, 1)且斜率大于1的直线l与椭圆交于M,N两点,记直线AM,BN的斜率分别为k1,k2,若k1=2k2,求直线l斜率的值.参考答案与试题解析选修2-1数学第2章 圆锥曲线与方程单元练习题含答案一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 ) 1.【答案】 D【考点】 椭圆的定义 【解析】根据三视图的性质得到俯视图中椭圆的短轴长和长周长,再根据椭圆的性质a 2−b 2=c 2,和离心率公式e =ca ,计算即可.【解答】解:设正视图正方形的边长为2,根据正视图与俯视图的长相等,得到俯视图中椭圆的短轴长2b =2,俯视图的宽就是圆锥底面圆的直径2√2,得到俯视图中椭圆的长轴长2a =2√2, 则椭圆的半焦距c =√a 2−b 2=1, 根据离心率公式得,e =c a =√2=√22; 故选D . 2. 【答案】 B【考点】双曲线的标准方程 【解析】本题主要考查双曲线的几何性质. 【解答】解:因为2c =|AB|=6,所以c =3. 因为b 2a =|BC|=52,所以5a =2b 2. 又c 2=a 2+b 2,所以9=a 2+5a 2,解得a =2或a =−92(舍去),故该双曲线的离心率e =c a=32.故选B . 3. 【答案】 A【考点】椭圆的标准方程 【解析】由|BF 2|=|F 1F 2|=2,可得a =2c =2,即可求出a ,b ,从而可得椭圆的方程. 【解答】解:∵ |BF 2|=|F 1F 2|=2,∴a=2c=2,∴a=2,c=1,∴b=√3,∴椭圆的方程为x24+y23=1.故选A.4.【答案】B【考点】双曲线的离心率【解析】【解答】解:∵双曲线C的顶点和焦点到同一条渐近线的距离之比为12,由三角形相似得ac =12,∴e=ca=2.故选B.5.【答案】D【考点】斜率的计算公式抛物线的性质【解析】无【解答】解:依题意F点的坐标为(a4,0),作MK垂直于准线,垂足为K,由抛物线的定义知|MF|=|MK|,因为|FM|:|MN|=2:√5,则|KN|:|KM|=1:2.k FN =0−1a4−0=−4a ,k FN =−|KN||KM|=−12,所以−4a =−12,求得a =8. 故选D . 6. 【答案】 A【考点】抛物线的标准方程 【解析】 此题暂无解析 【解答】解:由题意得,抛物线的焦点为(0,2), 可得p =4.又抛物线的焦点在y 轴的正半轴, 所以抛物线的标准方程为x 2=8y . 故选A. 7. 【答案】 A【考点】 椭圆的离心率 【解析】 此题暂无解析 【解答】 此题暂无解答 8.【答案】 B【考点】 双曲线的定义 【解析】 此题暂无解析 【解答】 此题暂无解答 9.【答案】 C【考点】 抛物线的定义 抛物线的性质 【解析】抛物线y =−2x 2,即x 2=−12y ,可得2p .解:抛物线y=2x2,化为标准方程为x2=12y,可得2p=12,因此通径长为12.故选C.10.【答案】C【考点】双曲线的渐近线【解析】根据双曲线的方程求出双曲线的渐近线即可. 【解答】解:由题意可得,a=2,b=1,则双曲线的渐近线方程为y=±ba x=±12x.故选C.11.【答案】B【考点】椭圆的离心率椭圆的标准方程【解析】根据椭圆的标准方程求出a,b的值,根据椭圆中c2=a2−b2就可求出c,再利用离心率e=ca得到离心率.【解答】解:由椭圆方程为x 24+y25=1可知,a2=5,b2=4,∴c2=a2−b2=1,a=√5,∴c=1,∴椭圆的离心率e=ca =√55.故选B.12.【答案】D【考点】双曲线的简单几何性质双曲线中的平面几何问题本题主要考查双曲线的性质以及直线和双曲线的关系,联立方程组,求出点的坐标,再求出面积即可.【解答】解:①若∠AOB=90∘,则∠AOF=45∘,∴ba=1故c=√a2+b2=√2a,∴S△OAB=12⋅2c⋅c=c2=2a2;②若∠BAO=90∘,则l与y=bax垂直且过F点,垂足为A,∴ l的斜率为−ab,则直线l的方程为y=−ab(x−c),联立{y=−ab⋅(x−c),y=bax,解得x=a 2c ,y=abc,则点A为(a 2c ,ab c)∴ △OAB为等腰直角三角形,OB为斜边,∴ OA=AB,OA2=(a2c )2+(abc)2=a2,∴S△OAB=12OA⋅AB=12OA2=12a2.综上所述S△OAB=2a2或12a2.故选D.二、填空题(本题共计 4 小题,每题 5 分,共计20分)13.【答案】√15【考点】与椭圆有关的中点弦及弦长问题【解析】此题暂无解析【解答】解:由椭圆方程可知a=3,c=2,∴F(−2, 0),根据题意,画出图形:设线段PF中点为M,椭圆右焦点为F1,∵M在以O为圆心,|OF|为半径的圆上,∴F1也在圆上,连接OM, PF1, MF1,则∠FMF1=90∘,OM是△FPF1的中位线,∴|PF1|=2|OM|=2|OF|=2×2=4,由椭圆定义|PF|+|PF1|=2a=6,得|PF|=2,|MF|=|PF|2=1,又∵∠FMF1为直角,|MF1|2=|FF1|2−|MF|2=15,∴tan∠MFF1=|MF1||MF|=√151=√15,∴直线PF的斜率是√15.故答案为:√15.14.【答案】(−1,1]∪{−√2}【考点】曲线与方程直线与圆的位置关系【解析】此题暂无解析【解答】x=√1−y2⇔x2+y2=1(x≥0)方程x2+y2=1(x≥0)所表示的曲线为半圆(如图)当直线与圆相切时或在l2与l3之间时,适合题意.此时−1<b≤1或b=−√2,所以b的取值范围是(−1,1]∪{−√2}.15.【答案】x2−y2=1【考点】双曲线的标准方程圆锥曲线的共同特征【解析】利用椭圆的三参数的关系求出双曲线的焦点坐标;利用等轴双曲线的定义设出双曲线的方程,据双曲线中三参数的关系求出双曲线的方程.【解答】解:对于x 25+y23=1知半焦距为c=√5−3=√2所以双曲线的焦点为(±√2,0)设等轴双曲线的方程为x 2a2−y2a2=1据双曲线的三参数的关系得到2a2=2所以a2=1所以双曲线的方程为x2−y2=1.故答案为:x2−y2=116.【答案】−1【考点】斜率的计算公式中点坐标公式与双曲线有关的中点弦及弦长问题【解析】【解答】解:设A(x1,y1),B(x2,y2),D(x0,y0),则x1+x2=2x0,y1+y2=2y0,x12−y128=1,x22−y228=1,两式相减得(x1−x2)(x1+x2)=(y1+y2)(y1−y2)8,整理可得x1−x2y1−y2=y08x0,即1k AB=k OD8,同理得1k BC =k OE8,1k AC=k OF8.因为k OD+k OE+k OF=−8,所以1k AB +1k BC+1k AC=−1.故答案为:−1.三、解答题(本题共计 6 小题,每题 11 分,共计66分)17.【答案】解:命题p :(a +6)(a −7)<0,解得−6<a <7; 命题q :Δ=(−4)2−4a >0,解得a <4. ∴ ¬q :a ≥4.∵ “p ∧(¬q)”为真, ∴ p 为真且¬q 为真, ∴ 4≤a <7. 【考点】逻辑联结词“或”“且”“非” 双曲线的标准方程 一元二次不等式的解法【解析】 此题暂无解析 【解答】解:命题p :(a +6)(a −7)<0,解得−6<a <7; 命题q :Δ=(−4)2−4a >0,解得a <4. ∴ ¬q :a ≥4.∵ “p ∧(¬q)”为真, ∴ p 为真且¬q 为真, ∴ 4≤a <7. 18. 【答案】解:(1)因为所求双曲线与双曲线x 22−y 2=1有公共渐近线, 所以可设所求双曲线的方程为x 22−y 2=λ(λ≠0).因为所求双曲线过点(2,−2), 所以222−(−2)2=λ,得λ=−2,所以所求双曲线的方程为y 22−x 24=1. (2)因为双曲线的方程为x 24−y 25=1,所以双曲线的一条渐近线方程为y =√52x , 即√5x −2y =0.因为双曲线的左、右焦点到渐近线的距离相等, 且(3,0)为双曲线的一个焦点, 所以双曲线x 24−y 25=1的焦点到其渐近线的距离为|3√5−0|3=√5.【考点】双曲线的离心率 【解析】 此题暂无解析 【解答】解:(1)因为所求双曲线与双曲线x 22−y 2=1有公共渐近线,所以可设所求双曲线的方程为x 22−y 2=λ(λ≠0).因为所求双曲线过点(2,−2), 所以222−(−2)2=λ,得λ=−2, 所以所求双曲线的方程为y 22−x 24=1. (2)因为双曲线的方程为x 24−y 25=1,所以双曲线的一条渐近线方程为y =√52x , 即√5x −2y =0.因为双曲线的左、右焦点到渐近线的距离相等, 且(3,0)为双曲线的一个焦点, 所以双曲线x 24−y 25=1的焦点到其渐近线的距离为|3√5−0|3=√5.19.【答案】解:(1)点A 为椭圆C 上任意一点, A 关于原点O 的对称点为B , 由|AF 1|+|BF 1|=4知 2a =4, 得a =2.又∠F 1AF 2的最大值为π3,知当A 为上顶点时,∠F 1AF 2最大, 所以a =2c , 得c =1,所以b 2=a 2−c 2=3. 所以椭圆C 的标准方程为x 24+y 23=1.(2)由题知NA 的斜率存在,设NA 方程为 y =k(x −4),与椭圆联立,得(4k 2+3)x 2−32k 2x +64k 2−12=0.① 设点A (x 1,y 1),E (x 2,y 2), 则A ′(x 1,−y 1).直线A ′E 方程为y −y 2=y 2+y1x 2−x 1(x −x 2).令y =0得x =x 2+y 2(x 1−x 2)y 1+y 2,将y1=k(x1−4),y2=k(x2−4)代入,整理得,x=2x1x2−4(x1+x2)x1+x2−8.②x1+x2=32k24k2+3,x1x2=64k2−124k2+3.代入②整理,得x=1.所以直线A′E与x轴交于定点Q(1,0). 【考点】圆锥曲线中的定点与定值问题与直线关于点、直线对称的直线方程直线与椭圆结合的最值问题椭圆的标准方程椭圆的定义【解析】此题暂无解析【解答】解:(1)点A为椭圆C上任意一点,A关于原点O的对称点为B,由|AF1|+|BF1|=4知2a=4,得a=2.又∠F1AF2的最大值为π3,知当A为上顶点时,∠F1AF2最大,所以a=2c,得c=1,所以b2=a2−c2=3.所以椭圆C的标准方程为x 24+y23=1.(2)由题知NA的斜率存在,设NA方程为y=k(x−4),与椭圆联立,得(4k2+3)x2−32k2x+64k2−12=0.①设点A(x1,y1),E(x2,y2),则A′(x1,−y1).直线A′E方程为y−y2=y2+y1x2−x1(x−x2).令y =0得x =x 2+y 2(x 1−x 2)y 1+y 2,将y 1=k (x 1−4),y 2=k (x 2−4)代入, 整理得,x =2x 1x 2−4(x 1+x 2)x 1+x 2−8.②x 1+x 2=32k 24k 2+3, x 1x 2=64k 2−124k 2+3.代入②整理,得x =1.所以直线A ′E 与x 轴交于定点Q(1,0). 20. 【答案】(1)椭圆C 的标准方程为x 25+y 2=1.(2)存在定点N (52,0),使得C .B .N 三点共线. 【考点】直线与椭圆结合的最值问题 椭圆的标准方程【解析】 此题暂无解析 【解答】 解:(1)由椭圆的焦点在x 轴上, 设椭圆C 的方程为x 2a2+y 2b 2=1(ab >0),椭圆C 的一个顶点为(0,1),即b =1, 由e =ac √1−b 2a 2=√5解得a 2=5,∴ 椭圆C 的标准方程为x 25+y 2=1.(2)由得F (2,0),设A (x 1,y 1),B (x 2,y 2)设直线l 的方程为y =k (x −2)(k ≠0),代入椭圆方程,消去y 可得 (5k 2+1)x 2−20k 2x +20k 2−5=0, 则x 1+x 2=20k 25k 2+1,x 1x 2=20k 2−55k 2+1.∵ 点C 与点A 关于x 轴对称, ∴ C (x 1,−y 1) .假设存在N (t,0),使得C ,B ,N 三点共线, 则BN →=(t −x 2,−y 2),CN →=(t −x 1,y 1). ∵ C ,B ,N 三点共线,∴ BN →//CN →,∴ (t −x 2)y 1+(t −x 1)y 2=0, 即(y 1+y 2)t =x 2y 1+x 1y 2 ∴ t =k (x 1−2)x 2+k (x 2−2)x 1k (x 1−2)+k (x 2−2) =2⋅20k 2−55k 2+1−2⋅20k 25k 2+120k 25k 2+1−4=52∴ 存在定点N (52,0),使得C .B .N 三点共线.21.【答案】解:(1)∵ 直线l :x −y +1=0与抛物线C 相切. 由{x −y +1=0,y 2=2px ,得y 2−2py +2p =0,从而Δ=4p 2−8p =0, 解得p =2.∴ 抛物线C 的方程为y 2=4x . (2)由于直线m 的斜率不为0,所以可设直线m 的方程为ty =x −1,A(x 1,y 1),B(x 2,y 2), 由{ty =x −1,y 2=4x ,消去x 得y 2−4ty −4=0,∴ y 1+y 2=4t ,从而x 1+x 2=4t 2+2, ∴ 线段AB 的中点M 的坐标为(2t 2+1,2t). 设点A 到直线l 的距离为d A , 点B 到直线l 的距离为d B , 点M 到直线l 的距离为d , 则d A +d B =2d =2⋅2√2=2√2|t 2−t +1| =2√2|(t −12)2+34|,∴ 当t =12时,A ,B 两点到直线l 的距离之和最小,最小值为3√22. 【考点】直线与抛物线结合的最值问题 二次函数在闭区间上的最值 抛物线的标准方程 直线与圆的位置关系【解析】 此题暂无解析 【解答】解:(1)∵ 直线l :x −y +1=0与抛物线C 相切. 由{x −y +1=0,y 2=2px ,得y 2−2py +2p =0,从而Δ=4p 2−8p =0, 解得p =2.∴ 抛物线C 的方程为y 2=4x . (2)由于直线m 的斜率不为0,所以可设直线m 的方程为ty =x −1,A(x 1,y 1),B(x 2,y 2), 由{ty =x −1,y 2=4x ,消去x 得y 2−4ty −4=0,∴ y 1+y 2=4t ,从而x 1+x 2=4t 2+2, ∴ 线段AB 的中点M 的坐标为(2t 2+1,2t). 设点A 到直线l 的距离为d A , 点B 到直线l 的距离为d B , 点M 到直线l 的距离为d , 则d A +d B =2d =2⋅2√2=2√2|t 2−t +1| =2√2|(t −12)2+34|,∴ 当t =12时,A ,B 两点到直线l 的距离之和最小,最小值为3√22. 22. 【答案】(1)根据题意,椭圆的离心率为12,即e =ca =2,则a =2c . 又∵ a 2=b 2+c 2,∴ b =√3c . ∴ 椭圆的标准方程为:x 24c 2+y 23c 2=1. 又∵ 点P(1, 32)为椭圆上一点,∴ 14c 2+943c 2=1,解得:c =1.∴ 椭圆的标准方程为:x 24+y 23=1.(2)由椭圆的对称性可知直线l 的斜率一定存在,设其方程为y =kx +1. 设M(x 1, y 1),N(x 2, y 2).联列方程组:{x 24+y 23=1y =kx +1 ,消去y 可得:(3+4k 2)x 2+8kx −8=0. ∴ 由韦达定理可知:x 1+x 2=−8k 3+4k2,x 1x 2=−83+4k 2.∵ k 1=y 1x 1+2,k 2=y 2x 1−2,且k 1=2k 2,∴y 1x 1+2=2y 2x 2−2,即y 12(x 1+2)2=4y 22(x 2−2)2.①又∵ M(x 1, y 1),N(x 2, y 2)在椭圆上, ∴ y 12=34(4−x 12),y 22=34(4−x 22).② 将②代入①可得:2−x 12+x 1=4(2+x 2)2−x 2,即3x 1x 2+10(x 1+x 2)+12=0.∴ 3(−83+4k 2)+10(−8k3+4k 2)+12=0,即12k 2−20k +3=0. 解得:k =16或k =32. 又由k >1,则k =32. 【考点】 椭圆的离心率 【解析】(1)根据题意,由椭圆离心率可得a =2c ,进而可得b =√3c ,则椭圆的标准方程为x 24c 2+y 23c 2=1,将P 的坐标代入计算可得c 的值,即可得答案; (2)根据题意,设直线l 的方程为y =kx +1,设M(x 1, y 1),N(x 2, y 2),将直线的方程与椭圆联立,可得(3+4k 2)x 2+8kx −8=0,由根与系数的关系分析,:x 1+x 2=−8k 3+4k 2,x 1x 2=−83+4k 2,结合椭圆的方程与直线的斜率公式可得3(−83+4k 2)+10(−8k3+4k 2)+12=0,即12k 2−20k +3=0,解可得k 的值,即可得答案. 【解答】(1)根据题意,椭圆的离心率为12,即e =c a=2,则a =2c .又∵ a 2=b 2+c 2,∴ b =√3c . ∴ 椭圆的标准方程为:x 24c 2+y 23c 2=1. 又∵ 点P(1, 32)为椭圆上一点,∴ 14c 2+943c 2=1,解得:c =1.∴ 椭圆的标准方程为:x 24+y 23=1.(2)由椭圆的对称性可知直线l 的斜率一定存在,设其方程为y =kx +1. 设M(x 1, y 1),N(x 2, y 2).联列方程组:{x 24+y 23=1y =kx +1 ,消去y 可得:(3+4k 2)x 2+8kx −8=0.∴ 由韦达定理可知:x 1+x 2=−8k 3+4k 2,x 1x 2=−83+4k 2.∵ k 1=y 1x1+2,k 2=y 2x 1−2,且k 1=2k 2,∴ y 1x 1+2=2y 2x 2−2,即y 12(x 1+2)2=4y 22(x 2−2)2.①又∵ M(x 1, y 1),N(x 2, y 2)在椭圆上, ∴ y 12=34(4−x 12),y 22=34(4−x 22).② 将②代入①可得:2−x12+x 1=4(2+x 2)2−x 2,即3x 1x 2+10(x 1+x 2)+12=0.∴ 3(−83+4k 2)+10(−8k 3+4k 2)+12=0,即12k 2−20k +3=0.解得:k =16或k =32. 又由k >1,则k =32.。
