浅谈药用纯化水制备系统的设计
- 格式:doc
- 大小:26.50 KB
- 文档页数:5
制药工程纯化水设计方案一、引言随着现代化工业的飞速发展,制药工程中使用的纯化水越来越重要。
纯化水在制药生产过程中扮演着至关重要的角色,因为它直接影响到产品的质量、安全和稳定性。
因此,设计一个高效可靠的纯化水系统对于制药工程而言至关重要。
本文将介绍一种适用于制药工程的纯化水设计方案,旨在满足纯化水质量要求、节约能源、降低运营成本。
二、纯化水的质量要求1. 纯化水的纯度制药工程中使用的纯化水需要符合国家标准,保证水质的纯净度。
常见的水质要求包括去除微生物、有机物、无机盐和其他杂质,保证水质的纯净度。
2. 纯化水的稳定性纯化水需要保持长期稳定的水质,不受外部环境变化的影响,保证产品的质量和稳定性。
3. 纯化水的安全性纯化水系统需要满足相关的卫生、安全标准,保证水质的安全可靠,不对人体健康产生不良影响。
三、纯化水设计方案1. 工艺流程纯化水系统的工艺流程包括:原水处理、预处理、反渗透、电离交换和紫外灭菌。
原水处理阶段主要是去除水中的大颗粒杂质,包括过滤和沉淀;预处理阶段主要是对水进行软化处理,去除水中的硬度物质和有机物;反渗透阶段主要是通过膜技术去除水中的溶解盐和微生物;电离交换阶段主要是采用离子交换树脂去除水中的离子;紫外灭菌阶段主要是利用紫外线杀灭水中的微生物,确保水质的安全。
2. 设备选型(1)过滤设备原水处理阶段主要采用石英砂过滤器和活性炭过滤器。
石英砂过滤器能够去除水中的大颗粒杂质,活性炭过滤器能够去除水中的有机物和氯气。
(2)软化设备预处理阶段主要采用离子交换软化设备进行水质软化处理,去除水中的硬度物质和有机物。
(3)反渗透设备反渗透设备是纯化水系统的核心设备,通过膜技术去除水中的溶解盐和微生物。
通常采用高压反渗透设备,具有高效、节能的特点。
(4)电离交换设备电离交换设备采用离子交换树脂去除水中的离子,通常采用阴离子、阳离子混床。
(5)紫外灭菌设备紫外灭菌设备利用紫外线杀灭水中的微生物,确保水质的安全。
化工医药厂房纯化水系统设计摘要:随着我国医药科技的快速发展,纯化水的生产也有了进一步的进展,为了满足人们对医疗卫生条件的要求,我们应该加强对纯化水系统的研究。
文章通过运用两级ro+edi对纯化水进行制备,对医药化工厂房纯化水系统的设计进行了阐述,供同行参考。
关键词:纯化水系统医药一、纯化水系统概述纯化水的制备方法目前除蒸馏法外,常结合离子交换、电渗析、电法去离子,反渗透、超过滤、微孔滤膜过滤等方法,大多数属于膜分离法。
蒸馏是世界各国公认的制备注射用水的首选方法,而反渗透法(ro)是利用渗透这种物理现象借助于反渗透膜来制备的.其工艺操作简单,除盐效率高,也比较经济,不仅适用于纯化水的制备.而且还可制造出具有注射用水质量的水。
现在纯化水的最高制备工艺技术是电法去离子技术(edi),尤其是将edi与ro等结合在一起的膜分离技术更是2l世纪最有前景的制药用水生产技术之一。
我们要努力将这种方法投入到现实的使用中。
改革开放以来,我们所面临的机遇与挑战给制药用水系统理论的研究及应用技术的采用创造良好的条件,我国制药用水系统及标准得到了长足的发展。
随着定义的更趋科学及标准的进一步提升,人们正在把目光从最终检验转移到水系统的设计、运行、监控、验证等各个方面,将终端把关转换为过程控制,力争稳定地生产出符合质量要求的制药用水,以满足药品生产的特殊要求。
