交通灯控制器数字电路的设计及仿真
- 格式:docx
- 大小:36.92 KB
- 文档页数:2
(完整word版)数电——交通灯控制器设计大连交通大学电气信息学院综合设计报告设计名称:数字逻辑综合设计设计题目:交通灯控制器学生学号:专业班级:学生姓名:第一章课题背景1。
1 背景如今随着人们生活水平的提高,车辆越来越多,交通事故频繁发生。
交通信号灯的出现,使交通得以有效管制,对于疏通交通流量,提高道路通行能力,减少交通事故有明显效果。
交通灯在城市交通中起着重要的作用,它与人们日常生活密切相关,是人们出行的安全保障。
因此提供一个问题、安全、便捷的多功能交通灯控制系统有着现实的必要性.为了解决这些问题,我们更应该提高交通控制和管理水平,合理使用现有交通设施,充分发挥其能力,提高交通效率,促进和谐交通的建立.目前交通灯控制系统的设计软件也种类繁多,有基于EDA设计的,基于单片机设计的,基于DSP设计的,基于ARM嵌入式的等。
还有用标准逻辑器件、可编程控制器PLC等方案来实现.但是这些控制方法的功能修改及调试都需要硬件电路的支持,在一定程度上增加了功能修改及调试的困难。
所以现在国内外广泛采用EDA技术设计交通灯控制系统。
在国外,英国,澳大利亚,日本和美国等国家均在交通控制系统上日益完善。
如以澳大利亚悉尼为背景开发的交通自适应协调系统SCATS(Sydney Coordinated Adaptive Traffic System),英国的运输和道路研究所(TRRL)研制的SCOOT(Split Cycle Offset Optimization Technique)系统,日本的京三(Kyosan)系统等。
这些系统,大都是在各路口附近安装磁性环路监控器,由各路口的控制设备、人员将交通控制参数通过通讯网络输入微处理器,用小型计算机进行集中处理。
目前国内已有一些自主开发的城市交通控制系统,如公安部交通科学研究所开发的HT-UTCS系统,但它在整体性能上比国外同类系统仍有较大差距,只在一些中小城市得到一些应用。
0.引言Multisim 具有丰富的仿真分析能力并且以Windows 为基础的EDA 仿真工具,适用于板级的模拟/数字电路板的设计工作。
通过Multisim 可以交互式地搭建电路原理图,并对电路行为进行仿真。
它是EDA 仿真设计系统的一个重要组成部分。
EDA 代表了当今电子设计技术的最新发展方向,其基本特征是设计人员以计算机为工具,按照自顶向下的设计方法。
随着EDA 技术的发展,可以利用“虚拟仪器”、“虚拟器件”在计算机上进行电子电路设计和实验。
目前,在这类仿真软件中,“虚拟电子实验台”—————Multisim 较为优秀,其应用逐步得到推广。
这种新型的虚拟电子实验技术软件,在创建实验电路时,元器件、测试仪器均可直接从屏幕图形中选取,且仪器的设置、使用和数据读取方法以及外观都与现实中的仪表非常相似。
实际工作中可以利用此软件实现计算机仿真设计与虚拟实验,并且设计与实验可以同步进行,可以边设计边实验,修改调试方便;设计和实验用的元器件及测试仪表齐全,可以完成各种类型的电路设计与实验;仿真时可方便地对电路参数进行测试和分析,可直接打印输出实验数据、测试参数、曲线和电路原理图,并且在实验中不消耗实际上的元器件,实验所需元器件的种类和数量不受限制,从而降低了实验成本低,加快了实验速度,提高了实验效率高。
基于上述优点,我们利用虚拟实验室中的虚拟仪器来组织完成交通灯控制电路的仿真设计。
1.交通灯控制器原理假设有个十字路口,分别有A 、B 两条交叉的道路,交通灯的控制方式为:A 街道先出现在绿灯(3S )、黄灯(1S )时,B 街道为红灯(4S );而A 街道为红灯(4S )时,B 街道出现绿灯(3S )、黄灯(1S );如此循环。
交通灯控制的一个循环为8S ,而采用一片同步十进制计数74LS160来完成时间控制,相当于模8的计数器。