专题12:第三章圆锥曲线与方程综合测试卷2(解析版)一、单选题1.准线方程为2x =的抛物线的标准方程为( ) A .24y x =- B .28y x =- C .24y x = D .28y x =【答案】B 【详解】试题分析:由题意得,抛物线28y x =-,可得4p =,且开口向左,其准线方程为2x =. 故选B .考点:抛物线的几何性质.2.已知双曲线222:1y C x b-=的右焦点为F ,过点F 向双曲线的一条渐近线引垂线,垂足为M ,2FM =,则双曲线的离心率( ) A .2 BCD【答案】C 【分析】根据2FM =求得b ,由此求得c ,进而求得双曲线的离心率. 【详解】依题意,双曲线1a =,设(),0F c ,双曲线的一条渐近线方程为0y bx bx y =⇒-=,则2bcFM b c=====.所以22222125c a b c =+=+=⇒=所以双曲线的离心率为ce a==故选:C 【点睛】本小题主要考查双曲线离心率的求法,属于基础题.3.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,若以OF (O 为坐标原点)为直径的圆被双曲线C 的一条渐近线所截得的弦长等于双曲线C 的虚轴长,则双曲线C 的渐近线方程为( ) A .2y x =± B .12y x =±C .3y x =±D .4y x =±【答案】B 【分析】由题意,求出圆心、半径、渐近线,结合几何法求得圆被直线所截得的弦长2a b =,由此可求出答案. 【详解】解:由题意知,(),0F c ()222,0c a b c =+>,∴以OF 为直径的圆的方程为22224c c x y ⎛⎫-+= ⎪⎝⎭,圆心为,02c ⎛⎫ ⎪⎝⎭,半径2c r =,又双曲线的渐近线的方程为by x a=±,即0bx ay ±=,∴圆心到渐近线的距离2b d ==,∴该圆被渐近线截得的弦长2a b ==,∴12b a =, ∴渐近线方程为12y x =±, 故选:B . 【点睛】本题主要考查双曲线的几何性质,属于基础题.4.已知双曲线()222210,0x y a b a b-=>>的焦距为线20x y +=垂直,则双曲线的方程为( )A .2214x y -=B .2214y x -=C .22331520x y -=D .22331205x y -=【答案】A 【分析】由焦距为,C D ;由双曲线的一条渐近线与直线20x y +=垂直排除选项B ,从而可得结果. 【详解】因为双曲线()222210,0x y a b a b-=>>的焦距为所以c =22 5a b +=,可排除选项,C D ;因为2214y x -=的渐近线方程为2y x =±,不与直线20x y +=垂直,可排除选项B ,故选A. 【点睛】本题主要考查双曲线的几何性质以及排除法的应用,属于中档题. 用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法. 若结果为定值,则可采用此法. 特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性.5.双曲线22440x ty t +-=的虚轴长等于( )A .B .2t -C .D .4【答案】C 【解析】双曲线方程化为221;4x y t +=因为是双曲线方程,所以0,t <则标准方程为221;4y x t-=-所以虚轴长故选C 6.已知双曲线22221x y a b-=(0a >,0b >)与椭圆2212516x y +=有共同焦点,且双曲线的渐近线方程为0x =,则该双曲线的方程为( )A .221612x y -=B .221126x y -=C .22136x y -=D .22163x y -=【答案】D根据已知双曲线22221x y a b-=与椭圆2212516x y +=有共同焦点可得:3c =,再由双曲线的渐近线方程为0x ±=,可得:22292a b c b a⎧+==⎪⎨=⎪⎩ ,即可得解. 【详解】易知椭圆2212516x y +=的两个焦点为(3,0),(3,0)-, 设双曲线的焦距为2c ,则3c =, 且焦点在x 轴上,设双曲线的实轴、虚轴分别为:2a 、2b由双曲线的渐近线方程为0x ±=,可得:22292a b c b a⎧+==⎪⎨=⎪⎩ ,解得:a b ==故选:D. 【点睛】本题考查了椭圆、双曲线的焦点问题,考查了双曲线渐近线的公式的理解,总体计算量不大,属于基础题.7.已知椭圆221416x y +=上的一点P 到椭圆一个焦点的距离为6,则点P 到另一个焦点的距离为( ) A .2 B .3 C .5 D .7【答案】A 【分析】根据椭圆定义,即可求得点P 到另外一个焦点的距离. 【详解】设所求距离为d ,由题意得4a =.根据椭圆的定义得26262a d d a =+⇒=-=, 故点P 到另一个焦点的距离为2. 故选:A本题考查了椭圆的定义,属于基础题 8.抛物线212x y =的焦点到准线的距离是() A .1 B .2C .12D .14【答案】D 【分析】由抛物线22p x y =的焦点到准线的距离等于p ,可直接得出结果. 【详解】因为抛物线的方程为212x y =,即12p 2=,所以1p 4=, 因此焦点到准线的距离是14.故选D 【点睛】本题主要考查抛物线的性质,熟记性质即可,属于基础题型.9.已知双曲线()2222=10,0x y a b a b->>的左、右焦点分别为1F ,2F ,点P 在双曲线的右支上,且124PF PF =,则双曲线离心率的取值范围是( )A .5,23⎛⎤⎥⎝⎦B .5,3⎡⎫+∞⎪⎢⎣⎭C .(]1,2D .51,3⎛⎤⎥⎝⎦【答案】D 【分析】根据题中条件,由双曲线的定义,得到223aPF =,183a PF =,根据1212+≥PF PF F F ,即可求出结果. 【详解】因为点P 在双曲线的右支上,由双曲线的定义可得122PF PF a -=, 又124PF PF =,所以232PF a =,即223aPF =,则183a PF =, 因为双曲线中,1212+≥PF PF F F , 即1023a c ≥,则53c a ≤,即53e ≤,又双曲线的离心率大于1,所以513e <≤. 故选:D. 【点睛】本题主要考查求双曲线的离心率,熟记双曲线的简单性质即可,属于基础题.10.双曲线2214y x m-=的离心率为32,则其渐近线方程是( )A .54y x =±B .45y x =±C .y x =D .y = 【答案】D 【分析】根据双曲线离心率及定义可求得m 的值,即可得双曲线的标准方程,进而由渐近线方程可得解. 【详解】双曲线2214y x m-=,即2,a b ==c =由离心率为32,所以32c a ==, 解得5m =,所以双曲线22145y x -=,则渐近线方程为5a y x x x b =±==±, 故选:D. 【点睛】本题考查了双曲线的简单几何性质应用,离心率与渐近线方程的简单应用,属于基础题. 11.从某个角度观察篮球(如图甲),可以得到一个对称的平面图形,如图乙所示,篮球的外轮廓为圆O ,将篮球表面的粘合线视为坐标轴和双曲线,若坐标轴和双曲线与圆O 的交点将圆的周长八等分,且AB BO OC CD ===,则该双曲线的离心率为( )A 2B 3C .2D 5【答案】B 【分析】设出双曲线方程,把双曲线上的点的坐标表示出来并代入到方程中,找到a b 、的关系即可求解. 【详解】以O 为原点,AD 所在直线为x 轴建系,不妨设1AB BO OC CD ====, 则该双曲线过点(22),且1a =,将点(22),代入方程222222123x y b c a b -=⇒=⇒=,故离心率为3==ce a, 故选:B . 【点睛】本题考查已知点在双曲线上求双曲线离心率的方法,属于基础题目.12.已知双曲线22:1x C y m -=的离心率为62(2,0)P 的直线l 与双曲线C 交于不同的两点A 、B ,且AOB ∠为钝角(其中O 为坐标原点),则直线l 斜率的取值范围是( ) A .22(,0)(0,)22-B .5(,0)(0⋃5C .22(,(,)22-∞-+∞ D .55(,(,)-∞+∞ 【答案】A 【分析】利用双曲线的离心率求出m ,得到双曲线方程,设出直线方程,设出AB 坐标,利用韦达定理结合向量的数量积转化求解k 的范围即可. 【详解】解:由题意双曲线22:1x C y m -==2m =, 双曲线22:12x C y -=,设直线:2l x ty =+,与双曲线C 联立得:22(2)420t y ty -++=, 设点1(A x ,1)y ,2(B x ,2)y , 则12222y y t =-,12224y y t t =--+ 221212122282()42t x x t y y t y y t --=+++=-, 又因为AOB ∠为钝角,则0OA OB ⋅<,所以12120y y x x +<,即222228022t t t --+<--得出220t ->,即22t >, 所以直线l 的斜率22112k t =<, 又且,,A O B 三点不可能共线,则必有0k ≠,即直线l 斜率的取值范围是2(,0)(0,)22-, 故选:A . 【点睛】本题考查双曲线的简单性质的应用,直线与双曲线的位置关系的应用,是中档题.二、填空题13.已知椭圆的方程为222116x y m+=,焦点在x 轴上,m 的取值范围是______.【答案】()()4,00,4-【分析】由椭圆的焦点在x 轴上,可得2016m <<,求解即可. 【详解】由椭圆的方程为222116x y m +=,焦点在x 轴上,可得2016m <<,所以40m -<<或04m <<, 故答案为:()()4,00,4-【点睛】本题考查了椭圆短轴的范围,是椭圆基本量的考查,属于基础题. 14.抛物线24y x =的焦点坐标是_______. 【答案】10,16⎛⎫⎪⎝⎭【分析】将抛物线方程转化为标准形式,由此求得抛物线的焦点坐标. 【详解】由24y x =得214x y =,所以抛物线的焦点在y 轴上,且112,4216p p ==,所以抛物线的焦点坐标为10,16⎛⎫⎪⎝⎭.故答案为:10,16⎛⎫⎪⎝⎭【点睛】本小题主要考查抛物线焦点坐标的求法,属于基础题.15.椭圆22221x y a b+=(0a b >>)的左、右焦点分别为1F ,2F ,过2F 的直线交椭圆于P ,Q 两点(P 在x 轴上方),1PF PQ =,若1PQ PF ⊥,则椭圆的离心率e =______.-【分析】 根据椭圆定义,设2PF m =,则12PF a m =-,进而表示出222QF a m =-,12QF m =,由1PQ PF ⊥,得在两个三角形中由勾股定理可得a ,c 的关系,进而求出椭圆的离心率. 【详解】如图所示,设()20PF m m =>,根据椭圆定义得12PF a m =-, 由1PF PQ =,得2222QFa m m a m =--=-,由椭圆的定义可得()12222QF a a m m =--=,因为1PQ PF ⊥,在1Rt PFQ ∆中,且1PF PQ =,得22112QF PF =,即()22422m a m =-①,在12Rt PF F ∆中,得2221212F F PF PF =+,即()22242c a m m =-+②,由①-②2⨯可得222482m c m -=-,可得233m c =,③, 将③代入②可得22223233423c a c c ⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,整理可得:22330e e +-=,()0,1e ∈,解得63e =-.故答案为:63-.【点睛】本题考查椭圆的性质及直线与椭圆的综合,考查椭圆离心率的求法,属于中档题. 16.已知过抛物线2:4C y x =焦点F 的直线交抛物线C 于P ,Q 两点,交圆2220x y x +-=于M ,N 两点,其中P ,M 位于第一象限,则11PM QN+的最小值为_____. 【答案】2 【分析】设11(,)P x y ,22(,)Q x y ,根据题意可设直线PQ 的方程为1x my =+,将其与抛物线C 方程联立可求出121=x x ,结合图形及抛物线的焦半径公式可得12||||1PM QN x x ⋅==,再利用基本不等式,即可求出11PM QN+的最小值. 【详解】圆2220x y x +-=可化为22(1)1x y -+=,圆心坐标为(1,0),半径为1,抛物线C 的焦点(1,0)F ,可设直线PQ 的方程为1x my =+,设11(,)P x y ,22(,)Q x y ,由214x my y x=+⎧⎨=⎩,得2440y my --=,所以124y y =-, 又2114y x =,2224y x =,所以222121212()14416y y y y x x =⋅==,因为1212||||(||||)(||||)(11)(11)1PM QN PF MF QF NF x x x x ⋅=--=+-+-==,所以111122PM QN PM QN+≥⋅=,当且仅当||||1PM QN ==时,等号成立. 所以11PM QN+的最小值为2. 故答案为:2 【点睛】本题主要考查抛物线的几何性质,基本不等式求最值,考查基本运算能力,属于中档题.三、解答题17.(1)已知椭圆的离心率为74,短轴一个端点到右焦点的距离为4,求椭圆的标准方程。
高二数学圆锥曲线与方程试题答案及解析1.若动点与定点和直线的距离相等,则动点的轨迹是()A.椭圆B.双曲线C.抛物线D.直线【答案】D【解析】因为定点F(1,1)在直线上,所以到定点F的距离和到定直线l的距离相等的点的轨迹是直线,就是经过定点A与直线,垂直的直线.故选D.【考点】1.抛物线的定义;2.轨迹方程.2. F1、F2是定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则点M的轨迹是()A.椭圆B.直线C.线段D.圆【答案】C【解析】主要考查椭圆的定义、椭圆的标准方程。
解:因为|MF1|+|MF2|=6=|F1F2|,所以点M的轨迹是线段,故选C。
3.椭圆内有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的方程为()A.B.C.D.【答案】B【解析】主要考查椭圆的定义、直线与椭圆的位置关系。
利用“点差法”求弦的斜率,由点斜式写出方程。
故选B。
4.如果抛物线y 2=ax的准线是直线x=-1,那么它的焦点坐标为()A.(1, 0)B.(2, 0)C.(3, 0)D.(-1, 0)【答案】A【解析】由已知,所以=4,抛物线的焦点坐标为(1, 0),故选A。
【考点】本题主要考查抛物线的定义、标准方程、几何性质。
点评:熟记抛物线的标准方程及几何性质。
5.圆心在抛物线y 2=2x上,且与x轴和该抛物线的准线都相切的一个圆的方程是()A.x2+ y 2-x-2 y -=0B.x2+ y 2+x-2 y +1="0"C.x2+ y 2-x-2 y +1=0D.x2+ y 2-x-2 y +=0【答案】D【解析】由抛物线定义知,此圆心到焦点距离等于到准线距离,因此圆心横坐标为焦点横坐标,代入抛物线方程的圆心纵坐标,1,且半径为1,故选D。
【考点】本题主要考查抛物线的定义、标准方程、几何性质,同时考查了圆的切线问题。
点评:抛物线问题与圆的切线问题有机结合,利用抛物线定义,简化了解答过程。
一、选择题1.已知斜率为16的直线l 与双曲线22221(0,0)x y C a b a b-=>>:相交于B 、D 两点,且BD 的中点为(1,3)M ,则C 的离心率为( )A .2B C .3 D 2.平面α内有一条直线m ,过平面α外一点P 作直线n 与m 所成角为6π,则直线n 与平面α交点的轨迹是( ) A .直线B .抛物线C .椭圆D .双曲线3.平面直角坐标系xOy 中,直线:(2)(0)l y k x k =+>与抛物线2:8C y x =相交于A B 、两点,F 为C 的焦点,若2FA FB =,则点A 到y 轴的距离为( ) A .3B .4C .5D .64.已知()5,0F 是双曲线()2222:=10,0x y C a b a b->>的右焦点,点(A .若对双曲线C 左支上的任意点M ,均有10MA MF +≥成立,则双曲线C 的离心率的最大值为( )A B .5C .52D .65.过抛物线24y x =的焦点作两条相互垂直的弦AB ,CD ,且AB CD AB CD λ+=⋅,则λ的值为( )A .12B .14C .18D .1166.已知1F ,2F 是双曲线()222210,0x y a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线的左、右两支分别交于点A ,B ,若2ABF 为等边三角形,则该双曲线的渐近线的斜率为( )A .BC .D .7.顶点在原点,经过点(),且以坐标轴为轴的抛物线的标准方程是( )A .2y =或212=-x y B .2y =-或212=-x yC .2y =或212x y =D .2y =-或212x y =8.已知椭圆()222210x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎛⎫∈ ⎪⎝⎭,则该椭圆的离心率e 的取值范围是( )A .12,23⎛⎫⎪⎝⎭B .26,23⎛⎫ ⎪ ⎪⎝⎭C .222,23⎛⎫⎪ ⎪⎝⎭D .332,3⎛⎫⎪ ⎪⎝⎭9.已知1F ,2F 是离心率为13的椭圆22221(0)x y a b a b+=>>的焦点,M 是椭圆上第一象限的点,若I 是12MF F △的内心,G 是12MF F △的重心,记12IF F △与1GF M △的面积分别为1S ,2S ,则( ) A .12S SB .122S S =C .1232S S =D .1243S S =10.已知过双曲线()2222:1,0x y C a b a b-=>的左焦点F 作圆222x y a +=的切线FT ,交双曲线右支于点P ,点P 到x 轴的距离恰好为34b ,则双曲线离心率为( )A 227+ B .273+ C .53D .211.设1F 、2F 是椭圆1C 和双曲线2C 的公共焦点,P 是它们的一个公共点,且1PF <2PF ,线段1PF 垂直平分线经过2F ,若1C 和2C 的离心率分别为1e 、2e ,则129e e +的最小值( )A .2B .4C .6D .812.已知抛物线2:4C y x =,过点()1,0A -作C 的两条切线,切点分别为B 、D ,则过点A 、B 、D 的圆截y 轴所得弦长为( ) A .3B .2C .43D .42二、填空题13.已知中心在原点,对称轴为坐标轴的椭圆,其中一个焦点坐标为()2,0F ,椭圆被直线:3l y x =+所截得的弦的中点横坐标为2-,则此椭圆的标准方程为______.14.已知双曲线22:143x y C -=的左、右焦点分别12,F F ,P 为双曲线上异于顶点的点,以1PF ,2PF 为直径的圆与直线l 分别相切于A ,B 两点,则12cos ,AB F F <>=___________.15.已知ABC 中,()1,0B -、()1,0C ,1k 、2k 分别是直线AB 和AC 的斜率.关于点A 有如下四个命题:①若A 是双曲线2212y x -=上的点,则122k k ⋅=;②若122k k ⋅=-,则A 是椭圆2212x y +=上的点;③若121k k ,则A 是圆221x y +=上的点;④若2AB AC =,则A 点的轨迹是圆. 其中所有真命题的序号是__________.16.已知椭圆22:12x C y +=的左焦点为F ,椭圆外一点(0,)(1)P t t >,直线PF 交椭圆于A 、B 两点,过P 作椭圆C 的切线,切点为E ,若23||4||||PE PA PB =⋅,则t =____________.17.设P 是双曲线22:13y x Γ-=上任意一点,Q 与P 关于x 轴对称,1F 、2F 分别为双曲线的左、右焦点,若有121PF PF ⋅≥,则1F P 与2F Q 夹角的取值范围是__________.18.若实数x ,y 10=,则+________.19.已知双曲线2222:1(0,0)y x C a b a b-=>>,直线x b =与C 的两条渐近线分别交于A ,B 两点,过A 作圆222:(2)M x b y b ++=的切线,D 为其中一个切点若||||AD AB =,则C 的离心率为__________.20.设A 、B 是双曲线22221(0,0)x y a b a b-=>>的左、右顶点,F 是右焦点,M 是双曲线上异于A 、B 的动点,过点B 作x 轴的垂线与直线MA 交于点P ,若直线OP 与BM 的斜率之积为4,则双曲线的离心率为_________.三、解答题21.已知抛物线2:2(0)C x py p =>上一点(),2P m 到其焦点F 的距离为4. (1)求抛物线C 的方程;(2)过点F 且斜率为1的直线l 与C 交于A ,B 两点,O 为坐标原点,求OAB 的面积. 22.在平面直角坐标系xOy 中,已知两点()1,0M -,()1,0N ,动点Q 到点M 的距离为,线段NQ 的垂直平分线交线段MQ 于点K ,设点K 的轨迹为曲线E .(1)求曲线E 的方程;(2)已知点()2,0P ,设直线l :10x my +-=与曲线E 交于A ,B 两点,求证:OPA OPB ∠=∠.23.已知椭圆C :()222210x y a b a b+=>>的左右焦点分别为1F ,2F ,长轴长为22,离心率为22. (1)求椭圆C 的方程.(2)若过点1F 的两条弦,弦AB 、弦CD ,互相垂直,求四边形ACBD 的面积的最小值.24.已知抛物线28y x =的焦点为F ,且A 是抛物线上一点. (1)若4AF =求点A 的坐标;(2)直线l :y x m =+与抛物线交于两个不同的点P ,Q ,若OP OQ ⊥,求实数m 的值. 25.荷兰数学家舒腾(F.van Shooten ,1615-1660)设计了一种画椭圆的工具,如图1所示,两根等长的带槽的直杆AC 和BF 的一端各用钉子固定在点A 和B 上(但分别可以绕钉子转动),4AC BF ==,另一端用铰链与杆FC 连接,2FC AB ==,AC 和BF 的交点为E ,转动整个工具,交点E 形成的轨迹为椭圆Γ.以线段AB 中点O 为原点,AB 所在的直线为x 轴建立如图2的平面直角坐标系.(1)求椭圆Γ的标准方程;(2)经过B 点的直线l 交椭圆Γ于不同的两点M N 、,设点P 为椭圆的右顶点,当PNM △的面积为27时,求直线l 的方程. 26.已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为4,焦距为23P 为椭圆C 上一动点,且直线,AP BP 的斜率之积为14-.