二、纯化水系统的设计由符合一定要求的饮用水到制备出符合药典标准的纯化水,整个制备流程可由预处理、初级除盐系统和深度除盐系统三部分组成。
1.预处理预处理是制备纯化水的第一步,其主要功能是在保证不同进水情况下,去除水中微生物及化学物质,使两级ro系统获得一个稳定、合格的的进水水质,其主要包括:多介质过滤器、活性炭过滤器和软化器。
1.1多介质过滤器多介质一般由石英砂或者无烟煤为滤料,二者按粒径大小,由上到下填充于过滤器内,截留水中的大颗粒、悬浮物、胶体及泥沙等,使sdi值<5,出水浊度<1,保证达到后续进水要求。
纯化水系统设计方案1. 引言纯化水系统是用于提供高纯度水的设备,广泛应用于实验室、制药、电子厂等领域。
设计一个稳定可靠的纯化水系统对于确保实验和生产过程的顺利进行非常重要。
本文将介绍一个纯化水系统的设计方案,包括系统组成、工作原理、技术要点等内容。
2. 系统组成纯化水系统主要由以下组件组成:2.1 原水进水系统原水进水系统用于将自来水、地下水等水源引入到纯化水系统中。
该系统包括水箱、水泵、过滤器等组件。
水泵负责将原水输送到纯化水系统中,过滤器用于去除大颗粒的杂质。
2.2 预处理系统预处理系统用于去除水中的悬浮固体、杂质和有机物,包括活性炭过滤器、颗粒状活性炭过滤器、阻垢剂投加装置等组件。
这些组件的作用是保护后续的纯化处理设备,避免其受到污染或损坏。
2.3 离子交换系统离子交换系统采用离子交换树脂,用于去除水中的离子,包括阳离子交换柱和阴离子交换柱。
阳离子交换柱用于去除水中的阴离子,阴离子交换柱用于去除水中的阳离子。
交换后的水得到纯化。
2.4 纯化处理系统纯化处理系统主要包括电除盐器和超滤器。
电除盐器利用电渗析原理去除水中的离子,使水得到更高纯度。
超滤器则用于去除水中的微生物、胶体和大分子有机物。
2.5 微生物控制系统微生物控制系统用于控制水中微生物的繁殖,主要包括紫外线消毒器和臭氧发生器。
紫外线消毒器通过照射杀灭水中的细菌和病毒,臭氧发生器则通过产生臭氧来消除异味和有机物。
3. 工作原理纯化水系统的工作流程如下:1.原水通过原水进水系统进入预处理系统,经过过滤器去除大颗粒杂质。
2.经过预处理后的水进入离子交换系统,在阳离子交换柱和阴离子交换柱中,离子交换树脂去除水中的离子。
3.经过离子交换后的水进入纯化处理系统,先经过超滤器去除微生物、胶体等杂质,然后通过电除盐器去除水中的离子。
4.经过纯化处理的水进入最后的微生物控制系统,通过紫外线消毒器和臭氧发生器,杀灭水中的微生物并消除异味和有机物。
5.经过处理后的水可以实现高纯度水的要求,用于实验、生产等领域。
制药用水系统设计原理及操作方法制药用水是一种特殊的水质要求,它必须满足一定的物理、化学、微生物学指标,才能用于制药过程中,以保证药品质量和生产安全。
制药用水系统是制药企业的重要组成部分,它的设计原理和操作方法对制药质量和安全至关重要。
制药用水系统的设计原理主要包括净水原理、水处理工艺、配水系统和保养维修四方面。
净水原理是指通过不同的物理、化学、生物处理方法,将自来水中的杂质和微生物去除,达到制药用水所需的纯度和洁净度。
典型的净水原理包括反渗透、离子交换、超滤和臭氧处理等。
这些方法可根据药品特点和水质情况进行选择和组合。
水处理工艺是指将净水原理应用于水处理的技术方案。
这里主要包括杂质去除、微生物控制、pH调节、消毒灭菌等步骤。
在水处理过程中,还需要严格控制投加药剂量、处理温度和流量等参数,以保证质量和效率。