2.电路设计2.1真值表假设A 、B 街道的绿、黄、红灯分别用GA 、YA 、RA 和GB 、YB 、RB 表示,交通灯控制电路的真值表如表1所示:表1交通灯控制电路逻辑真值表2.2设计模8计数器2.2.174LS160简介74LS160是同步10进制计数器,其管脚排列如图1所示:其中A 、B 、C 、D 为预置数输入端,LOAD 为预置数控制端,CLR 为异步清零端,ENP 和ENT 为计数器允许端,CLK 为上长沿触发时钟端,RCO 为输出的进位信号,QA 、QB 、QC 、QD 为十进制输出端。
学院:班级:姓名:学号:姓名:学号:姓名:学号:序言随着社会经济的发展,城市交通问题越来越引起人们的关注。
人、车、路三者关系的协调,已成为交通管理部门需要解决的重要问题之一。
城市交通控制系统是用于城市交通数据监测、交通信号灯控制与交通疏导的计算机综合管理系统,它是现代城市交通监控指挥系统中最重要的组成部分。
为此,笔者从数字电子的方向对交通灯进行了深入的研究,以下就城乡交通灯控制系统的电路原理、设计计算和实验调试等问题来进行具体分析讨论。
内容摘要课程设计目的:数字电子技术课程设计是数字电子技术课程的实践环节,是对学生学习数字电子技术的综合训练.学生根据某一课题技术指标或逻辑功能的要求,独立进行电路设计,工程估算,实验测试与调整,制作(在实验板上)电子产品和写出实验总结报告.通过这一电路综合性实践训练,要达到深化所学的理论知识,培养综合运用所学知识的能力,掌握一般电路的分析方法,增强独立分析问题与解决问题的能力.通过这一综合训练培养学生严肃认真的工作态度和科学作风,为今后从事电路设计和研制电子产品打下初步基础.1.满足所示的顺序工作流程图。
图中设大道方向的红、黄、绿灯分别为DR、DY、DG,小道方向的红、黄、绿灯分别为XR、XY、XG。
设计一个十字路口交通信号灯定时控制器,其要求如下:它们的工作方式,有些必须是并行进行的,即大道方向绿灯亮,小道方向红灯亮;大道方向黄灯亮,小道方向红灯亮;大道方向红灯亮,小道方向绿灯亮;大道方向红灯亮,小道方向黄灯亮2.应满足两个方向的工作时序。
即大道方向亮红灯时间应等于小道方向亮黄、绿灯时间之和,小道方向亮红灯时间应等于大道方向亮黄、绿灯时间之和。
时序工作流程图见图3所示。
图3所示,大道、小道方向绿、黄、红灯亮时间分别6秒、4秒、29秒,一次循环为39秒。
其中红灯亮的时间为绿灯、黄灯亮的时间之和,黄灯间歇是静止,当检测到小道有车到来的时候,所有电路才开始工作,在小路没有车到之前一直要保持大路亮绿灯,小道一直保持红灯,在小道亮绿灯的时候,检测大道的来车数量,假如超过三辆车,则要立马执行下一个状态,保证车辆通行正常。
基于Proteus的数字交通灯电路设计与实现要基于Proteus进行数字交通灯电路的设计与实现,可以按照以下步骤进行操作:
1. 打开Proteus软件,创建一个新的工程。
2. 在工程中选择一个适当的微控制器模型,例如Arduino UNO。
3.在工程中选择一个合适的LED灯模型,用于表示交通灯的红、黄、绿三种状态。
4.将LED灯模型拖放到电路图中,并与微控制器的相应引脚连接。
5.在电路图中添加一个电阻,用于限流保护LED灯。
6. 编写Arduino程序代码,实现交通灯的控制逻辑。
例如,可以使用if语句和延时函数来控制LED灯的亮灭。
7. 将编写好的Arduino程序代码上传到微控制器中。
8.保存并仿真运行电路图,观察交通灯的工作状态。
9.可以通过更改程序代码中的延时时间和控制逻辑,来模拟不同的交通灯工作模式,如红绿灯交替、黄灯闪烁等。
完成以上步骤后,即可实现基于Proteus的数字交通灯电路设计与实现。
数字电路课程设计交通灯控制器数字电路课程设计报告书题目:交通灯控制器一实验目的1.综合应用数字电路知识设计一个交通灯控制器。
了解各种元器件的原理及其应用。
2.深入了解交通灯的工作原理。
3.锻炼自己的动手能力和实际解决问题的能力。
二实验要求1)在十字路口的两个方向上各设一组红黄绿灯,显示顺序为其中一个方向是绿灯,黄灯,红灯,另一方面是红灯,绿灯,黄灯。
2)设置一组数码管,以计时的方式显示允许通行或禁止通行时间,其中一个方向上绿灯亮的时间为20秒,另一个方向上绿灯亮的时间是30秒,黄灯亮的时间都是5秒。