(1)求椭圆C 的标准方程;(2)设,A B 分别是椭圆C 的左右顶点,若点,M N 是C 上不同于,A B 的两点,且满//,//AP OM BP ON ,求证:MON △的面积为定值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设()()1122,,B x y D x y 、,用“点差法”表示出a 、b 的关系,即可求出离心率 【详解】设()()1122,,B x y D x y 、,则22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩, 两式作差得:22221212220x x y y a b---=, 整理得:()()()()2121221212y y y y b a x x x x +-=+-BD 的中点为(1,3)M ,且直线l 的斜率为16 ,代入有:22611262b a =⨯=即22212c a a -=,解得6ce a . 故选:D 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.2.D解析:D 【分析】过点P 作PO α⊥,以点O 为坐标原点,OP 为z 轴,以定直线m 为y 轴,建立如图所示的空间直角坐标系,设出坐标,分别表示出直线AB 与PM 的方向向量,利用夹角公式即可得出. 【详解】解:过点P 作PO α⊥,以点O 为坐标原点,OP 为z 轴,以定直线m 为y 轴,建立如图所示的空间直角坐标系.不妨设1OP =,30PBO ∠=︒,3OB ∴=. 则(0P ,0,1),(0,3,0)B .设点(Q x ,y ,0),则(,,1)PQ x y =-,取直线m 的方向向量为(0,1,0)u =. 直线AB 与PQ 所成的角为30, 22||3cos30||||1PQ u PQ u x y ∴︒===++, 化为2213y x -=,即为点Q 的轨迹.故选:D .【点睛】熟练掌握通过建立如图所示的空间直角坐标系利用异面直线的夹角公式求得轨迹的方法是解题的关键.3.B解析:B 【分析】根据题意画出图形,抛物线的准线为':2l x =-,直线:(2)(0)l y k x k =+>恒过定点(2,0)P -,过,A B 分别作'AM l ⊥于M ,'BN l ⊥于N ,根据抛物线的定义和已知条件可得点B 为AP 的中点,进而可得点B 的横坐标为1,则26AM BN ==从 而可求出答案 【详解】解:设抛物线2:8C y x =的准线为':2l x =-,直线:(2)(0)l y k x k =+>恒过定点(2,0)P -,如图过,A B 分别作'AM l ⊥于M ,'BN l ⊥于N , 因为2FA FB =,所以2AM BN =, 所以点B 为AP 的中点,连接OB ,则12OB AF =, 所以OB BF =,所以点B 的横坐标为1, 所以26AM BN ==, 所以点A 到y 轴的距离为4, 故选:B【点睛】关键点点睛:此题考查直线与抛物线的位置关系,考查抛物线的定义的应用,解题的关键是根据题意画出图形,灵活运用抛物线的定义,考查计算能力,属于中档题4.C解析:C 【分析】设E 是双曲线的左焦点,利用双曲线的定义把MF 转化为ME 后易得MA ME +的最小值,从而得a 的最小值,由此得离心率的最大值. 【详解】设E 是双曲线的左焦点,M 在左支上,则2MF ME a -=,2MF ME a =+,22MA MF MA ME a EA a +=++≥+,当且仅当E A M ,,三点共线时等号成立.则222(5)(11)210EA a a +=-+≥,2a ≥,所以552c e a a ==≤. 故选:C .【点睛】思路点睛:本题考查双曲线的定义的应用.在涉及双曲线上的点与一个焦点和另外一个定点距离和或差的最值时,常常利用双曲线的定义把到已知焦点的距离转化为到另一焦点的距离,从而利用三点共线取得最值求解.5.B解析:B 【分析】首先设直线AB 的方程为1x ty =+, 与抛物线方程联立分别求AB 和CD ,分别计算AB CD +和AB CD ,再求λ的值.【详解】24y x =的焦点为()1,0,设AB 的直线方程为1x ty =+,CD 的直线方程为11x y t=-+,由214x ty y x=+⎧⎨=⎩得2440y ty --=,设()11,A x y ,()22,B x y , 则124y y t +=,124y y =-,则()()22212121441AB t y y y y t =++-=+,同理2141CD t ⎛⎫=+⎪⎝⎭,22142AB CD t t ⎛⎫+=++ ⎪⎝⎭ 221162AB CD t t ⎛⎫⋅=++ ⎪⎝⎭, 故14λ=. 故选:B 【点睛】关键点点睛:本题的关键是利用弦长公式求AB ,并且利用AB CD ⊥,将t 换成1t-求CD . 6.C【分析】利用双曲线的定义可求得12AF a =,24AF a =,利用余弦定理可求得ca的值,利用公式21⎛⎫=- ⎪⎝⎭b c a a 可求得该双曲线的渐近线的斜率. 【详解】2ABF 为等边三角形,22AB AF BF ∴==,且260ABF ∠=︒,由双曲线的定义可得121212||BF AB AF a B AF F BF =+-==-,212AF AF a -=,24AF a ∴=,在12AF F △中12AF a =,24AF a =,12120F AF ∠=,由余弦定理可得2212121222cos12027F F c AF AF AF AF a ==+-⋅︒=,即7c a =,所以22222216b b c a c a a a a -⎛⎫===-= ⎪⎝⎭. 因此,该双曲线的渐近线的斜率为6±. 故选:C.【点睛】思路点睛:求解双曲线的渐近线的常用思路:(1)定义法:直接利用a ,b ,求得比值,则焦点在x 轴时渐近线by x a=±,焦点在y 轴时渐近线ay x b=±; (2)构造齐次式,利用已知条件,结合222+=a b c ,构建b a 的关系式(或先构建ca的关系式),再根据焦点位置写渐近线即可.7.D【分析】设出抛物线方程为22y mx =或22x ny =,代入点的坐标求出参数值可得.【详解】设抛物线方程为22y mx =,则262(3)m =⋅-,63m =-,方程为2123y x =-, 或设方程为22x ny =,则2(3)26n -=⨯,14n =,方程为212x y =. 所以抛物线方程为2123y x =-或212x y =. 故选:D . 【点睛】关键点点睛:抛物线的标准方程有四种形式,在不确定焦点位置(或开口方向时),需要分类讨论.象本题在抛物线过一点的坐标,则需要考虑焦点在x 轴和y 轴两种情况,焦点在x 轴上时可以直接设方程为2y mx =,代入点的坐标求出参数值,不必考虑焦点是在x轴正半轴还是在负半轴,焦点在y 轴也类似求解.8.B解析:B 【分析】由题意设椭圆的左焦点为N ,连接AN ,BN ,因为AF ⊥BF ,所以四边形AFBN 为长方形,再根据椭圆的定义化简得22cos 2sin a c c =+αα,得到离心率关于α的函数表达式,再利用辅助角公式和三角函数的单调性求得离心率的范围. 【详解】由题意椭圆22221x y a b+=()00a b >>,上一点A 关于原点的对称点为点B ,F 为其右焦点,设左焦点为N ,连接AN ,BN ,因为AF ⊥BF ,所以四边形AFBN 为长方形.根据椭圆的定义:2AF AN a +=,由题∠ABF =α,则∠ANF =α, 所以22cos 2sin a c c αα+=,利用2112sin cos 4c e a πααα===+⎛⎫+ ⎪⎝⎭, ∵,124ππα⎛⎫∈ ⎪⎝⎭,∴342πππα<+<14πα<<⎛⎫+ ⎪⎝⎭e 的取值范围是⎝⎭,故选B . 【点睛】本题主要考查了椭圆的离心率的取值范围问题,其中解答中合理利用椭圆的定义和题设条件,得到22cos 2sin a c c =+αα,再利用三角函数的性质求解是解答的关键,着重考查了推理与运算能力,属于中档试题.9.D解析:D 【分析】设12MF F △的面积为S ,内切圆半径为r ,则可得4Sr c=,从而可得1121122244S SF F r c S c ==⋅⋅=,再由G 是12MF F △的重心,可得11222213323MOF MF F SS S S ==⨯=,进而可得结果 【详解】解:由于椭圆的离心率为13,所以13c a =,即3a c =,设12MF F △的面积为S ,内切圆半径为r ,则121211()(22)422S MF MF F F r a c r cr =++=+=,所以4Sr c=, 所以1121122244S S F F r c S c ==⋅⋅=, 因为G 是12MF F △的重心, 所以11222213323MOF MF F S S S S ==⨯=, 所以1234S S =,即1243S S =, 故选:D【点睛】关键点点睛:此题考查椭圆的性质的应用,解题的关键是设12MF F △的面积为S ,内切圆半径为r ,然后求出4Sr c=,进而可表示出1S ,2S ,从而可得结果,属于中档题 10.A解析:A 【分析】由P 点到x 轴距离(即纵坐标)求出其横坐标,写出直线FP 的方程,然后由原点到切线的距离等于半径可得,,a b c 的等式,变形后可得离心率. 【详解】如图P 在第一象限,因为点P 到x 轴的距离恰好为34b ,即34P y b =,代入双曲线方程得229116P x a -=,解得54P x a =,所以53,44P a b ⎛⎫ ⎪⎝⎭, (,0)F c -,直线FP 方程为34()54b y xc a c =++,化简得3(54)30bx a c y bc -++=, 又直线FP 与圆222x y a +=相切,a =,345bc a a c=+人,变形为4293440160e e e ---=,22(342)(348)0e e e e ++--=,因为1e >,所以23420e e ++>,所以23480e e --=,e =去). 故选:A . 【点睛】思路点睛:本题考查求双曲线的离心率,解题关键是找到关于,,a b c 的齐次等式,本题中由点P 到x 轴的距离恰好为34b ,得出P 点坐标,从而可得直线FP 方程,由圆心到切线的距离等于半径可得所要关系式,从而转化为离心率e 的方程,解之可得.11.D解析:D 【分析】设椭圆和双曲线的方程,由题意可得2122PF F F c ==,再利用椭圆和双曲线的定义分别求出1PF ,即可得122a a c +=,计算12112e e +=,()121212111992e e e e e e ⎛⎫+=++ ⎪⎝⎭展开后利用基本不等式即可求最值. 【详解】设椭圆1C 的方程为2222111x y a b +=,则222111c a b =-,设双曲线2C 的方程为2222221x y a b -=,则222222c a b =+,因为椭圆1C 和双曲线2C 的焦点相同,所以2212c c =,设12c c c ==即22221122a b a b -=+,因为P 是椭圆1C 和双曲线2C 的一个公共点, 所以1212+=PF PF a ,2122PF PF a -=,因为线段1PF 垂直平分线经过2F ,所以2122PF F F c ==,所以1122PF a c =-,且1222PF c a =-, 所以122222a c c a -=-,可得122a a c +=, 所以11c e a =,22c e a =,所以1212121122a a a a ce e c c c c++=+===, 所以()211212121291111991022e e e e e e e e e e ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭()11101023822⎛≥+=+⨯= ⎝, 当且仅当21129e e e e =,即213e e =时等号成立, 故选:D. 【点睛】关键点点睛:本题解题的关键点是利用已知条件得出122a a c +=,进而可得12112e e +=, 再利用基本不等式可求最值.12.A解析:A 【分析】设出直线方程,与抛物线方程联立,由判别式为零解出B 、D 两点的坐标,进而得出过点A 、B 、D 的圆的方程,求出弦长即可. 【详解】设过点()1,0A -的直线方程为1x my =-,联立214x my y x=-⎧⎨=⎩,可得2440y my -+=,由216160m ∆=-=,解得1m =±即2440y y ±+=,2y =±,不妨设()()1,2,1,2B D -,则BD 的中垂线方程为0y =,即圆心在x 轴上又()1,0A -,且点()1,0到点A 、B 、D 的距离都相等,则圆心坐标为()1,0,半径为2 圆的方程为()2214x y -+=,令0x =,解得y =即圆被y轴所截得的弦长为故选:A 【点睛】关键点点睛:本题考查直线与抛物线的位置关系,考查圆的方程以及直线与圆的位置关系,解决本题的关键点是根据直线与抛物线相切,求出切点的坐标,进而得出圆的方程,求出弦长,考查学生逻辑思维能力和计算能力,属于中档题.二、填空题13.【分析】设椭圆方程为代入直线方程整理就后应用韦达定理结合弦中点横坐标求得关系再由可得得椭圆方程【详解】设椭圆方程为由得所以由题意又所以椭圆方程为故答案为:【点睛】方法点睛:本题考查求椭圆的标准方程解解析:22184x y +=【分析】设椭圆方程为22221(0)x y a b a b+=>>,代入直线方程整理就后应用韦达定理结合弦中点横坐标求得,a b 关系,再由2c =可得,a b 得椭圆方程.【详解】设椭圆方程为22221(0)x ya b a b +=>>,由222213x y a b y x ⎧+=⎪⎨⎪=+⎩,得2222222()690a b x a x a a b +++-=,所以212226a x x a b +=-+,由题意222622a a b-=-⨯+,222a b =, 又2c =,所以22224a b b c -===,28a =,椭圆方程为22184x y +=.故答案为:22184x y +=.【点睛】方法点睛:本题考查求椭圆的标准方程.解题方法是韦达定理.由直线方程与椭圆方程联立方程组,消元后应用韦达定理可得出弦中点坐标,从而得出,a b 的关系.然后结论半焦距c 可求解.14.【分析】求得双曲线的设运用双曲线的定义和三角形的中位线定理可得由相切的性质判断四边形为直角梯形过作垂足为运用直角三角形的勾股定理和向量的夹角的定义和直角三角形的余弦函数的定义计算可得所求值【详解】解【分析】求得双曲线的a , c ,设1PF m =,2PF n =,运用双曲线的定义和三角形的中位线定理可得MN ,由相切的性质判断四边形ABNM 为直角梯形,过N 作NQ AM ⊥,垂足为Q ,运用直角三角形的勾股定理和向量的夹角的定义和直角三角形的余弦函数的定义,计算可得所求值. 【详解】解:因为双曲线22:143x y C -=,所以2a =,c ==依题意画出如下图形,设1PF ,2PF 的中点分别为M ,N ,过点N 作NQ AM ⊥交AM 于点Q ,连接MN ,所以1212MN F F ==,设1PF m =,2PF n =,则24m n a -==所以11122AM PF m ==,21122BN PF n ==,所以()122MQ AM BN m n =-=-=,在Rt MNQ 中NQ =,因为//NQ BA ,所以MNQ ∠为12,AB F F 的夹角,所以12cos ,7QN AB F F MN <>===故答案为:7【点睛】本题考查双曲线的定义、方程和性质,以及直线和圆相切的性质,考查直角三角形的勾股定理和锐角三角函数的定义、向量的夹角的概念,考查方程思想和化简运算能力和推理能力.15.①③【分析】设点可得出结合斜率公式可判断A 选项的正误;求出动点的轨迹方程可判断②的正误;根据求出点的轨迹方程可判断③的正误;由求出点的轨迹方程可判断④的正误【详解】设动点的坐标为对于①由于点是双曲线解析:①③ 【分析】设点(),A x y ,可得出2212y x =+,结合斜率公式可判断A 选项的正误;求出动点A 的轨迹方程,可判断②的正误;根据121k k ,求出点A 的轨迹方程,可判断③的正误;由2AB AC =求出点A 的轨迹方程,可判断④的正误. 【详解】设动点A 的坐标为(),A x y .对于①,由于点A 是双曲线2212y x -=上的点,则2212y x =+,所以,22122221112y y y y k k y x x x =⋅===+--,①正确;对于②,21222111y y y k k x x x =⋅==-+--,化简可得2212y x +=,②错误;对于③,21221111y y y k k x x x =⋅==-+--,化简可得221x y +=,③正确;对于④,由2AB AC ==化简可得2251639x y ⎛⎫-+= ⎪⎝⎭, 当点A 为圆2251639x y ⎛⎫-+= ⎪⎝⎭与x 轴的交点时,A 、B 、C 三点无法构成三角形,④错误.故答案为:①③. 【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.16.【分析】设交点由两点得直线方程由直线方程与椭圆方程联立消去后应用韦达定理得可计算代入在上半椭圆用函数解析式表示出上半椭圆并求导数设切点为求出切线方程切点坐标可用表示从而求得代入已知等式后求得值【详解【分析】设交点1122(,),(,)A x y B x y ,由两点得直线PF 方程,由直线方程与椭圆方程联立,消去后应用韦达定理得1212,x x x x +,可计算PA PB ,代入1212,x x x x +,P 在上半椭圆,用函数解析式表示出上半椭圆,并求导数,设切点为11(,)x y ,求出切线方程,切点坐标可用t 表示,从而求得2PE ,代入已知等式后求得t 值. 【详解】由题意(1,0)F -,直线AB 方程为00(1)t y x t tx t -=+=+--,设1122(,),(,)A x y B x y ,由2212y tx t x y =+⎧⎪⎨+=⎪⎩,得2222(12)4220t x t x t +++-=,2122412t x x t +=-+,21222212t x x t-=+, ∵,PA PB 同向,∴11221212(,)(,)()()PA PB PA PB x y t x y t x x y t y t =⋅=-⋅-=+--22211221222(1)(1)(,)(,)(1)21t t x tx x tx t x x t +-⋅=+=+, 设11(,)E x y ,过E 点的切线方程为11()y y k x x -=-,1t >,切点E 在x轴上方,由y =2xy y '==-,∴112PE xk y =-,切线方程为1111()2x y y x x y -=--,化简得1122x x y y +=, 直线过(0,)P t ,则122y t =,11y t =,由椭圆方程得21222x t=-, 222211221()2()PE x y t t t t=+-=-+-, ∵23||4||||PE PA PB =⋅,∴22222218(1)(1)32()21t t t t t t +-⎡⎤-+-=⎢⎥+⎣⎦,化简得223t =,∵1t >,∴t =故答案为:2. 【点睛】 关键点点睛:本题考查直线与椭圆相交、相切问题,解题方法是设而不求的思想方程,即设交点1122(,),(,)x y x y ,由直线方程与椭圆方程联立,消去后应用韦达定理得1212,x x x x +,然后计算PA PB ,设切点坐标,用导数求出切线斜率,得切线方程,代入坐标(0,)t 可求得切点坐标(用t 表示),求出2PE ,再结合已知条件求出结果.17.【分析】设由求出的取值范围再由平面向量的数量积计算出与夹角的余弦的取值范围从而得夹角的范围【详解】设则又双曲线中即∴又即代入上式得设与夹角为则∵∴∴∵∴故答案为:【点睛】关键点点睛:本题考查依托双曲解析:25,arccos 37ππ⎛⎤⎥⎝⎦- 【分析】设00(,)P x y ,由121PF PF ⋅≥求出20x 的取值范围,再由平面向量的数量积计算出1F P 与2F Q 夹角的余弦的取值范围,从而得夹角的范围.【详解】设00(,)P x y ,则00(,)Q x y -,又双曲线22:13y x Γ-=中2c ==,即12(2,0),(2,0)F F -,∴2212000000(2,)(2,)41PF PF x y x y x y ⋅=---⋅--=-+≥, 又220013y x -=,即220033=-y x ,代入上式得204341x --≥,202x ≥.100(2,)F P x y =+,200(2,)F Q x y =--,2212004F P F Q x y ⋅=--, 设1F P 与2F Q 夹角为θ,则2222221212cos (F P F Q F P F Qθ⋅====∵202x ≥,∴cos θ20202141x x +=--,2200222000132211322414122(41)x x x x x -++==+---, 20417x -≥,203302(41)14x <≤-,201135222(41)7x <+≤-, ∴51cos 72θ-≤<-,∵[0,]θπ∈,∴25arccos 37πθπ<≤-. 