配水系统是指制药用水的输送、储存和使用系统。
这里需要控制水质,保证输送管道、水质储存容器和配水器具的卫生和洁净。
这些措施不仅要满足纯水要求,还需要满足需要加热或冷却的水温和流量等。
保养维修是指制药用水系统的日常管理和维护。
这包括定期检查水质和设备状况,故障排除和防范,以及维护水质、装置和设施的卫生和洁净。
在保养维修过程中,需要建立完善的管理体系,制定明确的维护计划和操作规程。
制药用水系统的操作方法主要包括水质监控、操作流程控制和设备维护等。
在操作过程中,需要实时监测水质指标,控制操作流程,识别问题和故障,并及时修复和维护设备和设施。
同时,需要严格按照规定的操作规程和流程执行,保证每个操作环节的安全和质量。
总之,制药用水系统的设计原理和操作方法是保证制药质量和安全的关键环节。
企业需要根据自身的需要和要求,合理选择适合的净水原理和配套工艺,建立独立的配水系统和完善的维护管理体系,以保证水质稳定可靠,符合制药行业的要求。
药品生产工艺用水系统的设计文章从制备纯化水的设备配置出发,药品生产工艺所用纯化水的水质质量、投资、运行及节能环保等几方面进行分析比较,提出了制药行业较高性价比的纯化水制备系统的配置方案,以供同行参考。
标签:药品生产;工艺用水系统;设计前言:在制药行业的硬件中,药品生产工艺用水是极其关键的系统环节,因此其应当建立确认的文件和记录,并能以文件和记录证明达到设计确认、安装确认、运行确认及性能确认的预定目标。
1纯化水制备系统的优化配置方案配置:超滤预处理+一级反渗透装置+电除盐装置。
1.1超滤预处理装置1.1.1一般流程饮用水→饮用水储罐→饮用水泵→叠片过滤器→超滤装置→超滤水储罐→加药装置。
其过程主要由叠片过滤器和超滤装置组成。
1.1.2叠片过滤器叠片式过滤器的作用主要是过滤原水中50μm以上的大颗粒杂质,以防止砂等颗粒进入超滤膜组件,划伤超滤膜表面和造成超滤中空纤维毛细管堵塞。
1.1.3超滤装置超滤装置利用聚偏氟乙烯、聚丙烯腈、聚醚砜、聚砜等材料制成的中空纤维超滤膜的细微孔径来过滤、去除和分离水中有效直径为0.001~0.1μm的颗粒和分子量在1000~500000范围内的杂质,可减少反渗透膜的胶体污染和微生物污染,提高反渗透的进水水质,使反渗透膜的单位面积渗透通量增大,从而提高反渗透装置的回收率。
1.1.4其他装置在超滤装置后设有加药装置,主要投放碳酸氢钠、氢氧化钠和阻垢剂,用于去除余氯等微量氧化物质、CO2,并防止结垢。
1.1.5清洗和再生叠片式过滤器内单个过滤单元进、出水压差上升到一定值时,利用超濾后的出水清洗1min。
超滤膜一般3个月清洗1次,每次清洗60min,3年更换1次。
1.2反渗透装置1.2.1一般流程超滤出水→一级高压泵→一级反渗透装置→反渗透水储罐。
其主要由一级反渗透装置组成。
1.2.2一级反渗透纯水与含盐水有一张只能透过水的半透膜隔开,水会流入含盐水侧,含盐水侧高于纯水侧平衡时的压差即为渗透压,如在含盐侧施加大于渗透压的压力使含盐水中水流入纯水侧,即为反渗透。
制药水系统设计设备工艺原理背景介绍制药水系统是药品生产中必不可少的一个环节,要想生产高质量的药品,需要对制药水系统的设计、设备和工艺原理进行深入研究。
本文就从这几个方面来介绍制药水系统的相关知识。
制药水系统的设计制药水系统设计的目的是满足药品生产的要求,包括质量、效率、安全等方面。
制药水系统主要包括水处理、储存、输送和清洗四个部分,下面来分别介绍:水处理部分水是制药水系统中最基础的原料,质量直接影响到后续工艺的顺利进行和产品质量的稳定。