3)当任何一个方向出现特殊情况,按下手动开关,其中一个方向常通行,倒计时停止,当特殊情况结束后,按下自动控制开关,恢复正常状态。
4)选作:用两组数码管实现双向到计时显示。
三使用元件0 0 0 0 1 1 0 00 1 0 1 0 1 0 01 1 1 0 0 0 0 11 0 1 0 0 0 1 0所以,R=A Y=~AB G=~A~Br=~A y=A~B g=AB红绿灯显示电路接线如下:3)计时部分电路计时器状态产生模块:设计要求对不同的状态维持的时间不同,而且要以十进制倒计时显示出来。
采用两个74LS161完成计时器状态产生模块设计。
设计思路:要以十进制输出,而又有一些状态维持时间超过10秒,则必须用两个74LS161分别产生个位和十位的数字信号。
显然,计数器能够完成计时功能,我们可以用74LS161设计,并把它的时钟cp接秒脉冲。
74LS161计数器是采用加法计数,要想倒计时,则在74LS161输出的信号必须经过非门处理后才能接入数码管的驱动74LS48,而在显示是以0---9显示计时,故在设计不同模值计数器确定有效状态时,以0000,0001,0010-----1111这些状态中靠后的状态为有效状态。
例如:有效状态1011—1100—1101—1110—1111取非 0100—0011—0010—0001—0000即 4------3-------2--------1---------0D0=D3=~(~Y~y) D2=~(~G~g) D1=1当状态为1111时,74LS161的状态必须跳到进入下一个循环,此时进位输出为1,把它的CO非接入置数端[LD]。
交通灯控制器+数字电路课程设计报告交通灯控制器是交通管理系统中的重要组成部分,其主要作用是控制道路上的交通信号灯。
随着数字电路技术的发展,交通灯控制器也逐渐向数字化、智能化方向发展。
本文将详细介绍一种基于数字电路的交通灯控制器设计,以及该设计方案的实现和效果。
一、设计方案1.硬件设计硬件设计方案主要包括数字电路的选择、交通灯的控制模块、传感器等。
本方案选用FPGA芯片作为控制芯片,该芯片具有先进的数字信号处理能力和可编程性,便于开发和定制。
交通灯的控制模块包括红灯、黄灯、绿灯三个信号灯的控制器,以及车辆、行人传感器等。
其中车辆传感器主要用来检测车流量,行人传感器主要用来检测行人通行情况。
2.软件设计软件设计方案主要包括程序的设计和调试,以及人机界面的设计和开发。
程序设计方案采用Verilog HDL语言进行实现,采用时序逻辑设计的思路来编写程序,实现红绿灯的控制和状态转移。
人机界面采用C语言进行编写,通过串口通信与控制芯片进行数据传输和控制。
二、实现过程在设计方案确定后,我们进一步开始实现。
首先是电路的焊接和测试,在确定电路正常无误后,再完成程序的编写和调试。
最后是人机接口的开发和完善。
具体实现流程如下:1.电路焊接首先进行电路布线和焊接,将FPGA芯片、光耦隔离器、电位器等元器件焊接到电路板上,以及信号灯、传感器等元器件的接入。
2.程序编写利用Verilog HDL语言编写程序,主要包括红绿灯状态的转移逻辑和相应的信号输出控制。
程序设计过程中,需要注意时序和状态的转移。
3.调试测试完成程序编写后,需要进行相应的调试测试。
通过仿真测试,检查程序逻辑是否正确,排除潜在问题。
在硬件实验平台上进行测试,确定系统能够正常工作。
4.人机界面开发利用C语言编写人机界面,实现与交通灯控制器的交互控制。
实现车辆、行人传感器的数据采集和显示,以及人手动控制交通灯的功能。
三、实现效果通过测试和实验验证,本文的交通灯控制器设计方案具有以下优势:1.使用FPGA芯片作为控制芯片,具有较强的可编程性和数字信号处理能力。
基于数字电路的交通灯控制器的设计与仿真作者:宋朝君来源:《电子技术与软件工程》2013年第20期摘要把数字电路的设计与EDA仿真软件相互结合,设计一个十字路口交通灯控制器。
该控制器能够实现对十字路口交通信号灯控制。
利用EDA这种高效的设计平台,能够方便地设计电路,并通过对电路仿真来验证电路是否达到设计要求。