故答案为:25,arccos 37ππ⎛⎤ ⎥⎝⎦-.【点睛】关键点点睛:本题考查依托双曲线求平面向量夹角的取值范围.解题方法是设00(,)P x y ,利用P 点满足的条件求出0x 的范围,然后求出向量夹角的余弦值,余弦值的范围,从而得出角的范围.18.【分析】由已知条件得出点P 在以为焦点以为长轴长的椭圆上再由两点的距离公式得出表示点到点的距离之和再根据椭圆的定义将问题转化为求的范围根据两点的距离公式可求得范围【详解】设点则由椭圆的定义得点P 在以为 解析:[10-+【分析】由已知条件得出点P 在以()()120303F F -,,,为焦点,以10为长轴长的椭圆上,再由两+(),P x y 到点()()11,00,3A F ,的距离之和,再根据椭圆的定义将问题转化为求210+d PA PF =-的范围,根据两点的距离公式可求得范围. 【详解】设点(),P x y ,则由椭圆的定义得点P 在以()()120303F F -,,,为焦点,以10为长轴长的椭圆上,所在椭圆的方程为:22+11625x y =,(),P x y 到点()()11,00,3A F ,的距离之和,即1+d PA PF =,由椭圆的定义得12+210PF PF a ==,所以1210PFPF =-,所以()122++1010+d PA PF PA PF PA PF ==-=-,而222AF PA PF AF -≤-≤,又2AF ==,所以21010+d PA PF ≤=-≤,[10-+,故答案为:[10-+. 【点睛】关键点点睛:本题考查根式的最值和范围求解问题,解决的关键在于利用椭圆的定义得出动点的轨迹,将问题转化为求两线段的距离之差的范围.19.【分析】将代入C 的渐近线方程可得点坐标利用两点间的距离根式可求导根据勾股定理可得再由可得代入即可【详解】将代入C 的渐近线方程得则不妨假设半径为因为是圆的切线所以即则因为所以即故故答案为:【点睛】本题解析:4【分析】将x b =代入C 的渐近线方程可得A 点坐标,利用两点间的距离根式可求导||AM .根据勾股定理可得||AD ,再由||||AD AB =可得2238b a =,代入e =即可. 【详解】将x b =代入C 的渐近线方程ay x b=±,得y a =±,则||2AB a =. 不妨假设(),A b a , (2,0)M b -,半径为b DM =, 222||(2)AM b b a =++,因为AD 是圆的切线,所以222||AD DMAM +=,即则22222||(2)8AD b b a b b a =++-=+.因为||||AD AB =,所以2282b a a +=,即2238b a =,故222214b e a =+=. 故答案为:224.【点睛】本题考查双曲线的简单的几何性质,考查直线与圆的位置关系,关键点是用,,b a c 表示||||AD AB =,考查了学生分析问题、解决问题的能力及计算能力.20.【分析】设代入双曲线方程变形为再根据MPA 共线利用斜率相等求得点P 然后再直线与的斜率之积为4得到ab 的关系求解【详解】设则即设又且MPA 共线所以解得则的斜率为的斜率为又直线与的斜率之积为4所以即所以 3【分析】设(),M m n ,代入双曲线方程变形为22222n b m a a=-,再根据M ,P ,A 共线,利用斜率相等,求得点P ,然后再直线OP 与BM 的斜率之积为4,得到a ,b 的关系求解. 【详解】设(),M m n ,则22221m n a b -=,即22222n b m a a =-,设(),P a t ,又(),0A a -,且M ,P ,A 共线, 所以2n tm a a=+, 解得2ant m a=+, 则OP 的斜率为2nm a+, BM 的斜率为nm a-, 又直线OP 与BM 的斜率之积为4,所以22222224a n b m a ==-,即222b a=,所以c e a ===【点睛】本题主要考查双曲线的离心率的求法以及点的双曲线上和斜率公式的应用,还考查了运算求解的能力,属于中档题.三、解答题21.(1)28x y =;(2) 【分析】(1)由题中条件,根据抛物线的定义,得到242p+=,求出p ,即可得出抛物线方程; (2)先由(1)得到焦点坐标,得出直线l 的方程,设()11,A x y ,()22,B x y ,联立直线与抛物线方程,结合韦达定理,以及抛物线的焦点弦公式,求出弦长AB ,再由点到直线距离公式,以及三角形面积公式,即可求出结果. 【详解】(1)因为抛物线2:2(0)C x py p =>上一点(),2P m 到其焦点F 的距离为4,所以242p+=,解得4p =, 所以抛物线C 的方程为28x y =; (2)由(1)可得,()0,2F ;则过点F 且斜率为1的直线l 的方程为:2y x =+,即20x y -+=, 设()11,A x y ,()22,B x y , 由228y x x y=+⎧⎨=⎩消去x ,整理得21240y y -+=, 则1212y y +=,因此1212416AB AF BF y y p =+=++=+=,又点O 到直线20x y -+=的距离为d ==,所以OAB 的面积为12OABS AB d ==. 【点睛】 思路点睛:求解圆锥曲线中三角形的面积问题时,一般需要联立直线与曲线方程,结合韦达定理,弦长公式,以及三角形面积公式,即可得出三角形的面积.22.(1)2212x y +=;(2)证明见解析.【分析】(1)利用中垂线的性质可得KN KQ =,从而得到2KM KN QM MN +==>=,利用椭圆的定义进行分析求解即可;(2)根据点P 的位置,确定OPA ∠,OPB ∠都是锐角,然后联立直线与椭圆的方程,得到韦达定理,再将问题转化为求证两个角的正切值相等,代入化简求解,即可证明. 【详解】(1)∵线段NQ 的垂直平分线交MQ 于点K ,∴||||KN KQ =,∴||||||||||2||KM KN KM KQ MQ MN +=+==>= ∴点K 的轨迹是以原点为中心,以,M N 为焦点的椭圆.设椭圆方程为22221(0)x y a b a b+=>>,则a =1c =,1b =,所以曲线E 的方程为2212x y +=(2)由221210x y x my ⎧+=⎪⎨⎪+-=⎩消去x 可得()222210m y my +--=.设()11,A x y ,()22,B x y ,则12222m y y m +=+,12212y y m =-+. 易知PA ,PB 的斜率存在,则()()121212121212122221111PA PB y y y y y y my y k k x x my my my my +++=+=+=-------++,又因为121222222022m my y my y m m ++=-=++ 所以0PA PB k k +=,所以OPA OPB ∠=∠. 【点睛】方法点睛:解答直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.23.(1)2212x y +=;(2)169.【分析】(1)利用椭圆的长轴长以及离心率求解,a c ,得到b ,即可得到椭圆方程; (2)①当1l x ⊥,2//l x 时,求解四边形的面积;②当1l ,2l 斜率存在时,设1l :1x my =-,2l :11x y m=-,分别联立椭圆方程,利用韦达定理以及弦长公式,转化求解四边形的面积,利用基本不等式求解最小值即可. 【详解】(1)得11a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的标准方程为2212x y +=;(2)①当1l x ⊥,2//l x 时,22122222b S a b a=⋅⋅⋅==;②当1l ,2l 斜率存在时,设1l :1x my =-,2l :11x y m=-, 联立22112x my x y =-⎧⎪⎨+=⎪⎩得()222210m y my +--=, ∴12222m y y m +=+,12212y y m -=+,∴AB ==)2212m m +=+,同理)22221111122m m CD m m⎫+⎪+⎝⎭==++, ∴()()()()()()()222222222222281414111162292212212212m m m S AB CD m m m m m m +++=⋅=⋅=≥=++++⎛⎫+++ ⎪⎝⎭.当且仅当22221m m +=+即21m =即1m =±时等号成立, 故四边形ACBD 的面积的最小值169. 【点睛】方法点睛:该题考查的是有关椭圆方程的求法,直线与椭圆的综合题,解题方法如下: (1)根据题中所给的条件,建立等量关系,求得,a b 的值,得到椭圆方程;(2)对直线的斜率存在与否进行讨论,根据题意利用适当的形式写出直线的方程,分别与椭圆方程联立,求得弦长,根据四边形面积公式求得四边形的面积,利用基本不等式求得最值,与特殊情况比较,得到结果.24.(1)点A 的坐标为()()2,4,2,4-;(2)8-. 【分析】(1)由4AF =根据焦半径公式求出点A 的横坐标,再代入抛物线方程求得纵坐标;(2)由28y x m y x=+⎧⎨=⎩得22(28)0x m x m +-+=,利用韦达定理,结合向量垂直的坐标表示,列方程可求实数m 的值. 【详解】(1)设()00,A x y ,042p AF x =+=,22p=,02x ∴=所以20082164y y =⨯=⇒=±,∴点A 的坐标为()()2,4,2,4-.(2)由28y x m y x=+⎧⎨=⎩得22(28)0x m x m +-+=,设()11,P x y ,()22,Q x y ,则1282x x m +=-,212x x m =,121228y y x x m ∴+=++=,()()()2121212128y y x m x m x x m x x m m =++=+++=,又OP OQ ⊥,0OP OQ ∴⋅=,2121280x x y y m m ∴+=+=,0m ∴=或8m =-,经检验,当0m =时,直线与抛物线交点中有一点与原点O 重合:不符合题意,当8m =-时,2(24)4640∆=--⨯>,符合题意. 综上,实数m 的值为8-. 【点睛】方法点睛:解决直线与抛物线的位置关系的相关问题,其常规思路是先把直线方程与抛物线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.25.(1)22143x y +=;(2)1x y =±+.【分析】(1)设椭圆Γ的标准方程为22221x y a b+=,连接AF ,由AFB AFC ≌,得到ABE FCE △≌△,再利用椭圆定义求解.(2)设直线l 的方程为:1x my =+,联立221143x my x y =+⎧⎪⎨+=⎪⎩,结合韦达定理得到12y y -,然后由PNM △的面积为7求解. 【详解】 (1)如图所示:由题意可设椭圆Γ的标准方程为22221x y a b+=,连接AF ,可得AFB AFC ≌,所以,,4ABE FCE EF AE EA EB EF EB FB =+=+==≌,由椭圆定义可知:2,1a c ==,3b =所以椭圆Γ的方程为22143x y +=.(2)由题意知,(1,0)B ,设直线l 的方程为:1x my =+,设()()1122,,,M x y N x y ,联立221143x my x y =+⎧⎪⎨+=⎪⎩,消去x 得:()2234690m y my ++-=,可知212212134m y y m +-=+, 2122111234PMNm Sy y m +∴=⨯-⨯=+. 226162347m m +∴=+, 解得1m =±,所以直线l 的方程为1x y =±+. 【点睛】方法点睛:1、解决直线与曲线的位置关系的相关问题,往往先把直线方程与曲线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.2、解决直线与曲线的弦长时,往往设直线与曲线的交点坐标为A (x 1,y 1),B (x 2,y 2),则()()2121222121221(1)(1)44AB k x x x x y y y y k ⎡⎤⎡⎤=+=+⎣⎦-⋅+-⋅⎣+⎦k 为直线斜。
一、选择题1.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线0x y -+=与椭圆C 相交于不同的两点A B 、,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为( ) A .22132x y +=B .22143x y +=C .22152x y +=D .22163x y +=2.已知椭圆2222:1(0)x y E a b a b+=>>,设直线l 与椭圆相交于A ,B 两点,与x 轴,y 轴分别交于C ,D 两点,记椭圆E 的离心率为e ,直线l 的斜率为k ,若C ,D 恰好是线段AB 的两个三等分点,则( ) A .221k e -=B .221k e +=C .2211e k-= D .2211e k+=3.已知()5,0F 是双曲线()2222:=10,0x y C a b a b->>的右焦点,点(A .若对双曲线C 左支上的任意点M ,均有10MA MF +≥成立,则双曲线C 的离心率的最大值为( )A B .5C .52D .64.已知点()P m n ,是抛物线214y x =-上一动点,则A .4B .5C D .65.过椭圆:T 2212x y +=上的焦点F 作两条相互垂直的直线12l l 、,1l 交椭圆于,A B 两点,2l 交椭圆于,C D 两点,则AB CD +的取值范围是( )A .3⎡⎢⎣B .3⎡⎢⎣C .3⎡⎢⎣D .3⎡⎢⎣ 6.已知双曲线E :22221(0,0)x y a b a b-=>>的左,右焦点为1F ,2F ,过2F 作一条渐近线的垂线,垂足为M ,若1MF =,则E 的离心率为( )A .3B .2C .5D .27.如图,F 是抛物线28x y =的焦点,过F 作直线交抛物线于A 、B 两点,若AOF 与BOF 的面积之比为1:4,则AOB 的面积为( )A .10B .8C .16D .128.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F 、2F ,若双曲线右支上存在一点P ,使得2F 关于直线1PF 的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( ) A .231e <<B .23e >C .3e >D .13e <<9.设抛物线2:4(0)C x y p =>的焦点为F ,准线为l ,过点F 的直线交抛物线C 于,M N 两点,交l 于点P ,且PF FM =,则||MN =( )A .2B .83C .5D .16310.己知直线l 过抛物线y 2=4x 的焦点F ,并与抛物线交于A ,B 两点,若点A 的纵坐标为4,则线段AB 的长为( ) A .253B .496C .436D .25411.已知点P 在双曲线()222210,0x y a b a b-=>>上,点()2,0A a ,当PA 最小时,点P不在顶点位置,则该双曲线离心率的取值范围是( )A .)+∞B .)+∞C .(D .(12.已知过点(,0)A a 的直线与抛物线22(0)y px p =>交于M.N 两点,若有且仅有一个实数a ,使得16OM ON ⋅=-成立,则a 的值为( ) A .4-B .2C .4D .8二、填空题13.双曲线22221(0,0)x y a b a b-=>>右焦点(c,0)F 关于直线2y x =的对称点Q 在双曲线上,则双曲线的离心率是______.14.过双曲线221x y -=上的任意一点(除顶点外)作圆221x y +=的切线,切点为,A B ,若直线AB 在x 轴、y 轴上的截距分别为,m n ,则2211m n-=___________. 15.已知拋物线()2:20C y px p =>的焦点为F ,O 为坐标原点,C 的准线为l 且与x 轴相交于点B ,A 为C 上的一点,直线AO 与直线l 相交于E 点,若BOE BEF ∠=∠,6AF =,则C 的标准方程为_____________.16.设F 是椭圆2222:1(0)x y C a b a b +=>>的一个焦点,P 是椭圆C 上的点,圆2229a x y +=与线段PF 交于A ,B 两点,若A ,B 三等分线段PF ,则椭圆C 的离心率为____________.17.在双曲线22221x y a b-=上有一点P ,12,F F 分别为该双曲线的左、右焦点,121290,F PF F PF ∠=︒的三条边长成等差数列,则双曲线的离心率是_______.18.椭圆()222210x y a b a b+=>>的左焦点为F ,(),0A a -,()0,B b ,()0,C b -分别为其三个顶点.直线CF 与AB 交于点D ,若椭圆的离心率13e =,则tan BDC ∠=___________.19.已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线与抛物线交于两点11(,)P x y ,22(,)Q x y .①抛物线24y x =焦点到准线的距离为2; ②若126x x +=,则8PQ =;③2124y y p =-;④过点P 和抛物线顶点的直线交抛物线的准线为点A ,则直线AQ 平行于 抛物线的对称轴;⑤绕点(2,1)-旋转且与抛物线C 有且仅有一个公共点的直线至多有2条. 以上结论中正确的序号为__________.20.已知双曲线2222:1(0,0)x y E a b a b-=>>,点F 为E 的左焦点,点P 为E 上位于第一象限内的点,P 关于原点的对称点为Q ,且满足||3||PF FQ =,若||OP b =,则E 的离心率为_________.三、解答题21.已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b+=>>,则椭圆在其上一点()'',A x y 处的切线方程为''221x y x ya b+=,试运用该性质解决以下问题:在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b +=>>的离心率为2,且经过点21,A ⎛⎫ ⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)设F 为椭圆C 的右焦点,直线l 与椭圆C 相切于点P (点P 在第一象限),过原点O 作直线l 的平行线与直线PF 相交于点Q ,问:线段PQ 的长是否为定值?若是,求出定值;若不是,说明理由.22.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,若C 过点31,2A ⎛⎫⎪⎝⎭,且124AF AF +=. (1)求C 的方程;(2)过点2F 且斜率为1的直线与C 交于点M 、N ,求OMN 的面积.23.在平面直角坐标系中,动点(),P x y (0y >)到定点()0,1M 的距离比到x 轴的距离大1.(1)求动点P 的轨迹C 的方程;(2)过点M 的直线l 交曲线C 于A ,B 两点,若8AB =,求直线l 的方程.24.已知椭圆()2222:10x y C a b a b +=>>过点421,3P ⎛⎫ ⎪ ⎪⎝⎭,离心率为53.(1)求椭圆C 的方程;(2)直线l 与圆22:1O x y +=相切,且与椭圆C 交于M ,N 两点,Q 为椭圆C 上一个动点(点O ,Q 分别位于直线l 两侧),求四边形OMQN 面积的最大值. 25.已知是抛物线2:2C y px=(0)p >的焦点,(1,)M t 是抛物线上一点,且||2MF =.(1)求抛物线C 的方程;(2)过点O (坐标原点)分别作,OA OB 交抛物线C 于,A B 两点(,A B 不与O 重合),且.2OA OB k k =.求证:直线AB 过定点.26.如图,已知抛物线()2:20C y px p =>,焦点为F ,过点()2,0G p 作直线l 交抛物线C 于A 、B 两点,设()11,A x y 、()22,B x y .(1)若124x x ⋅=,求抛物线C 的方程;(2)若直线l 与x 轴不垂直,直线AF 交抛物线C 于另一点M ,直线BF 交抛物线C 于另一点N .