因此,制药企业需要对生产用水进行处理,消除其中的微生物、有机物、无机盐等杂质,同时还需要进行去离子、超纯化、浓缩等一系列工艺操作,以提供高质量的生产用水。
储存部分储存是制药水系统中不可或缺的一个部分,对于质量的稳定以及生产的安全有非常重要的影响。
储存中需要考虑多种因素,如防止污染、保证水质、减少蒸发损失等等。
输送部分负责将处理好的水输送到下一步工艺中进行加工。
在输送过程中需要注意水的流量、质量、温度等参数的控制,以充分满足后续工艺的要求。
清洗部分因为制药水系统需要频繁地进行清洗以保证安全、卫生和高质量的生产,因此清洗部分也是制药系统中非常重要的一个环节。
在清洗中需要注意使用清洗剂的浓度、水温、清洗时间等因素,以达到彻底清洗的目的。
制药水系统设备制药水系统设备指实现制药水系统各项操作的具体设备和系统,它们通常需要考虑到符合药品生产和行业标准,能够保证药品生产的质量及效率。
下面简要介绍几类常用设备。
纯化水设备纯化水设备主要包括反渗透设备、EDI设备、超纯水设备等。
这些设备功能不同,但都是为实现最终的高纯水设备而设计的。
主要作用是去除水中的离子、有机物等,确保生产用水的纯度和质量。
过滤器设备过滤器设备主要用于过滤、净化水中的杂质。
多使用于水处理的前段,可以有效去除水中的悬浮物、胶体等杂质。
输送设备主要包括管道、泵、阀门等,用于输送处理好的水。
不同的输送设备选用后相应的管道功耗和阻力也不同,因此要对比不同方案,选择最优设计。
医用纯水系统设计及操作管理医疗水通常指制药过程中使用各种水质标准,针对制药行业的水作为原材料和明确的乳液,国家药典标准药品质量的水和使用明确定义和需求。
但由于环境、设备和艺术,诸如水容易滋生微生物,并帮助他们成长,所以微生物指标的质量是最重要的标准,贵阳医院水处理在医学纯水系统设计、安装、验证、操作和维护的需要采取各种措施抑制经济增长。
医用纯水系统合理和科学的设计可以更好的防止微生物污染,从系统的设计原则,从源头控制污染是解决问题的关键。
以下就是水处理医疗纯水系统设计的七个原则。
1.材质方面所有不锈钢管道管件的材质报告都可以追溯反源,材质的品质和抛光度都有保障。
2.流速在制药纯化水系统中,流速有三个不同的流速概念;分别是末端回水流速、官网设计流速、系统报警流速。
三种不用的流速有着不同的设计需求,纯化水系统设计时需要区别对待。
在系统末端流速设计时,最佳流速设计为1.2—1.5m/s;管网流速设计(指泵出口处官网设计流速)在1.5—3.0m/s为最佳;医用纯水系统的报警流速设计,研究表明0.6m/s是抑制微生物滋生的最低流速。
3.温度制药用水存温度以及循环流动的回水温度也保持在80℃以上,可防止注射用水系统内生物膜的形成和发展。
4.死角医用纯水系统管路设计应遵循“3D”原则,避免死角和盲管的出现。
5.卫生管道和连接任何接口均为卫生级卡箍连接方式,杜绝丝牙连接。
6.表面光滑度在药典规定用水系统中,为了减少细菌附着力和加强清洁能力,不锈钢管道系统内部的表面光滑度需要达到(Ra 0.4~1.0)的光滑表面。
7.消毒/灭菌措施医用纯水系统一般采用总线消毒,可以有效控制微生物污染水平的纯净水系统50 cfu /毫升,并可以控制纯化水系统的内毒素水平五个欧盟/毫升。
其医用纯水系统设计原则,除了在设计方面改善也是非常重要的日常运营管理,优秀的科学医学纯水系统操作管理还可以有效地防止微生物污染的形成。