与传统的设计方法相比,它具有灵活性强、低成本、高效率的优越性。
【关键词】 EDA 数字电路电路仿真数字电路主要有组合逻辑电路和时序逻辑电路两部分组成,交通灯控制器的设计既可以涉及到这两部分的基本原理的运用,又可以锻炼学生对数电综合电路的设计和分析能力,因此交通灯控制器的设计是数字电路一个很好的教学题材,在完成电路设计的同时配合电子设计自动化(EDA)教学,学生无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,EDA可以很好地、很方便地把刚刚学到的理论知识用计算机仿真真实的再现出来。
并且可以用虚拟仪器技术创造出真正属于自己的仪表。
极大地提高了学员的学习热情和积极性。
真正的做到了变被动学习为主动学习。
目前在各高校教学中普遍使用EDA仿真软件是Multisim10.1,是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。
下面介绍以Muitisim10.1 为平台设计一个十字路口交通控制器系统的过程.1 设计要求设计一个十字路口的交通灯控制器,要求主干道和支干道交替运行,主干道每次通行时间都设为30秒;支干道每次通行时间都设为20秒;绿灯可以通行,红灯禁止通行;每次绿灯变红灯时,要求黄灯先亮5秒钟(此时另干道的红灯不变);十字路口要有数字显示,作为等候的时间提示。
要求主干道和支干道通行时间及黄灯亮的时间均以秒为单位做减法计数。
黄灯亮时,原红灯按1Hz的频率闪烁。
2 交通控制器电路设计与仿真2.1 状态控制器的设计根据设计要求,主干道和支干道红、绿、黄灯正常工作时,只有四种可能:主干道车道绿灯亮,支干道车道红灯亮,用S0表示,绿灯亮足规定的时间间隔30秒时,控制器发出状态转换信号,转到下一工作状态;主干道车道黄灯亮,支干道车道红灯闪烁,用S1表示,黄灯亮规定的时间间隔5秒时,控制器发出状态转换信号,转到下一工作状态;主干道车道红灯亮,支干道车道绿灯亮,用S2表示,绿灯亮足规定的时间间隔20秒时,控制器发出状态转换信号,转到下一工作状态;主干道车道红灯闪烁,支干道车道黄灯亮,用S3表示,黄灯亮足规定的时间间隔5秒是,控制器发出状态转换信号,系统又转换到最初种状态。
交通灯控制器数字电路的设计及仿真
随着城市化进程的加快,交通量越来越大,如何科学有效地管理交通成为一个重要的问题。
其中,交通灯控制器是一个涉及电子电路技术的重要设备。
基于数字电路的设计和仿真,进一步提高交通灯控制器的精度和稳定性,对于保障交通安全、提高城市交通效率至关重要。
一、设计方案
1.计算时序
交通灯控制器的每个阶段均有确定的时间,因此需要计算时序以确定各个信号时序是否正确,以及控制灯的开关时间是否正确。
2.设计状态机
根据计算好的时序,可以通过 ISE 设计工具绘制状态图,然后再利用 Verilog HDL 语言编写出状态机。
交通灯控制器的每个阶段都有一个对应的状态,状态机会根据输入信号的状态来判断当前处于何种状态,并根据状态判断应该输出什么信号。
3.确定数字电路结构
利用 ISE 设计工具,可以采用 Combinational Logic Circuit 来设计灯的开关逻辑电路,时序电路中以时钟触发器为主。
可以通过该工具绘制仿真波形来检测电路的正确性,检查信号间是
否存在错误。
二、仿真过程
1.绘制输入信号波形
首先,需要绘制出输入信号的波形,并且在仿真时要按照相应的频率和占空比输出。
2.对仿真波形进行仿真分析
仿真过程中,可以通过 Xilinx 仿真工具,对仿真波形进行分析,检测电路的正确性和稳定性。
同时,可以通过仿真过程中的输出信号波形,判断各阶段信号的状态。
3.检验仿真结果与设计方案
借助仿真工具,可以非常直观地验证数字电路的设计方案是否合理、可靠。
此外,还可以通过不同的应用场景,不断优化和调整设计方案,以实现更高的效率与精度。
三、总结
数字电路的设计和仿真,可以有效地提高交通灯控制器的精度和稳定性,在城市交通管理中起到关键的作用。
当前数字电路技术的不断推进,为实现更加高效安全的交通管理提供了强有力的支持。