求证:直线l 与直线MN 斜率之比为定值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设出,A B 两点的坐标,代入椭圆方程,作差变形,利用斜率公式和中点坐标可求得结果. 【详解】设(,0)F c -,因为直线30x y -+=过(,0)F c -,所以030c --+=,得3c =所以2223a b c -==, 设1122(,),(,)A x y B x y ,由22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩,得2222121222x x y y a b --=-,得2121221212y y x x b x x a y y -+=-⋅-+, 因为P 为线段AB 的中点,O 为坐标原点,所以1212(,)22x x y y P ++,1212121212202OP y y y y k x x x x +-+===-++-,所以221222122(2)ABy y b b k x x a a-==-⋅-=-,又,A B在直线0x y -+=上,所以1AB k =,所以2221b a =,即222a b =,将其代入223a b -=,得23b =,26a =,所以椭圆C 的方程为22163x y +=.故选:D 【点睛】方法点睛:本题使用点差法求解,一般涉及到弦的中点和斜率问题的题目可以使用点差法,步骤如下:①设出弦的两个端点的坐标;②将弦的两个端点的坐标代入曲线方程; ③作差变形并利用斜率公式和中点坐标公式求解.2.B解析:B 【分析】首先利用点,C D 分别是线段AB 的两个三等分点,则211222x x y y =-⎧⎪⎨=⎪⎩,得1112y k x =⋅,再利用点差法化简得2212214y b x a=,两式化简得到选项.【详解】设()11,A x y ,()22,B x y ,,C D 分别是线段AB 的两个三等分点,()1,0C x ∴-,10,2y D ⎛⎫ ⎪⎝⎭,则112,2y B x ⎛⎫- ⎪⎝⎭ ,得211222x x y y =-⎧⎪⎨=-⎪⎩,1121121131232y y y y k x x x x -===⋅-,利用点差法22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得()()()()12121212220x x x x y y y y a b +-+-+=, 整理得到2212214y b x a =,即222222244b a c k k a a-=⇒=, 即221k e +=故选:B 【点睛】关键点点睛:本题的关键利用三等分点得到211222x x y y =-⎧⎪⎨=-⎪⎩,再将斜率和离心率表示成坐标的关系,联立判断选项.3.C解析:C 【分析】设E是双曲线的左焦点,利用双曲线的定义把MF 转化为ME 后易得MA ME +的最小值,从而得a 的最小值,由此得离心率的最大值. 【详解】设E 是双曲线的左焦点,M 在左支上,则2MF ME a -=,2MF ME a =+,22MA MF MA ME a EA a +=++≥+,当且仅当E A M ,,三点共线时等号成立.则222(5)(11)210EA a a +=-++≥,2a ≥,所以552c e a a ==≤. 故选:C .【点睛】思路点睛:本题考查双曲线的定义的应用.在涉及双曲线上的点与一个焦点和另外一个定点距离和或差的最值时,常常利用双曲线的定义把到已知焦点的距离转化为到另一焦点的距离,从而利用三点共线取得最值求解.4.D解析:D 【分析】 先把抛物线214y x =-化为标准方程,求出焦点F (0,-1),运用抛物线的定义,找到2222(1)(4)(5)m n m n +++-++的几何意义,数形结合求最值.【详解】 由214y x =-,得24x y =-. 则214y x =-的焦点为()0,1F -.准线为:1l y =. 2222(1)(4)(5)m n m n +++-++几何意义是点()P m n ,到()0,1F-与点()4,5A -的距离之和,如图示:根据抛物线的定义点()P m n ,到()0,1F -的距离等于点()P m n ,到l 的距离,2222(1)(4)(5)m n m n ++-++|PF |+|PA |=|PP 1|+|PA |,所以当P 运动到Q 时,能够取得最小值. 最小值为:|AQ 1|=()156--=. 故选:D. 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.5.C解析:C【分析】当直线12l l 、有一条斜率不存在时,可直接求得AB CD +=12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-,则可得直线1l 的方程,与椭圆联立,根据韦达定理及弦长公式,可求得AB 的表达式,同理可求得CD 的表达式,令21k t +=,则可得2112t tAB CD +=+-,令2112y t t =+-,根据二次函数的性质,结合t 的范围,即可求得AB CD +的范围,综合即可得答案. 【详解】当直线12l l 、有一条斜率不存在时,不妨设直线1l 斜率不存在,则直线2l 斜率为0,此时AB =,22b CD a ===所以AB CD +=当直线12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-, 不妨设直线12l l 、都过椭圆的右焦点(1,0)F , 所以直线1:(1)l y k x =-,直线21:(1)l y x k=--, 联立1l 与椭圆T 22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,可得2222)202142(-=+-+x k x k k , 22222(4)4(12)(22)880k k k k ∆=--+-=+>,22121222422,1212k k x x x x k k-+=⋅=++,所以12AB x =-=22)12k k +==+,同理22221))2112k k CD k k ⎛⎫+- ⎪+⎝⎭==+⎛⎫+- ⎪⎝⎭,所以2222))122k k B k C k A D +++=+++,令21k t +=,因为0k ≠,所以1t >,所以22222))122211(21)(1)k k AB t D k k t t t C +++=+=++--++=+=22211212t t t t =+-+-,令2211119224y t t t ⎛⎫=+-=--+ ⎪⎝⎭, 因为1t >,所以1(0,1)t∈,所以92,4y ⎛⎤∈ ⎥⎦⎝,所以141,92y ⎡⎫∈⎪⎢⎭⎣,所以1AB CD y +=∈⎢⎣, 综上AB CD +的取值范围是3⎡⎢⎣. 故选:C 【点睛】解题的关键是设出直线的方程,结合韦达定理及弦长公式,求得AB CD +的表达式,再根据二次函数性质求解,易错点为需求直线12l l 、中有一个不存在时,AB CD +的值,考查计算求值的能力,属中档题.6.A解析:A 【分析】由点到直线的距离公式可得2||MF b =,由勾股定理可得||OM a =,则1MF =,1cos aFOM c∠=-,由此利用余弦定理可得到a ,c 的关系,由离心率公式计算即可得答案. 【详解】由题得2(,0)F c ,不妨设:0l bx ay -=,则2||MF b ==,OM a ==,1MF =,12cos cos aFOM F OM c ∠=-∠=-, 由余弦定理可知222222111||||622OM OF MF a c a a OM OF ac c+-+-==-⋅,化为223c a =,即有==ce a故选:A . 【点睛】方法点睛:离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.7.A解析:A 【分析】设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y ,将直线AB 的方程与抛物线的方程联立,列出韦达定理,结合已知条件可得出214x x =-,结合韦达定理求出2k 的值,进而可得出AOB 的面积为1212OAB S OF x x =⋅-△,即可得解. 【详解】易知抛物线28x y =的焦点为()0,2F .若直线AB 与x 轴垂直,此时直线AB 与抛物线28x y =有且只有一个公共点,不合乎题意.设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y , 联立228y kx x y=+⎧⎨=⎩,消去y 并整理得28160x kx --=, 由韦达定理可得128x x k +=,1216x x =-,由于AOF 与BOF 的面积之比为1:4,则4BF FA =,则()()2211,24,2x y x y --=-,所以,214x x =-,则12138x x x k +=-=,可得183k x =-, 2221218256441639k k x x x ⎛⎫=-=-⨯-=-=- ⎪⎝⎭,可得2916k =,所以,OAB 的面积为1211222OAB S OF x x =⋅-=⨯△29646464641016k =+=⨯+=. 故选:A. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.8.B解析:B 【分析】设点()2,0F c ,设点P 在第一象限,设2F 关于直线1PF 的对称点为点M ,推导出12MF F △为等边三角形,可得出tan 30ba >,再由公式21b e a ⎛⎫=+ ⎪⎝⎭可求得该双曲线离心率的取值范围. 【详解】 如下图所示:设点()2,0F c ,设点P 在第一象限,由于2F 关于直线1PF 的对称点在y 轴上,不妨设该点为M ,则点M 在y 轴正半轴上, 由对称性可得21122MF MF F F c ===,22113MO MF OF c =-=,所以,1260MF F ∠=,则1230PF F ∠=,所以,双曲线的渐近线by xa=的倾斜角α满足30α>,则123tan3bPF Fa>∠=,因此,该双曲线的离心率为2222222313c c a b bea a a a+⎛⎫====+>⎪⎝⎭.故选:B.【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a、c的值,根据离心率的定义求解离心率e的值;(2)齐次式法:由已知条件得出关于a、c的齐次方程,然后转化为关于e的方程求解;(3)特殊值法:通过取特殊位置或特殊值,求得离心率.9.D解析:D【分析】由题意作出MD垂直于准线l,然后得2PM MD=,得30∠=︒DPM,写出直线方程,联立方程组,得关于y的一元二次方程,写出韦达定理,代入焦点弦公式计算.【详解】如图,过点M做MD垂直于准线l,由抛物线定义得MF MD=,因为PF FM=,所以2PM MD=,所以30∠=︒DPM,则直线MN方程为3(1)x y=-,联立23(1)4x yx y⎧=-⎪⎨=⎪⎩,,消去x得,231030y y-+=,设()()1122,,,M x y N x y,所以121210,13y y y y+==,得121016||2233MN y y=++=+=.故选:D.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12||=++AB x x p 或12||=++AB y y p ,若不过焦点,则必须用一般弦长公式.10.D解析:D 【分析】首先利用,,A F B 三点共线,求点B 的坐标,再利用焦点弦长公式求AB . 【详解】4y =时,1644x x =⇒=,即()4,4A ,()1,0F ,设2,4y B y ⎛⎫ ⎪⎝⎭,利用,,A F B 三点共线可知24314y y =-,化简得2340y y --=,解得:1y =-或4y =(舍)当1y =-时,14x =,即()4,4A ,1,14B ⎛⎫- ⎪⎝⎭, 所以121254244AB x x p =++=++=. 故选:D 【点睛】关键点点睛:本题考查直线与抛物线相交,焦点弦问题,重点是求点B 的坐标.11.C解析:C 【分析】把P 的坐标表示出来,PA 转化为二次函数,利用二次函数最值取得条件求离心率的范围. 【详解】 设00(,)P x y ,则||PA ==又∵点P 在双曲线上,∴2200221x y a b -=,即2222002b x y b a=-,∴||PA ===.当PA 最小时,0224202a ax e e -=-=>. 又点P 不在顶点位置,∴22aa e>,∴22e <,∴e < ∵双曲线离心率1e >,∴1e <<故选:C . 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.12.C解析:C 【分析】设出直线方程与抛物线方程联立,利用韦达定理得出1212,y y y y +及12x x ,把16OM ON ⋅=-用坐标表示代入上述值结合已知条件可得答案.【详解】设直线MN 的直线方程为x ty a =+,1122(,),(,)M x y N x y , 由题意得22x ty a y px=+⎧⎨=⎩,整理得2220y pty pa --=, 所以12122,2y y pt y y pa +==-,()()()2212121212x x ty a ty a t y y at y y a =++=+++ ()()2222t ap at pt a =-++,因为16OM ON ⋅=-,所以121216x x y y +=-, 所以()()2222216tpa at pt a pa -++-=-,22160a pa -+=,因为方程有且仅有一个实数a ,所以()22640p ∆=-=,解得4p =,或4p =-(舍去), 故选:C. 【点睛】本题考查了直线和抛物线的位置关系,关键点是利用韦达定理求出1212,y y y y +及12x x ,然后16OM ON ⋅=-坐标表示列出等式,考查了学生分析问题、解决问题的能力.二、填空题13.【分析】由题意可得Q 点坐标代入双曲线方程计算即可得出离心率【详解】设则中点由题意可得由在双曲线上可得两边同除可得解得(舍)故答案为:【点睛】关键点点睛:齐次式方程两边同除可得关于离心率的方程即可求出【分析】由题意可得Q 点坐标,代入双曲线方程,计算即可得出离心率. 【详解】设(,)Q m n ,则FQ 中点(,)22+m c n,=-FQ n k m c由题意可得325224215c nm c m n c n m c +⎧⎧=-=⨯⎪⎪⎪⎪⇒⎨⎨⎪⎪⨯=-=⎪⎪-⎩⎩,由(,)Q m n 在双曲线上,可得222242242222234()()91655119502502525()--=⇒-=⇒-+=-c c c c c a c a a b a c a 两边同除4a ,可得42950250e e -+=,解得==e e (舍)【点睛】关键点点睛:齐次式方程,两边同除可得关于离心率的方程,即可求出离心率.本题考查了计算能力和逻辑推理能力,属于中档题目.14.1【分析】设出三点坐标表示出直线利用方程思想得到直线的方程算出可计算得到解【详解】设双曲线上任意一点为过作圆的切线切点为不是双曲线的顶点故切线存在斜率且则故直线化简得:即同理有又均过点有故直线故答案解析:1 【分析】设出,,P A B 三点坐标,表示出直线,PA PB ,利用方程思想,得到直线MN 的方程,算出,m n ,可计算2211m n-得到解.【详解】设双曲线上任意一点为()11,P x y ,()22,A x y ,()33,B x y 过()11,P x y 作圆221x y +=的切线,切点为,A B()11,P x y 不是双曲线的顶点,故切线存在斜率且OA PA ⊥,则221PA OA x k k y =-=-故直线()2222:xPA y y x xy-=--化简得:222222y y y x x x-=-+即2222221x x y y x y+=+=同理有33:1PB x x y y+=又,PA PB均过点()11,P x y,有313131311,1x x y y x x y y+=+=故直线11:1MN x x y y+=1111,m nx y==221222111x xm n-=-=故答案为:115.【分析】推导出求出可得出直线的方程联立直线与抛物线的方程求出点的坐标利用抛物线的定义求出的值即可得出抛物线的标准方程【详解】因为即所以则直线的方程为联立直线与抛物线方程解得所以解得因此抛物线标准方程解析:28y x=【分析】推导出OBE EBF△△,求出tan BOE∠,可得出直线AO的方程,联立直线AO与抛物线C的方程,求出点A的坐标,利用抛物线的定义求出p的值,即可得出抛物线C的标准方程.【详解】因为BOE BEF∠=∠,90OBE EBF∠=∠=,OBE EBF∴△△,OB BEBE BF∴=,即2222p pBE OB BF p=⋅=⨯=,2BE p∴=,所以tan 2BEBOE OB∠==,则直线AO 的方程为2y x =, 联立直线OA 与抛物线方程222y xy px⎧=⎪⎨=⎪⎩ 解得(),2A p p , 所以3622p pAF p =+==,解得4p =, 因此,抛物线标准方程为28y x =. 故答案为:28y x =. 【点睛】方法点睛:求抛物线的标准方程的主要方法是定义法与待定系数法:(1)若题目已给出抛物线的方程(含有未知数p ),那么只需求出p 即可; (2)若题目未给出抛物线的方程:①对于焦点在x 轴上的抛物线的标准方程可统一设为()20y ax a =≠的正负由题设来定;②对于焦点在y 轴上的抛物线的标准方程可统一设为()20x ay a =≠,这样就减少了不必要的讨论.16.【分析】取AB 中点H 后证明H 为PF 中点从而在直角三角形OFH 中利用勾股定理找到求出离心率【详解】如图示取AB 中点H 连结OH 则OH ⊥AB 设椭圆右焦点E 连结PE ∵AB 三等分线段PF ∴H 为PF 中点∵O 为E 解析:175【分析】取AB 中点H 后,证明H 为PF 中点,从而在直角三角形OFH 中,利用勾股定理,找到221725a c =,求出离心率.【详解】如图示,取AB 中点H ,连结OH ,则OH ⊥AB ,设椭圆右焦点E ,连结PE ∵AB 三等分线段PF ,∴ H 为PF 中点. ∵O 为EF 中点,∴OH ∥PE设OH=d,则PE=2d ,∴PF=2a-2d ,BH=3a d- 在直角三角形OBH 中,222OB OH BH =+,即22293a a d d -⎛⎫=+ ⎪⎝⎭,解得:5a d =. 在直角三角形OFH 中,222OF OH FH =+,即()222c d a d =+-,解得:221725a c =,∴离心率5c e a ==.【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.17.5【分析】首先根据双曲线的定义和等差数列的形式可设的三边长表示为最后根据勾股定理得到根据齐次方程求解离心率【详解】设并且的三边成等差数列最长的边为则三边长表示为又整理为两边同时除以得解得:或(舍)所解析:5 【分析】首先根据双曲线的定义和等差数列的形式,可设12PF F △的三边长表示为24,22,2c a c a c --,最后根据勾股定理得到22650c ac a -+=,根据齐次方程求解离心率. 【详解】设12PF PF >,并且122PF PF a -=,12PF F △的三边成等差数列,最长的边为2c ,则三边长表示为24,22,2c a c a c --, 又1290F PF ∠=,()()22224224c a c a c ∴-+-=,整理为22650c ac a -+=,两边同时除以2a 得,2650e e -+=,解得:5e =或1e =(舍),所以双曲线的离心率是5. 故答案为:5 【点睛】方法点睛:本题考查直线与双曲线的位置关系的综合问题,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.18.【分析】做出图像可知:利用两角和的正切表示有根据离心率可求出代入正切公式即可求出结果【详解】由图像可知:所以因为离心率可设那么极有代入上式得故答案为:【点睛】本题考查了椭圆的基本性质与平面几何的转化 解析:82-【分析】做出图像可知:BDC BAO CFO ∠=∠+∠,利用两角和的正切表示tan BDC ∠,有tan ,tan bb BAO CFO ac ∠=∠=,根据离心率可求出22b a =,22b c=,代入正切公式即可求出结果. 【详解】 由图像可知:BDC BAO DFA BAO CFO ∠=∠+∠=∠+∠所以tan tan tan tan()1tan tan 1b b BAO CFO a c BDC BAO CFO b bBAO CFO a c+∠+∠∠=∠+∠==-∠∠-⋅ 因为离心率13c e a ==,可设3a m =,c m =,那么22b m =,极有22b a =,22b c =,代入上式得22228235221223+=--⨯. 