简述制药纯化水设备设计优势及解决方案一、制药纯化水设备系统介绍该制药纯化水设备基于最新的GMP认证要求,采用整体不锈钢设计和双级反渗透纯化水处理技术,有效去除水中的各种盐类和杂质。
采出水达到净化水标准,技术先进,水质稳定,操作简单,运行成本低,绿色环保,易于维护。
可用于医疗器械、制药用水、血液净化、大输液生化产品水、医用无菌水、口服液水等。
生产的水可进一步加工成无菌蒸馏水。
二、制药纯化水设备系统采用以下工艺流程原水→ 原水增压泵→ 石英砂过滤器→ 活性炭过滤器→ 软水器(仍然适用于水硬度高的地区)→ 安全过滤器→ 一级反渗透→ 纯水箱→ 纯水增压泵→ 二级反渗透→ 无菌纯化水箱→ 臭氧消毒器→ 纯化水增压泵→ 臭氧消毒器→ 紫外线消毒器→ 微孔过滤器→ 纯化水消耗点三、制药纯化水设备系统解决方案及设计优势1、管道系统1.1.纯化水系统的连接部分最好采用焊接,然后夹紧,禁止使用螺纹连接。
1.2.整个系统采用单面和双面焊接的成型工艺,具有不同级别的水质,包括手动焊接和自动焊接。
当与纯化水接触时,使用自动焊接,焊接后进行钝化处理。
提供内部镜子照片,并附上检查报告。
1.3.与纯化水接触的管道符合GMP 3D的要求。
橡胶垫为PTPE,隔膜阀水平安装为45度。
循环管道的安装坡度为0.5,最低点设置为排放点。
1.4.与产品水接触的过滤器、压力表、电导率探头、RO膜壳、紫外线等均采用卫生级卡箍连接。
1.5.在每个压力段设置采样点,便于检测水质。
2、RO膜壳、精密过滤器技术要求2.1.整个结构由无缝304不锈钢管制成。
2.3.管道的设置可以完全排出里面的浓缩水。
2.2.任何接口均使用卫生级卡箍连接。
2.4.纯化水区段管线为自动焊接工艺,采用德国焊机和GF专用切管工具施实。
2.5.精密过滤器是可拆卸的并且内部具有清洁结构。
3、功能性说明3.1.采用日本三菱P LC+触摸屏全自动控制方式,控制线路均为24V安全电压。
浅谈药用纯化水制备系统的设计
摘要:制备出符合GMP标准的药用纯化水是制药生产的首要保障,两级RO+EDI的制水方式满足了现今生产用水需要。
本文对二级RO+EDI的系统设计进行了简要介绍。
关键词:药用纯化水制备设计
药用纯化水对医药生产影响深远,由于它在药物生产中不仅作为清洗剂还同时作为原料参与生产,所以纯化水水质的优劣直接影响药物产品的质量。
因此,制备出符合制药用水要求的纯化水是生产合格药品的首要保证,药用纯化水系统的设计又是所有一切的先决条件。
因此,本文对纯化水制备系统设计进行简要分析。
1 纯化水制备系统概述
随着科学技术的长足发展,纯化水制备系统也有了很大改观,其处理技术先后经历了蒸馏法、离子交换技术、膜分离、反渗透(RO)和电法去离子(EDI),其设备也由单台制备机组发展到一整套完整的模块化制备流程。
由于世界范围内对药物安全问题关注度日益提高,各国药典对制药用水的质量标准和用途都有了明确的定义和要求,为与国际接轨,严谨制水系统,现今纯化水制备过程多采用当今主流的二级RO+EDI的制备工艺来满足生产用水要求,力保产出符合各国GMP需求的水质。
2 纯化水制备系统的设计
由符合一定要求的饮用水到制备出符合药典标准的纯化水,整个制备流程可由预处理、初级除盐系统和深度除盐系统三部分组成。
2.1 预处理
预处理是制备纯化水的第一步,其主要功能是在保证不同进水情况下,去除水中微生物及化学物质,使两级RO系统获得一个稳定、合格的的进水水质,其主要包括:多介质过滤器、活性炭过滤器和软化器。