故答案为:825-【点睛】本题考查了椭圆的基本性质与平面几何的转化,考查了两角和的正切公式的应用,属于中档题型,思路点睛:(1)根据平面几何将所求角进行转化,BDC BAO CFO ∠=∠+∠; (2)结合两角和的正切公式,直角三角形内求角的正切,将问题转化为,,a b c 的比值问题.(3)根据离心率求出,,a b c 的比值,代入可求.19.①②④【分析】焦点到准线的距离为即可判断①;利用焦点弦的弦长公式即可判断②;设出直线方程与抛物线方程联立利用韦达定理可判断③;求出两点坐标计算斜率即可判断④;时与抛物线只有一个交点设过点的直线为与抛解析:①②④ 【分析】焦点到准线的距离为p 即可判断①;利用焦点弦的弦长公式即可判断②;设出直线PQ 方程与抛物线方程联立,利用韦达定理可判断③;求出,A Q 两点坐标,计算AQ 斜率即可判断④;1y =时与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,与抛物线方程联立,利用0∆=求出k 的值,即可得出有一个公共点的直线条数,可判断⑤,进而可得正确答案. 【详解】抛物线2:4C y x =可得2p =,()1,0F对于①:抛物线24y x =焦点为()1,0F ,准线l 为1x =-,所以焦点到准线的距离为2,故①正确;对于②:根据抛物线的对义可得:121286222p px x x P p Q x +++=++=+==, 对于③:设直线PQ 方程为:1x ky =+与2:4C y x =联立可得2440yky --=,可得124y y =-,因为2p =,所以2124y y p ≠-,故③不正确;对于④:11(,)P x y ,所以OP :11y y x x = ,由111y y x x x ⎧=⎪⎨⎪=-⎩可得11y y x =-, 所以111,y A x ⎛⎫-- ⎪⎝⎭,因为22(,)Q x y ,124y y =- 解得:214y y -=,所以214,Q x y ⎛⎫- ⎪⎝⎭, 因为11(,)P x y 在抛物线2:4C y x =上,所以2114y x =,所以21114x y =,1114y x y -=-所以141,A y ⎛⎫-- ⎪⎝⎭,因为214,Q x y ⎛⎫- ⎪⎝⎭,所以0AQ k =,所以//AQ x 轴,即直线AQ 平行于抛物线的对称轴,故④正确;对于⑤:1y =时,显然与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--, 由224x ky k y x=--⎧⎨=⎩可得:24480y ky k -++=,令()2164480k k ∆=-+= 可得2k =或1k =-,故过点(2,1)-且与抛物线C 有且仅有一个公共点的直线有3条.,故⑤不正确, 故答案为:①②④ 【点睛】结论点睛:抛物线焦点弦的几个常用结论设AB 是过抛物线22y px =()0p >的焦点F 的弦,若()11,A x y ,()22,B x y ,则:(1)2124p x x =,212y y p =-;(2)若点A 在第一象限,点B 在第四象限,则1cos p AF α=-,1cos pBF α=+,弦长1222sin pAB x x p α=++=,(α为直线AB 的倾斜角); (3)112||||FA FB p+=; (4)以AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切.20.【分析】由题意设即有由双曲线定义及已知可得且结合点在曲线上联立方程得到关于的齐次方程即可求得离心率【详解】令则且①由题意知:E 的左准线为结合双曲线第二定义知:又∴解得②∵知:∴联立①②得:整理得∴故 解析:3【分析】由题意设00(,)P x y ,即有00(,)Q x y --,由双曲线定义及已知可得22003()a a x x c c +=-且22200x y b +=,结合点在曲线上联立方程得到关于,a c 的齐次方程,即可求得离心率.【详解】令00(,)P x y ,00,0x y >则00(,)Q x y --且2200221x y a b-=①,由题意知:E 的左准线为2a x c =-,结合双曲线第二定义知:20||()a PF e x c=+,20||()a FQ e x c =-,又||3||PF FQ =,∴22003()a a x x c c +=-,解得202a x c=②, ∵||OP b =知:22200x y b +=,∴联立①,②得:42222244(1)a a b b c c+-=,整理得223a c =,∴e =【点睛】关键点点睛:根据双曲线第二定义:曲线上的点到焦点距离与该点到对应准线的距离之比为常数e ,可得点P 的横坐标为22ac;结合点在曲线上及勾股定理即可得关于,a c 的齐次方程求离心率即可.三、解答题21.(1)2212x y +=;(2.【分析】(1)根据椭圆离心率为2,以及椭圆经过点2A ⎛⎫ ⎪ ⎪⎝⎭,结合椭圆的性质列方程求解即可;(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=,过原点O 且与l 平行的直线'l 的方程为0020x x y y +=,求出Q 的坐标,表示出PQ 的长,再化简即可得结论. 【详解】(1)由题意知222221112c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩1a b ⎧=⎪⇒⎨=⎪⎩ ∴椭圆C 的方程为2212x y +=.(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=, 过原点O 且与l 平行的直线'l 的方程为0020x x y y +=, 椭圆C 的右焦点()1,0F ,所以直线PF 的方程为()00010y x x y y ---=,联立()000001020y x x y y x x y y ⎧---=⎨+=⎩,所以2000002,22y x y Q x x ⎛⎫-⎪--⎝⎭,所以PQ =====为定值. 【点睛】方法点睛:探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22.(1)22143xy +=;(2. 【分析】(1)利用椭圆的定义可求出a 的值,将点A 的坐标代入椭圆C 的方程,求出2b 的值,进而可得出椭圆C 的方程;(2)设点()11,M x y 、()22,N x y ,写出直线MN 的方程,联立直线MN 与椭圆C 的方程,列出韦达定理,利用三角形的面积公式结合韦达定理可求得OMN 的面积. 【详解】(1)由椭圆的定义可得1224AF AF a +==,可得2a =,椭圆C 的方程为22214x y b+=, 将点A 的坐标代入椭圆C 的方程可得291414b +=,解得23b =,因此,椭圆C 的方程为22143x y +=;(2)易知椭圆C 的右焦点为()21,0F ,由于直线MN 的斜率为1,所以,直线MN 的方程为1y x =-,即1x y =+, 设点()11,M x y 、()22,N x y ,联立221143x y x y =+⎧⎪⎨+=⎪⎩,消去x 得27690y y +-=,364793680∆=+⨯⨯=⨯>,由韦达定理可得1267y y +=-,1297y y =-,212112277OMNSOF y y =⋅-===⨯=.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.23.(1)24x y =;(2)1y x =+或1y x =-+. 【分析】(1)由1PM y =+,结合两点间的距离公式得出轨迹方程;(2)由题直线l 斜率存在,设出直线l 的方程,联立轨迹C 的方程,由韦达定理以及抛物线的定义求出直线l 的方程. 【详解】(1)动点(),P x y (0y >)到x 轴的距离为y ,到点M 的距离为PM =由动点(),P x y 到定点()0,1M 的距离比到x 轴的距离大1,1y =+,两边平方得:24x y =,所以轨迹C 的方程:24x y =; (2)显然直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为:1y kx =+,由241x y y kx ⎧=⎨=+⎩,消去x 整理得()222410y k y -++=, ∴21224y y k +=+,∴2122428AB y y p k =++=++=, 解得21k =,即1k =±,∴直线l 的方程为1y x =+或1y x =-+. 【点睛】方法点睛:求轨迹方程的常用方法:(1)直接法,(2)定义法,(3)相关点法.24.(1)22194x y +=;(2)最大值为.(1)将1,3P ⎛ ⎝⎭的坐标代入椭圆方程中,再结合3c a =和222a b c =+可求出,a b 的值,进而可求得椭圆的方程;(2)当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,然后利用点到直线的距离公式求出O 到直线y kx m =+的距离d ,利用弦长公式求出MN 的值,从而有12OMN QMN OMQN S S S MN d =+=⨯四边形△△,化简可求得其范围,当MN 斜率不存在时,直接可得OMQN S =四边形 【详解】(1)因为椭圆C过点1,3P ⎛⎫⎪ ⎪⎝⎭,所以2213219a b +=,c a = 又222a b c =+,所以得22194x y +=;(2)(i )当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,设O 到直线y kx m =+的距离记为d,则d =,联立22,1,94y kx n x y =+⎧⎪⎨+=⎪⎩,消去y 得()()2229418940k x knx n +++-=,设()11,M x y ,()22,N x y ,1221894kn x x k +=-+,()21229494n x x k -=+,所以12294MN x k =-=+, 因为y kx n =+与圆O1=,因为y kx m =+与椭圆相切,所以2294k m +=,1122OMN QMNOMQN S S S MN d =+=⨯=四边形△△=== 可得OMQN S 四边形随k的增大而增大,即OMQN S <四边形(ii )当MN斜率不存在时,不妨取1,3M ⎛ ⎝⎭,1,3N ⎛- ⎝⎭,此时()3,0Q ,OMQN S =四边形综上所得四边形OMQN的面积的最大值为【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,考查计算能力,解题的关键是当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,从而可得2112294OMN QMNOMQN S S S MN d k =+=⨯=⨯+四边形△△,化简可得结果,属于中档题25.(1)24y x =;(2)直线AB 过定点(2,0)-,证明见解析. 【分析】(1)由抛物线的定义求得p ,得抛物线方程;(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y ,直线方程代入抛物线方程,由判别式大于0得参数满足的条件,应用韦达定理得1212,y y y y +,计算由2OA OB k k =可得128y y =,从而求得参数b ,并可得出m 的范围.此时由直线方程可得定点坐标. 【详解】(1)由抛物线定义可知:122p+=,则2p =, 所以抛物线C 的方程为24y x =(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y联立24y x x my b⎧=⎨=+⎩得2440y my b --=,则216160m b ∆=+>即20()m b +>*。
一、选择题1.已知直线2y kx =+与椭圆2219x y m+=总有公共点,则m 的取值范围是( )A .4m ≥B .09m <<C .49m ≤<D .4m ≥且9m ≠ 2.P 是椭圆221169x y +=上的点,1F 、2F 是椭圆的左、右焦点,设12PF PF k ⋅=,则k的最大值与最小值之和是( ) A .16 B .9 C .7 D .25 3.圆22: ()4M x m y -+=与双曲线2222:1(0,0 ) y x C a b a b-=>>的两条渐近线相切于AB 、两点,若||1AB =,则C 的离心率为( ) ABC .14D .44.设1F ,2F 分别是椭圆1C 和双曲线2C 的公共焦点,P 是的一个公共点,且12PF PF <,线段1PF 的垂直平分线经过点2F ,若1C 和2C 的离心率分别为1e ,2e ,则1211e e +的值为( ) A .2B .3C .32D .525.抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点(3,1)M 射出,经过抛物线上的点A 反射后,再经抛物线上的另一点B 射出,则ABM 的周长为( ) A.9B.9C.7112+D.83126.若圆222210x y ax y +-++=与圆221x y +=关于直线1y x =-对称,过点()2,C a a -的圆P 与y 轴相切,则圆心P 的轨迹方程为( )A .24480y x y -++=B .22220y x y +-+=C .2210y x y ---=D .24250y x y +-+=7.已知抛物线()220y px p =>的焦点为F ,准线l 与x 轴交于点H ,过焦点F 的直线交抛物线于A ,B 两点,分别过点A ,B 作准线l 的垂线,垂足分别为1A ,1B ,如图所示,则①以线段AB 为直径的圆与准线l 相切; ②以11A B 为直径的圆经过焦点F ;③A ,O ,1B (其中点O 为坐标原点)三点共线;④若已知点A 的横坐标为0x ,且已知点()0,0T x -,则直线TA 与该抛物线相切; 则以上说法中正确的个数为( ) A .1B .2C .3D .48.已知椭圆22:12x C y +=,直线l 过椭圆C 的左焦点F 且交椭圆于A ,B 两点,AB 的中垂线交x 轴于M 点,则2||||FM AB 的取值范围为( ) A .11,164⎛⎫⎪⎝⎭B .11,84⎡⎫⎪⎢⎣⎭C .11,162⎛⎫⎪⎝⎭D .11,82⎡⎫⎪⎢⎣⎭9.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12F F 、,圆222x y b +=与双曲线在第一象限内的交点为M ,若123MF MF =.则该双曲线的离心率为( ) A .2 B .3 C 2D 310.已知双曲线C :()222210,0x y a b a b-=>>的左右焦点分别为1F 、2F ,过原点的直线与双曲线C 交于A ,B 两点,若260AF B ∠=︒,2ABF 23a ,则双曲线的渐近线方程为( ) A .12y x =±B .2y x =±C .33y x =±D .3y x =±11.已知椭圆r :()222210x y a b a b+=>>的右焦点为()1,0F ,且离心率为12,三角形ABC 的三个顶点都在椭圆r 上,设它的三条边AB 、BC 、AC 的中点分别为D 、E 、M ,且三条边所在直线的斜率分别为1k 、2k 、3k ,且1k 、2k 、3k 均不为0.O 为坐标原点,若直线OD 、OE 、OM 的斜率之和为1.则123111k k k ++=( ) A .43-B .-3C .1813-D .32-12.已知双曲线C 的两个焦点12,F F 都在x 轴上,对称中心为原点,离心率为3,若点M 在C 上,且12MF MF ⊥,M 到原点的距离为3,则C 的方程为( )A .22148x y -=B .22148y x -=C .2212y x -=D .2212x y -=二、填空题13.点()8,1P 平分双曲线2244x y -=的一条弦,则这条弦所在直线的方程一般式为_________________.14.已知椭圆()222210x y a b a b +=>>与双曲线22221(0,0)x y m n m n-=>>具有相同的焦点1F ,2F ,且在第一象限交于点P ,设椭圆和双曲线的离心率分别为1e ,2e ,若123F PF π∠=,则2212e e +的最小值为_______.15.已知双曲线()2222:10,0x y C a b a b-=>>的左右焦点分别为12,F F ,点P 在第一象限的双曲线C 上,且2PF x ⊥轴,12PF F △内一点M 满足21230MF MF MP ++=,且点M 在直线2y x =上,则双曲线C 的离心率为____________.16.已知椭圆2222:1(0)x y C a b a b +=>>上有一点22(,)22M a b ,F 为右焦点,B 为上顶点,O 为坐标原点,且2BFO BFMS S∆=,则椭圆C 的离心率为________17.我们知道:用平行于圆锥母线的平面(不过顶点)截圆锥,则平面与圆锥侧面的交线是抛物线一部分,如图,在底面半径和高均为2的圆锥中,AB 、CD 是底面圆O 的两条互相垂直的直径,E 是母线PB 的中点,已知过CD 与E 的平面与圆锥侧面的交线是以E 为顶点的圆锥曲线的一部分,则该圆锥曲线的焦点到其准线的距离等于__________.18.设1F 、2F 是椭圆2214x y +=的两个焦点,点P 在椭圆上,且满足122F PF π∠=,则12F PF △的面积等于________.19.若椭圆2222:1(0)y x E a b a b +=>>的上、下焦点分别为1F 、2F ,双曲线222211615x y -=的一条渐近线与椭圆E 在第一象限交于点P ,线段2PF 中点的纵坐标为0,则椭圆E 的离心率为________.20.抛物线24y x =的焦点为F ,经过F 的直线与抛物线在x 轴上方的部分相交于点A ,与准线l 交于点B ,且AK l ⊥于K ,如果AF BF =,那么AKF ∆的面积是______.三、解答题21.已知椭圆C 的中心在原点,焦点在x 轴上,离心率为22,且椭圆C 经过点21,2M ⎛⎫ ⎪ ⎪⎝⎭.(1)求椭圆C 的方程;(2)设椭圆的上顶点为A ,过点A 作椭圆C 的两条动弦AB ,AC ,若直线AB ,AC 斜率之积为14,直线BC 是否一定经过一定点?若经过,求出该定点坐标;若不经过,请说明理由.22.在直角坐标系xOy 中,椭圆2222:1(0)x y C a b a b+=>>的上顶点为B ,右焦点为F ,原点O 到直线BF 的距离为1||2OF . (1)求椭圆C 的离心率;(2)设直线l 与圆222x y b +=相切,且与C 交于M ,N 两点,若||MN 的最大值为2,求椭圆C 的方程.23.已知两点(2,0),(2,0)A B -,过动点P 作x 轴的垂线,垂足为H ,且满足2||PA PB PH λ⋅=⋅,其中0λ≥.(1)求动点(,)P x y 的轨迹C 的方程,并讨论C 的轨迹形状;(2)过点(2,0)A -且斜率为1的直线交曲线C 于,M N 两点,若MN 中点横坐标为23-,求实数λ的值. 24.已知抛物线2:2(0)C x py p =>的焦点为F ,点()0,3P x 为抛物线C 上一点,且4PF =,过点(),0A a 作抛物线C 的切线AN (斜率不为0),设切点为N .(1)求抛物线C 的标准方程; (2)求证:以FN 为直径的圆过点A .25.阿波罗尼斯是古希腊数学家,他与阿基米德、欧几里得被称为亚历山大时期的“数学三巨匠”以他名字命名的阿波罗尼斯圆是指平面内到两定点距离比值为定值(0,1)λλλ>≠的动点的轨迹,已知点M 与两个定点O (0,0),A (3,0)的距离比为2. (1)求动点M 轨迹C 的方程; (2)过点A 斜率为12-的直线l 与曲线C 交于 E 、F 两点,求△OEF 面积. 26.已知抛物线y 2=2px (p >0)上的点T (3,t )到焦点F 的距离为4. (1)求t ,p 的值;(2)设抛物线的准线与x 轴的交点为M ,是否存在过点M 的直线l 交抛物线于A ,B 两点(点B 在点A 的右侧),使得直线AF 与直线OB 垂直?若存在,求出△AFB 的面积,若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由直线2y kx =+恒过(0,2)点,将问题转化为点(0,2)在椭圆2219x ym+=上或椭圆内,可得选项. 【详解】因为直线2y kx =+恒过(0,2)点,为使直线1y kx =+与椭圆2219x ym +=恒有公共点,只需点(0,2)在椭圆2219x y m +=上或椭圆内,所以220219m+≤,即4m ≥.又9m ≠,所以4m ≥且9m ≠.故选:D. 【点睛】本题考查直线与椭圆的位置关系,关键在于直线恒过的点在椭圆上或椭圆的内部,属于中档题.2.D解析:D 【分析】设(),P x y ,根据标准方程求得271616k x =-,再由椭圆的几何性质可得最大值与最小值,从而可得结论. 【详解】因为椭圆方程为椭圆221169x y +=,所以4,a c =设(),P x y , 则2127·1616k PF PF x ==-, 又2016x ≤≤.∴max min 16,9k k ==. 故max min +16+925k k ==. 所以k 的最大值与最小值的和为25. 故选:D. 【点睛】关键点点睛:解决本题的关键在于将所求得量表示成椭圆上的点的坐标间的关系,由二次函数的性质求得其最值.3.B解析:B 【分析】由曲线的对称性,以及数形结合分析得b a =. 【详解】如图所示,1AB =,2MA MB ==,根据对称性可知,A B 关于x 轴对称,所以112sin 24AMO ∠==,因为OA AM ⊥,所以1cos 4AOM ∠=,渐近线OA 的斜率tan ak AOMb =∠==,所以b a =所以c e a ===, 故选:B .【点睛】方法点睛:本题考查双曲线离心率,求双曲线离心率是常考题型,涉及的方法包含: 1.根据,,a b c 直接求.2.根据条件建立关于,a c 的齐次方程求解.3.根据几何关系找到,,a b c 的等量关系求解.4.A解析:A 【分析】设双曲线2C 的方程为22221x y a b-=,根据题意,得到2122PF F F c ==,又由双曲线的定义,求得所以122PF c a =-,根据椭圆的定义,求得长半轴2a c a '=-,结合离心率的定义,即可求解. 【详解】设双曲线2C 的方程为22221(0,0)x y a b a b-=>>,焦点()2,0F c ,因为线段1PF 的垂直平分线经过点2F ,可得2122PF F F c ==, 又由12PF PF <,根据双曲线的定义可得21122PF PF c PF a -=-=, 所以122PF c a =-, 设椭圆的长轴长为2a ',根据椭圆的定义,可得212222PF PF c c a a '+=+-=,解得2a c a '=-,所以121122a a c a ae e c c c c'-+=+=+=. 故选:A. 【点睛】求解椭圆或双曲线的离心率的解题策略:1、定义法:通过已知条件列出方程组,求得,a c 得值,根据离心率的定义求解离心率e ;2、齐次式法:由已知条件得出关于,a c 的二元齐次方程,然后转化为关于e 的一元二次方程求解;3、特殊值法:通过取特殊值或特殊位置,求出离心率.5.B解析:B 【分析】根据题中光学性质作出图示,先求解出A 点坐标以及直线AB 的方程,从而联立直线与抛物线方程求解出B 点坐标,再根据焦半径公式以及点到点的距离公式求解出ABM 的三边长度,从而周长可求. 【详解】如下图所示:因为()3,1M ,所以1A M y y ==,所以2144A A y x ==,所以1,14A ⎛⎫ ⎪⎝⎭,又因为()1,0F ,所以()10:01114AB l y x --=--,即()4:13AB l y x =--, 又()24134y x y x⎧=--⎪⎨⎪=⎩,所以2340y y +-=,所以1y =或4y =-,所以4B y =-,所以244BB y x ==,所以()4,4B -,又因为1254244A B AB AF BF x x p =+=++=++=,111344M A AM x x =-=-=,()()22434126BM =-+--=,所以ABM 的周长为:25112692644AB AM BM ++=++=+, 故选:B.【点睛】结论点睛:抛物线的焦半径公式如下:(p 为焦准距)(1)焦点F 在x 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF x =+;(2)焦点F 在x 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF x =-+; (3)焦点F 在y 轴正半轴,抛物线上任意一点()00,P x y ,则02p PF y =+; (4)焦点F 在y 轴负半轴,抛物线上任意一点()00,P x y ,则02p PF y =-+. 6.D解析:D 【分析】首先根据两圆的对称性,列式求a ,再利用直接法求圆心P 的轨迹方程. 【详解】由条件可知222210x y ax y +-++=的半径为1,并且圆心连线所在直线的斜率是1-,()()2222222101x y ax y x a y a +-++=⇔-++=,,圆心(),1a -,22r a =,所以2111a a -⎧=-⎪⎨⎪=⎩,解得:1a =,即()2,1C -设(),P x y ,由条件可知PC x =x =,两边平方后,整理为24250y x y +-+=. 故选:D 【点睛】方法点睛:一般求曲线方程的方法包含以下几种:1.直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.2.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.3.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.7.D解析:D 【分析】由抛物线的性质可判断①;连接11,A F B F ,结合抛物线的性质可得1190A FB ∠=,即可判断②;设直线:2pAB x my =+,与抛物线方程联立,结合韦达定理、向量共线可判断③;求出直线TA 的方程,联立方程组即可判断④. 【详解】对于①,设,AF a BF b ==,则11,AA a BB b ,所以线段AB 的中点到准线的距离为22ABa b,所以以线段AB 为直径的圆与准线l 相切,故①正确; 对于②,连接11,A F B F ,如图,因为11,AA AF BB BF ==,11180BAA ABB ,所以11180********AFA BFB ,所以()112180AFA BFB ∠+∠=,所以1190AFA BFB 即1190A FB ∠=,所以以11A B 为直径的圆经过焦点F ,故②正确; 对于③,设直线:2pAB x my =+,()()1122,,,A x y B x y , 将直线方程代入抛物线方程化简得2220y pmy p --=,0∆>,则212y y p =-, 又2111112,,,,22y pOAx y y OB y p , 因为2211222y y p pp ,221112121222y y y y y y p y p p p ,所以2112y OAOB p,所以A ,O ,1B 三点共线,故③正确; 对于④,不妨设(002A x px ,则002AT px k =,则直线002:x AT x x p =-,代入抛物线方程化简得0202220x px py p +=-, 则0020228x p ppx ⎛∆=- -=⎝,所以直线TA 与该抛物线相切,故④正确.故选:D.【点睛】关键点点睛:①将点在圆上转化为垂直关系,将直线与圆相切转化为圆心到直线的距离,将点共线转化为向量共线;②设直线方程,联立方程组解决直线与抛物线交点的问题.8.B解析:B 【分析】 当l :0y =时,2||1||8FM AB =,设():10l x my m =-≠与椭圆联立可得:()222210my my +--=, 然后求得AB 的中垂线方程,令0y = ,得21,02M m ⎛⎫- ⎪+⎝⎭,然后分别利用两点间的距离公式和弦长公式求得||MF ,2||AB ,建立2||||FM AB 求解. 【详解】椭圆22:12x C y +=的左焦点为()1,0F -,当l :0y =时,())(),,0,0A BM,1,FM AB ==所以2||1||8FM AB =, 设():10l x my m =-≠与椭圆联立22112x my x y =-⎧⎪⎨+=⎪⎩,可得: ()222210my my +--=,由韦达定理得:1221222212m y y m y y m ⎧+=⎪⎪+⎨-⎪=⎪+⎩,取AB 中点为222,22m D m m -⎛⎫ ⎪++⎝⎭, 所以AB 的中垂线方程为:2212:22DM m l x y m m m ⎛⎫=--- ⎪++⎝⎭, 令0y = ,得21,02M m ⎛⎫- ⎪+⎝⎭, 所以221||2m MF m +=+,又()()()22212122222811||(1)24m AB y y y y k m ++⎡⎤=+=⎣⎦+-⋅, 所以2222||121111=1(,)||818184FM m AB m m ⎛⎫+⎛⎫=+∈ ⎪ ⎪++⎝⎭⎝⎭, 综上所述2||11,||84FM AB ⎡⎫∈⎪⎢⎣⎭, 故选:B. 【点睛】思路点睛:1、解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单. 2、设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2), 则弦长为()()222212121212()(1)4AB x x y y k x x x x ⎡⎤=-+-=+-⋅⎣+⎦()1221221(41)y y y y k+-⋅⎡⎤=+⎣⎦ (k 为直线斜率). 注意:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式大于零.9.D解析:D 【分析】本题首先可以通过题意画出图象并过M 点作12F F 垂线交12F F 于点H ,然后通过圆与双曲线的相关性质判断出三角形2OMF 的形状并求出高MH 的长度,MH 的长度即M 点纵坐标,然后将M 点纵坐标带入圆的方程即可得出M 点坐标,最后将M 点坐标带入双曲线方程即可得出结果. 【详解】根据题意可画出以上图象,过M 点作12F F 垂线并交12F F 于点H , 因为123MF MF =,M 在双曲线上,所以根据双曲线性质可知,122MF MF a -=,即2232MF MF a -=,2MF a =, 因为圆222x y b +=的半径为b ,OM 是圆222x y b +=的半径,所以OM b =, 因为OM b =,2MF a =,2OF c =,222+=a b c , 所以290OMF ,三角形2OMF 是直角三角形,因为2MHOF ,所以22OF MH OM MF ⨯=⨯,abMH c=,即M 点纵坐标为ab c, 将M 点纵坐标带入圆的方程中可得22222a b x b c +=,解得2b x c =,2,b ab M c c ⎛⎫ ⎪⎝⎭,将M 点坐标带入双曲线中可得422221b a a c c-=,化简得4422b aa c ,222422ca a a c ,223c a =,==ce a, 故选:D . 【点睛】本题考查了圆锥曲线的相关性质,主要考查了圆与双曲线的相关性质及其综合应用,体现了了数形结合思想,提高了学生的逻辑思维能力,是难题.10.D解析:D 【分析】结合双曲线的定义、2ABF 的面积、余弦定理列方程,化简求得ba,进而求得双曲线的渐近线方程. 【详解】连接11,AF BF ,根据双曲线的对称性可知四边形12AF BF 是平行四边形, 由于260AF B ∠=︒,所以12120F AF ∠=︒,212ABF AF F SS=,12AF BF =,设12,AF n AF m ==,结合双曲线的定义有2m n a -=,所以()2222222cos1201sin1202m n a c m n mn mn ⎧-=⎪⎪=+-︒⎨⎪⎪︒=⎩,即2222244m n a c m n mn mn a -=⎧⎪=++⎨⎪=⎩,由()22m n a -=得22222224,12m n mn a m n a +-=+=, 所以22416,2c a c a ==,而222c a b =+,所以2224,3ba ab a=+=, 所以双曲线的渐近线方程为3y x =±. 故选:D【点睛】本小题主要考查双曲线的渐近线方程的求法,属于中档题.11.A解析:A 【分析】根据椭圆的右焦点为()1,0F ,且离心率为12,求出椭圆方程,由三角形ABC 的三个顶点都在椭圆r 上,利用点差法求解. 【详解】因为椭圆的右焦点为()1,0F ,且离心率为12, 所以11,2c c a ==,解得 22,3a b ==, 所以椭圆方程为:22143x y +=,设 ()()()112233,,,,,A x y B x y C x y ,则222212121,14343y x y x +=+=,两式相减得:()()1212121243+-=--+y y x x y y x x , 即143OD AB k k =-, 同理1414,33OM OE AC BC k k k k =-=-, 又直线OD 、OE 、OM 的斜率之和为1,所以()1231114433OD OM OE k k k k k k ++=-++=-, 故选:A 【点睛】本题主要考查椭圆方程的求法以及直线与椭圆的位置关系和中点弦问题,还考查了运算求解的能力,属于中档题.12.C解析:C 【解析】12,MF MF ⊥∴由直角三角形的性质可得1MO FO c ==,又3,c a =21,312a b ∴==-=,C ∴的方程为2212y x -=,故选C. 二、填空题13.【分析】设弦的两端点分别为A (x1y1)B (x2y2)由AB 的中点是P (81)知x1+x2=16y1+y2=2利用点差法能求出这条弦所在的直线方程【详解】设弦的两个端点分别为则两式相减得因为线段的中 解析:2150x y --=【分析】设弦的两端点分别为A (x 1,y 1),B (x 2,y 2),由AB 的中点是P (8,1),知x 1+x 2=16,y 1+y 2=2,利用点差法能求出这条弦所在的直线方程. 【详解】设弦的两个端点分别为()11,A x y ,()22,B x y ,则221144x y -=,222244x y -=, 两式相减得()()()()1212121240x x x x y y y y +--+-=,因为线段AB 的中点为()8,1P ,所以1216x x +=,122y y +=,所以()1212121224y y x xx x y y -+==-+, 所以直线AB 的方程为()128y x -=-代入2244x y -=满足0∆>,即直线方程为2150x y --=.故答案为:2150x y --=. 【点睛】本题考查弦的中点问题及直线方程的求法,解题时要认真审题,仔细解答,注意点差法的合理运用.14.【分析】由题意设焦距为椭圆长轴长为双曲线实轴为令在双曲线的右支上由已知条件结合双曲线和椭圆的定义推出由此能求出的最小值【详解】由题意设焦距为椭圆长轴长为双曲线实轴为令在双曲线的右支上由双曲线的定义由解析:22+ 【分析】由题意设焦距为2c ,椭圆长轴长为2a ,双曲线实轴为2m ,令P 在双曲线的右支上,由已知条件结合双曲线和椭圆的定义推出2222a m c +=,由此能求出2212e e +的最小值.【详解】由题意设焦距为2c ,椭圆长轴长为2a ,双曲线实轴为2m , 令P 在双曲线的右支上,由双曲线的定义12||||2PF PF m -=, 由椭圆定义12||||2PF PF a +=, 可得1PF m a =+,2PF a m =-, 又123F PF π∠=,2221212||?4PF PF PF PF c +-=,可得222()()()()4m a a m m a a m c ++--+-=, 得22234a m c +=,即222234a m c c+=, 可得2212134e e +=, 则222212122212113()()4e e e e e e +=++ 2221221231(13)4e e e e =+++1(424+=当且仅当21e =,上式取得等号,可得2212e e +.故答案为:22+. 【点睛】本题考查椭圆和双曲线的性质,主要是离心率,解题时要熟练掌握双曲线、椭圆的定义,注意均值定理的合理运用.15.【分析】先根据题意得再根据向量关系得再算出代入化简整理得解方程即可求解【详解】由图像可知点则由则则则则由则则点由点在直线上则则由则故答案为:【点睛】本题考查双曲线的离心率的求解是中档题【分析】先根据题意得2,b P c a ⎛⎫⎪⎝⎭,再根据向量关系得1212::1:2:3MPF MPF MF F SSS=,再算出2,32c b M a ⎛⎫⎪⎝⎭,代入2y x =,化简整理得23430e e --=,解方程即可求解. 【详解】由图像可知,点2,b P c a ⎛⎫⎪⎝⎭,则122PF F b cS a=,由21230MF MF MP ++=, 则1212::1:2:3MPF MPF MF F S SS=,则222132PMF b c b S d a a==⋅⋅,则23c d =,则3M c x =, 由1221222F MF b c Sc h a ==⋅⋅,则22b h a=, 则22M b y a =,点2,32c b M a ⎛⎫ ⎪⎝⎭,由点M 在直线2y x =上,则22222234334343023b cb ac c a ac e e a =⇒=⇒-=⇒--=,则e =,由1e >,则e =.【点睛】本题考查双曲线的离心率的求解,是中档题.16.【分析】由题意可得直线的方程求出到直线的距离且求出的值求出的面积及的面积再由题意可得的关系进而求出椭圆的离心率【详解】由题意可得直线的方程为:即所以到直线的距离因为所以而因为所以整理可得:整理可得解 解析:22【分析】由题意可得直线BF 的方程,求出M 到直线BF 的距离,且求出|BF |的值,求出BFM 的面积及BFO 的面积,再由题意可得a ,c 的关系,进而求出椭圆的离心率. 【详解】由题意可得直线BF 的方程为:1x yc b+=,即0bx cy cb +-=, 所以M 到直线BF 的距离2222||12|(21)|222ab bc bc b a c d ab c +---==+,因为22||BF b c a =+=, 所以12||[(21)]24BFMS BF d b a c ==--, 而12BFOSbc =, 因为2BFOBFMSS=,所以122[(21)]24bc b a c =--, 整理可得:[(21)]c a c =--, 整理可得2a c =,解得22e =, 故答案为:22【点睛】本题主要考查椭圆的简单几何性质和椭圆离心率的计算,考查直线和椭圆的位置关系,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平.17.【分析】如图所示过点作垂足为由于是母线的中点圆锥的底面半径和高均为2可得在平面内建立直角坐标系设抛物线的方程为为抛物线的焦点可得代入解出即可【详解】解:如图所示过点作垂足为是母线的中点圆锥的底面半径 解析:2【分析】如图所示,过点E 作EM AB ⊥,垂足为M .由于E 是母线PB 的中点,圆锥的底面半径和高均为2,可得1OM EM ==.2OE =.在平面CED 内建立直角坐标系.设抛物线的方程为22(0)y px p =>,F 为抛物线的焦点.可得()2,2C ,代入解出即可.【详解】解:如图所示,过点E 作EM AB ⊥,垂足为M .E 是母线PB 的中点,圆锥的底面半径和高均为2,1OM EM ∴==.2OE ∴=在平面CED 内建立直角坐标系.设抛物线的方程为22(0)y px p =>,F 为抛物线的焦点. 因为)2,2C,422∴=,解得2p .2F ⎫⎪⎪⎝⎭.即点F 为OE 的中点, ∴22【点睛】本题考查了圆锥的性质、抛物线的标准方程,考查了转变角度解决问题的能力,考查了推理能力与计算能力,属于中档题.18.1【分析】利用椭圆的定义与勾股定理可得再由三角形面积公式可得结果【详解】因为是椭圆的两个焦点点在椭圆上且满足所以所以则的面积等于故答案为:1【点睛】本题主要考查椭圆的定义与几何性质意在考查学生灵活应解析:1 【分析】利用椭圆的定义与勾股定理可得122PF PF ⋅=,再由三角形面积公式可得结果. 【详解】因为1F 、2F 是椭圆2214x y +=的两个焦点,点P 在椭圆上,且满足122F PF π∠=, 所以122221224412PF PF a PF PF c +==⎧⎨+==⎩ ()()222121212216124PF PF PF PF PF PF ⇒⋅=+-+=-=,所以122PF PF ⋅=, 则12F PF △的面积等于12112PF PF ⋅=, 故答案为:1. 