2.1.1 多介质过滤器
多介质一般由石英砂或者无烟煤为滤料,二者按粒径大小,由上到下填充于过滤器内,截留水中的大颗粒、悬浮物、胶体及泥沙等,使SDI 值<5,出水浊度<1,保证达到后续进水要求。
随着设备的持续运转,压差将不断升高,以3~10倍流速的清洁原水反冲洗可以去除滤料沉积物,降低过滤器压力,滤料得以再生。
2.1.2 活性炭过滤器
过滤介质通常由颗粒活性炭如椰壳炭、无烟煤等构成的固定层,不仅可以有效吸附水中的部分有机物(吸附率约为`60%左右),同时由于大量平均孔径在2mm~5nm的微孔和粒隙,使活性炭吸附表面积能达到500~2000m2/g,对水中的残余余氯离子有很强的脱氯能力,其次还能有效除去水中臭味、色度,以及残留的浊度。
综合处理后,应保证
出水余氯<0.1ppm,SDI≤4。
由于活性炭内部表面积大,流速缓慢,微生物易于滋生。
为保证活性炭的吸附活性,应定期采用巴氏消毒控制微生物污染。
2.1.3 软化器
原水中的硬度主要由Ca2+、Mg2+组成,如在RO膜表面结垢,将堵塞反渗透膜,影响水的通量。
因此,为防止钙镁盐的沉积结垢,目前软化器使用钠型阳离子树脂,利用树脂中可交换的Na+将水中的Ca2+、Mg2+交换出来,使原水软化成软化水,降低水的硬度,提高后续反渗透膜的使用寿命。
生产中,软化器通常用一备一,利用PLC自动控制,完成树脂的转换和吸盐再生。
2.2 初级除盐系统
两级RO系统作为初级除盐,是整个制备过程的主要脱盐设备,它主要包括膜保安过滤器、高压泵、NaOH加药箱,两级RO装置。
2.2.1 膜保安过滤器
预处理阶段的小颗粒滤料由于泄漏的原因可能会随管路进入反渗透单元,从而阻塞反渗透膜,膜保安过滤器作为原水进入除盐系统的最后一层过滤屏障,能滤除原水中粒径≥5μm的微粒,为后续除盐系统提供可靠水源。
因此,膜保安过滤也称精滤。
2.2.2 高压泵
反渗透需在较高的压力作用下才能使原水从浓溶液侧向稀溶液侧流动,高压泵就为该系统提供了这样的稳定动力源,保证了二级RO 系统持续不断的稳定运行。
由于高压泵的持续运转,宜配备高低压保护及过热保护,防止泵的损坏。
2.2.3 NaOH加药箱
溶解于水中的二氧化碳会使纯化水电导率变大,对于两级RO系统,NaOH加药箱放置于一级反渗透之后,用于调节一级出水pH值,使水中CO2气体分子在碱性环境中转换成CO32-离子溶解于水中,增加二级脱盐效果。
2.2.4 两级RO装置
两级反渗透过程是一种物理除盐过程,它利用半透膜的选择透过性,使原水中的水分子在压力作用下由浓溶液侧向稀溶液侧流动,经汇聚后进入后续EDI单元;而原水中的微生物、内毒素、胶体和各种盐类被截留下来,随浓水排放,系统脱盐率可达98%以上,排放的浓水收集后续可用做冷却塔的补水或用于厂区绿化。
2.3 深度除盐系统
EDI是两级RO之后的深度除盐,它是将电渗析和离子交换相结合的处理技术,利用阴、阳离子的选择性透过膜,在外加电场的作用下,完成阴、阳离子的定向迁移,达到深度除盐目的,制备出的纯化水电阻
率可达15MΩ·cm以上。
在整个除盐过程中,系统借助持续电解出的H+和OH-进行树脂再生,而不借助酸、碱试剂,保证了制备过程的连续、稳定、无污染。
3 结语
综上,两级RO+EDI的纯化水制备方式为药物生产提供了符合GMP标准的纯化水,并且整个制备过程节能、环保,符合当今药用纯化水制备的发展趋势,为药物生产提供了更好的保障。