【点睛】本题主要考查椭圆的定义与几何性质,意在考查学生灵活应用所学知识解答问题的能力,属于基础题.19.【分析】求出椭圆的焦点坐标利用已知条件求解点坐标再代入双曲线的渐近线方程转化求解椭圆的离心率即得【详解】由题可得点由线段中点的纵坐标为0得点的纵坐标为又点在椭圆上且在第一象限则有解得点的横坐标为由双解析:35【分析】求出椭圆的焦点坐标,利用已知条件,求解P 点坐标,再代入双曲线222211615x y -=的渐近线方程,转化求解椭圆的离心率即得. 【详解】由题可得点2(0,)F c -,由线段2PF 中点的纵坐标为0,得点P 的纵坐标为c ,又点P 在椭圆上且在第一象限,则有22221c x a b +=,解得点P 的横坐标为2b a ,由双曲线222211615x y -=,得渐近线1516y x =与椭圆交于点2(,)P b c a ,则有21516b c a =,整理得2215()160a c ac --=,即215(1)160e e --=,由01e <<,得35e =.故答案为:35e = 【点睛】本题考查椭圆和双曲线的性质,属于中档题.20.【分析】计算得到故为正三角形计算面积得到答案【详解】抛物线的焦点准线为l :由抛物线的定义可得由直角三角形的斜边上的中线等于斜边的一半可得即有为正三角形由F 到l 的距离为则的面积是故答案为:【点睛】本题解析:【分析】计算得到AF AK =,FK AF =,故AKF ∆为正三角形,4AK =,计算面积得到答案. 【详解】抛物线24y x =的焦点()1,0F ,准线为l :1x =-,由抛物线的定义可得AF AK =, 由直角三角形的斜边上的中线等于斜边的一半,可得FK AF =, 即有AKF ∆为正三角形,由F 到l 的距离为2d =,则4AK =,AKF ∆16=.故答案为:【点睛】本题考查了抛物线中的面积问题,确定AKF ∆为正三角形是解题的关键.三、解答题21.(1)2212x y +=(2)一定经过定点,定点为(0,3).【分析】(1)根据离心率求出2212b a =,代入21,2M ⎛ ⎝⎭可得22a =,从而可得椭圆方程; (2)设直线AB 的斜率为k ,则直线AC 的斜率为14k,联立直线与椭圆方程求出B 、C 的坐标,求出直线BC 的方程,令0x =,得3y =,由此可得答案. 【详解】(1)设椭圆C 的方程为22221(0)x y a b a b+=>>,由2c e a ==得2c =,所以2222221122b a c a a a =-=-=, 所以222221x y a a +=,因为椭圆C 经过点21,2M ⎛ ⎝⎭, 所以2212121aa⨯+=,得22a =, 所以椭圆C 的方程为2212x y +=.(2)由椭圆的方程得(0,1)A ,设直线AB 的斜率为k ,则直线AC 的斜率为14k,所以直线AB 、AC 的方程分别为:1y kx =+,114y x k=+, 联立22112y kx x y =+⎧⎪⎨+=⎪⎩,消去y 并整理得22(12)40k x kx ++=, 解得0x =或2412k x k =-+,所以2412B k x k =-+,221212B k y k-=+, 所以222412(,)1212k k B k k --++,同理可得222881(,)1881k k C k k --++, 所以22222281128112841812BCk k k k k k k k k---++==-+++2412k k +, 所以直线BC 的方程为:222212414()12212k k ky x k k k-+-=+++, 令0x =,得3y =,所以直线BC 一定经过一定点(0,3). 【点睛】关键点点睛:求出直线BC 的斜率和方程是解题关键.22.(1) 2; (2) 2214x y +=【分析】(1)根据条件在OBF 中,由等面积法可得点O 到直线BF 的距离,从而建立方程求出,a b 关系,得出离心率.(2) 设:l x my n =+,与椭圆方程联立写出韦达定理,由弦长公式得到弦长,求出其最值,根据条件得到答案. 【详解】(1)由条件可得()0,B b ,(),0F c ,设点O 到直线BF 的距离为d 在OBF中,有BF a ==,则d BF ON OF ⨯=⨯,即bc d a= 所以12bc d c a ==,所以12b a =所以e ==== (2)由直线l 与圆222x y b +=相切,且与C 交于M ,N 两点,所以直线l 的斜率不为0.设:l x my n =+,所以b =,所以()2221n b m =+由(1)可得224a b =,则椭圆方程化为:22244x y b +=设()()1122,,,M x y N x y ,由22244x my nx y b=+⎧⎨+=⎩,得()22224240m y mny n b +++-= 所以2212122224,44mn n b y y y y m m --+==++ 所以AB ===1t =≥,则221m t =-所以2AB b t t=≤+,当且仅当t=m =时取得等号. 由||MN 的最大值为2,则22b =,所以1b =所以当||MN 的最大值为2时,椭圆方程为:2214xy +=【点睛】关键点睛:本题考查求椭圆的离心率和根据弦长的最值求椭圆方程,解答本题的关键是先由弦长公式得出弦长AB =1t =≥,利用换元利用均值不等式求出其最值,属于中档题. 23.(1)答案见解析;(2)12λ=. 【分析】(1)由向量坐标公式化简可得轨迹方程,并讨论即可;(2)将直线与曲线联立结合韦达定理求得中点横坐标,再用判别式判断即可. 【详解】解:(1)()2,PA x y =---,()2,PB x y =--又22PHy =所以由2||PA PB PH λ⋅=⋅得()()22,2,x y x y y λ---⋅--= 则22(1)4x y λ+-=当1λ=时,C 是两条平行直线; 当0λ=时,C 是圆;当01λ<<时,C 是椭圆; 当1λ>时,C 是双曲线 .(2)2222(2)4(1)40(1)4y x x x x y λλλλ=+⎧⇒-+--=⎨+-=⎩ 设1122(,),(,)M x y N x y ,则122004(1)41(0)232x x λλλλ⎧⎪-≠⎪∆>⎨⎪-⎪+==-⇒=∆>-⎩【点睛】(1)解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. (2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.24.(1)24x y =;(2)证明见解析. 【分析】(1)由4PF =,利用焦半径公式可求出p 的值,从而可得抛物线C 的标准方程; (2)设切线AN 的方程为()y k x a =-,0k ≠,联立直线方程与抛物线方程,利用判别式为零可得a k =,求得切点2(2,)N a a ,由0AF AN ⋅=即可判定以FN 为直径的圆过点A .【详解】(1)因为()0,3P x 为抛物线上一点, 所以PF 的长等于P 到抛物线准线2py =-的距离, 即||3422P p pPF y =+=+=,解得2p =, 所以抛物线C 的标准方程为:24x y =.(2)直线斜率不存在时,直线x a =不是抛物线的切线, 所以可设切线AN 的方程为:()y k x a =-, 0k ≠,联立直线与抛物线方程得24()x yy k x a ⎧=⎨=-⎩,消去y 可得2440x kx ka -+=,因为直线与抛物线相切,∴216160ka ka ∆=-=,解得a k =.224402x ax a x a -+=⇒=,所以切点()22,N a a ,(0,1)F ,(,0)A a ,∴(,1)AF a =-,()2,AN a a =,∴220AF AN a a ⋅=-+=.∴90FAN ∠=︒,以FN 为直径的圆过点A . 【点睛】方法点睛:解得与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.25.(1)228120x y x +-+=;(2)5. 【分析】(1)设(,)M x y ,由已知得 ||2||OM AM =,由两点的距离公式可得= ,化简可得动点M 轨迹C 的方程;(2)根据直线的点斜式方程可得方程()1:032l y x -=--,由点到直线的距离公式求得圆圆心()40,到直线l 的距离和原点到直线 l 的距离,根据三角形的面积公式可求得答案. 【详解】(1)设(,)M x y ,则||2||2||||OM OM AM AM =⇒=,= ,所以动点M 轨迹C 的方程为228120x y x +-+=; (2)直线()1:032l y x -=--,即230x y +-=,又圆22(4)4x y -+=,圆心()40,到直线l,所以2EF == l所以 125OEF S ∆==. 【点睛】本题考查求动点的轨迹方程,以及运用几何法求圆的弦长,属于中档题. 求点的轨迹方程的常用方法之一:直译法——“四步一回头”, 四步:(1)建立适当坐标系,设出动点M 的坐标(),x y ; (2)写出适合条件的点M 的集合(){}|P P M P M =; (3)将()P M “翻译”成代数方程(),0f x y =; (4)化简代数方程(),0f x y =为最简形式.一回头:回头看化简方程的过程是否为同解变形,验证求得的方程是否为所要求的方程.26.(1)t =±,p =2;(2)存在,△AFB . 【分析】(1)根据抛物线的定义求得方程即可.(2)由(1)易得M (-1,0),F (1,0),假设存在直线l ,设其方程为x =my -1(m ≠0),将其代入24y x =,根据直线AF 与直线OB 垂直,由k AF ·k OB =-1,结合韦达定理求得m ,再分别求得弦长AB 和点F 到直线l 的距离,代入面积公式求解. 【详解】(1)由题意及抛物线的定义得342p+=,则p =2, ∴抛物线的方程为24y x =, 又∵点T 在抛物线上, 故243t =⨯,解得t =±. (2)由(1)易得M (-1,0),F (1,0).设A (x 1,y 1),B (x 2,y 2),假设存在直线l 满足题意,设其方程为x =my -1(m ≠0), 将其代入24y x =得24+4?=?0y my -,121244y y m y y +=⎧⎨=⎩所以由Δ=16m 2-16>0,得m >1或m <-1. 又直线AF 与直线OB 垂直,易知直线AF 与直线OB 的斜率都存在, 所以k AF ·k OB =-1, 即121211y y x x ⋅=--, 所以1221212441(1)(1)(2)2y y x x my my my ===-----, 解得1226,3m y y m==. 又2224+4?=?0y my -,解得m =Δ>0, 所以满足条件的直线l的方程为550x ±=.此时AB ==12y y -,263555m m =-==, 又点F 到直线l的距离d ==, 所以△AFB的面积11||2255S AB d =⋅=⨯=. 【点睛】。
高二数学圆锥曲线与方程试题答案及解析1.若椭圆与双曲线有公共的焦点,其交点为且∠,则△的面积是()A.B.C.D.【答案】C【解析】∵点p既在椭圆上又在双曲线上,∴,由椭圆与双曲线有公共的焦点,得∴∴.【考点】椭圆、双曲线定义的应用。
点评:本题主要考查椭圆和双曲线定义的灵活应用,先根据点p既在椭圆上又在双曲线上,得,,再利用完全平方式求出,从而求出△的面积。
2.已知直线与双曲线的右支相交于不同的两点,则的取值范围是.【答案】【解析】由得,根据直线与双曲线有两个不同交点得:且解得又因为交点在右支上∴综上得:。
【考点】直线与双曲线位置关系点评:本题中,两交点在右支上是容易忽略的条件,也是本题的难点,要结合渐近线考虑。
3.抛物线的焦点坐标是()A.B.C.D.【答案】C【解析】化成标准方程为:可得抛物线的焦点在轴的正半轴上,并且2P=,所以其焦点坐标为。
故应选C。
【考点】抛物线的标准方程及其焦点坐标。
点评:求抛物线的焦点坐标时,要先把方程化成标准方程,然后判断焦点所在的坐标轴和P的值,再求出其焦点坐标。
4.已知抛物线的顶点在原点,焦点在y轴上,其上的点到焦点的距离为5,则抛物线方程为()A.B.C.D.【答案】D【解析】根据抛物线的顶点在原点,焦点在y轴上,在抛物线上,可以设其方程为:,准线方程为:;根据抛物线的上的点到焦点的距离等于到准线的距离,可得到准线的距离为5,即∴抛物线方程为。
【考点】本题考查了抛物线的定义及其标准方程的求法。
点评:求抛物线的方程时,通常利用抛物线上的点到焦点的距离等于到准线的距离来求。
本题中根据点在抛物线上判断出焦点在y轴负半轴上是关键。
5.点到曲线(其中参数)上的点的最短距离为()A.0B.1C.D.2【答案】B【解析】由得曲线方程为:,点是抛物线的焦点,根据抛物线上的点到焦点的距离等于到准线的距离,可得点到的顶点的距离最短,∴点到曲线上的点的最短距离为1。
【考点】抛物线的定义及其标准方程。
2013-2014学年度第二学期3月月考
高二数学试卷
满分:150分,时间:120分钟
一、选择题:(本大题共12小题,每小题5分,共60分) 1、抛物线y 2=-2px (p>0)的焦点为F ,准线为l ,则p 表示 ( ) A 、F 到准线l 的距离 B 、F 到y 轴的距离
C 、F 点的横坐标
D 、F 到准线l 的距离的一半
2.抛物线22x y =的焦点坐标是 ( )
A .)0,1(
B .)0,4
1
( C .)8
1,0(
D .)4
1,0(
3.离心率为
3
2
,长轴长为6的椭圆的标准方程是 ( )A .22195x y +
= B .22195x y +=或22
159
x y += C .2213620x y +
= D .2213620x y +=或22
12036
x y += 4、焦点在x 轴上,且6,8==b a 的双曲线的渐近线方程是 ( ) A .043=+y x B .043=-y x C .043=±y x D . 034=±y x
5、以椭圆1582
2=+y x 的焦点为顶点,椭圆的顶点为焦点的双曲线的方程为 ( ) A .15322=-y x B .13522=-y x C .181322=-y x D .15
1322=-y x 6.顶点在原点,坐标轴为对称轴的抛物线过点(-2,3),则它的方程是 ( )
A.y x 292-=或x y 342=
B.x y 2
9
2-=或y x 3
42= C.y x 3
4
2
=
D.x y 2
92
-
= 7.抛物线2
2y px =的焦点与椭圆22
162
x y +
=的右焦点重合,则p = ( ) A .4 B .4- C .2 D . 2- 8、双曲线112
42
2=-y x 的焦点到渐近线的距离为 ( ) A . 1 B .2 C .3 D .32
9.以椭圆
22
=1169144
x y +的右焦点为圆心,且与双曲线22=1916x y -的渐近线相切的圆方程是
( )
A .x 2+y 2-10x +9=0
B .x 2+y 2
-10x -9=0 C .x 2+y 2+10x +9=0 D .x 2+y 2+10x -9=0
10.已知方程
11
22
2=-+-k y k x 的图象是双曲线,那么k 的取值范围是 ( ) A . 1<k B .2>k
C . 1<k 或2>k
D . 21<<k
11.已知椭圆()222109x y a a
+=>与双曲线22
143x y -=有相同的焦点, 则a 的值为 ( )
A B .C . 4 D .10
12.对任意实数θ,则方程x 2+y 2sin θ=4所表示的曲线不可能是 ( )
A .椭圆
B .双曲线
C .抛物线
D .圆 二、填空题:(本大题共5小题,共20分)
13.若一个椭圆的短轴长是长轴长与焦距的等差中项,则该椭圆的离心率是
14.双曲线x 2a 2-y 2
b 2=1的两条渐近线互相垂直,那么该双曲线的离心率是
15.已知双曲线2
2
1y x a
-=的一条渐近线与直线230x y -+=垂直,则实数a = . 16.对于顶点在原点的抛物线,给出下列条件;
(1)焦点在y 轴正半轴上; (2)焦点在x 轴正半轴上;
(3)抛物线上横坐标为1的点到焦点的距离等于6;
(4)抛物线的准线方程为2
5
-=x
其中适合抛物线y 2
=10x 的条件是(要求填写合适条件的序号) .
三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 17.(本题10分)求与椭圆205422=+y x 有相同的焦点,且顶点在原点的抛物线方程.
18.(本题12分)双曲线C 与椭圆x 28+y 2
4=1有相同的焦点,直线y =3x 为C 的一条渐近线.求双曲线C 的方程.
19.(本题12分)已知双曲线的离心率25=e ,且与椭圆
13
132
2=+y x 有共同的焦点,求该双曲线的标准方程。
20.(本题12分)已知点M 在椭圆22
1259
x y +=上,MD 垂直于椭圆焦点所在的直线,垂足为D ,
并且M 为线段PD 的中点,求P 点的轨迹方程
21.(本题12分)已知椭圆22
122:1(0)x y C a b a b
+=>>的右焦点2F 与抛物线22:8C y x =的焦点
重合,左端点为()
(1)求椭圆的方程;
(2)求过椭圆1C 的直线l 被椭圆1C 所截的弦AB 的长。
22.(本题12分)已知椭圆x 2a 2+y 2b 2=1(a >b >0),点P )2
2
,
55(a a 在椭圆上. (1)求椭圆的离心率;
(2)设A 为椭圆的左顶点,O 为坐标原点,若点Q 在椭圆上且满足|AQ |=|AO |,求直线OQ 的斜率的值.
2013-2014学年度上学期高二数学3月月考参考答案 一、选择题 1-5 A C B C A 6-10 B A D A C 11-12 C C 二、填空题 13、6.0 14、 2 15、4 16、)4)(2(
三、解答题:
17.解:把方程20542
2
=+y x 化为标准方程为14
5
2
2
=+
y
x
,则可知焦点在X 轴上
4,52
2
==b a
1=∴c ∴椭圆焦点为(-1,0)
、(1,0) 设抛物线的方程为)0(22
>±=p px y
由
12
=p
可知2=p 故所求抛物线方程为
x y
242
±=
18.解:设双曲线方程为x 2a 2-y 2
b
2=1(a >0,b >0).
由椭圆x 28+y 2
4
=1,求得两焦点为(-2,0),(2,0),
∴对于双曲线C :c =2.
又y =3x 为双曲线C 的一条渐近线, ∴b a
=3,解得a 2=1,b 2
=3, ∴双曲线C 的方程为x 2
-y 2
3
=1.
19.解: 设与椭圆131322=+y x 共焦点的双曲线方程为)133( 13
132
2<<=---k k y k x , 由条件可知:10 , 13=-=c k a ,所以离心率51310
25=⇒-==
k k
e , 所以,所求的双曲线方程为:12
82
2=-y x 20.解:设P 点的坐标为(,)p x y ,M 点的坐标为00(,)x y ,由题意可知
00
002
2y y x x x x y y ====⎧⎧⇒⎨⎨⎩⎩ ① 因为点M 在椭圆
22
1259
x y +=上,所以有 22001259x y += ② , 把①代入②得22
12536
x y +=,所以P 点的轨迹是焦点在y 轴上,标准方程为
22
12536
x y +=的椭圆.
21.解:(1)因为抛物线的焦点为
,
又椭圆的左端点为
则
所求椭圆的方程为 ⑵∴椭圆的右焦点
,∴的方程为:
,
代入椭圆C 的方程,化简得,
由韦达定理知,
从而
由弦长公式,得,
即弦AB 的长度为
22.解:(1)因为点P ⎝ ⎛⎭⎪⎫5
5
a ,22a 在椭圆上,故a 25a 2+a 22
b 2=1,可得b 2
a 2=58.
于是e 2
=a 2-b 2a 2=1-b 2a 2=38,所以椭圆的离心率e =6
4
.
(2)设直线OQ 的斜率为k ,则其方程为y =kx ,设点Q 的坐标为(x 0,y 0).
由条件得⎩⎪⎨⎪⎧
y 0=kx 0,x 20a 2+y 2
b
2=1.
消去y 0并整理得x 2
=a 2b 2
k 2a 2+b 2
.①
由|AQ |=|AO |,A (-a,0)及y 0=kx 0,
得(x 0+a )2+k 2x 20=a 2
,整理得
(1+k 2)x 2
0+2ax 0=0,而x 0≠0,故x 0=-2a 1+k
2,
代入①,整理得(1+k 2)2
=4k 2
·a 2
b
2+4.
由(1)知a 2
b 2=85,故(1+k 2)2
=325k 2+4,
即5k 4-22k 2-15=0,可得k 2
=5. 所以直线OQ 的斜率k =± 5.。