第3天(数轴)暑期预习每日一练(人教版七年级上)(解析版)
- 格式:docx
- 大小:64.10 KB
- 文档页数:6
第四天数轴考试频度:★★★★☆难易程度:★★☆☆☆如图.数轴表示正确的是.(填序号)【参考答案】(1)(2)(3)【试题解析】对于数轴上的原点位置、单位长度应灵活处理.第(1)个图中.虽个然原点偏左.但这条直线符合数轴的定义;第(2)个图中.用“1个格”表示12单位长度;第(3)个图中.用“1个格”表示150个单位长度;第(4)个图中.单位长度不一致.在数轴上.“1个格”可以表示1个单位长度.也可以表示5个单位长度.100个单位长度.0.2个单位长度……但需要注意的是.在同一数轴上.单位长度必须一致.【重点难点】1.数轴的定义:在数学中.可以用一条直线上的点表示数.这条直线叫做数轴.2.数轴的三要素:原点、正方向、单位长度.3.数轴的画法:(1)画一条水平的直线.(2)在直线上适当选取一点为原点.(3)通常规定从原点向右为正方向.用箭头表示出来(箭头标在画出部分的最右边).(4)根据需要.选取适当的长度为单位长度.从原点向右每隔一个单位长度取一个点.依次为1.2.3.….从原点向左.用类似的方法依次标出–1.–2.–3.….如图所示:1.关于数轴.下列说法最准确的是A .一条直线B .有原点、正方向的一条直线C .有单位长度的一条直线D .规定了原点、正方向、单位长度的直线 2.数轴上表示–2.2的点在 A .–2与–1之间B .–3与–2之间C .2与3之间D .1与2之间 3.若数轴上的点A .B 所表示的数分别为1.2.则A .B 的中点C 所表示的数为A .0B .0.5C .112D .3 4.在数轴上.表示数–3.2.6.35-.0.143.223-.–1的点中.在原点左边的点有__________个.5.在数轴上.表示+2的点在原点的__________侧.距原点__________个单位长度;表示-7的点在原点的__________侧.距原点__________个单位长度;两点之间的距离为__________个单位长度.6.a .b .c 在数轴上的位置如图.(1)用>.<号填空:a __________0.b __________0.c __________0.a __________–1.b __________c .(2)把a .b .c .–1.0用<号连接起来.1.【参考答案】D【解题思路】选项A 、B 、C 说法均不完整.D 的说法最准确.包含了数轴的三要素:原点、正方向和单位长度.故选D .2.【参考答案】B【解题思路】–2.2表示在原点的左侧.并且到原点的距离是2.2个单位长度的点.因而在–3与–2之间.故选B .3.【参考答案】C 【解题思路】∵数轴上的点A .B 所表示的数分别为1.2.∴A .B 的中点C 所表示的数为122+=112. 故选C .4.【参考答案】4【解题思路】数轴上.表示负数的点在原点的左边;表示正数的点在原点的右边.本题中的负数有–3.35-.223-.–1.共4个.所以在原点左边的点有4个.故答案为:4.5.【参考答案】右;2;左;7;9【解题思路】根据数轴的定义和点在数轴上的表示得:+2表示在原点的右侧.距原点2个单位长度.-7表示在原点的左侧.距原点7个单位长度.两点之间的距离为2-(-7)=9个单位长度.故答案为:右;2;左;7;9.6.【解题思路】(1)a <0.b <0.c >0.a >–1.b <c ;(2)b <–1<a <0<c .。
2021-2022学年度人教版七年级数学上册练习三1.2.2 数轴-数轴上的动点问题1.阅读下列材料:我们知道|x|的几何意义:在数轴上,数x对应的点与原点的距离,即|x|=|x-0|.也就是说,|x|表示在数轴上数x与数0对应的点之间的距离.这个结论可以推广为|x1-x2|表示在数轴上数x1与数x2对应的点之间的距离.已知|x-1|=2,求x的值.解:在数轴上,与1对应的点的距离为2的点表示的数为3和-1,即x的值为3或-1.依照阅读材料的解法,求式子中x的值:|x+2|=4.2.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如下.(1)根据题意,填写下列表格;说明理由;(3) A、B两点能否相距9个单位长度,如果能,求相距9个单位长度的时刻;如不能,请说明理由.3.根据给出的数轴,回答下列问题:(1)写出点A表示的数的相反数和点B表示的数的绝对值;(2)将点A先向右移动1.5个单位长度,再向左移动5个单位长度,得到点C,在数轴上表示出点C,并写出点C表示的数.4.如图,已知点O是原点,点A在数轴上,点A表示的数为-6,点B在原点的右侧,且OB=43 OA,(1)点B对应的数是_________,在数轴上标出点B。
(2)已知点P、点Q是数轴上的两个动点,点P从点A出发,以1个单位/秒的速度向右运动,同时点Q从点B出发,以3个单位/秒的速度向左运动;①用含t的式子分别表示P、Q两点表示的数:P是__________;Q是____________;②若点P和点Q经过t秒后在数轴上的点D处相遇,求出t的值和点D所表示的数;③求经过几秒,点P与点Q分别到原点的距离相等?5.对数轴上的点P进行如下操作:先把点P表示的数乘以3,再把所得数对应的点向左平移1个单位,得到点P的对应点P'.比如,点P表示3,3乘以3得9,表示9的点向左平移1个单位为8,因此点P的对应点P'表示的数为8.⑴点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段'A B',其中点A,B的对应点分别为'A,'B.如图,若点A表示的数是1,则点'A表示的数是__________;若点'B表示的数是4-,则点B表示的数是__________.⑵若数轴上的点M经过上述操作后,位置不变,则点M表示的数是__________.6.我国上海的“磁悬浮”列车,依靠“磁悬浮”技术使列车悬浮在轨道上行驶,从而减小阻力,因此列车时速可超过400千米,现在一个轨道长180cm的“磁悬浮”轨道架上做钢球碰撞实验,如图所示,轨道架上安置了三个大小、质量完全相同的钢球A、B、C,左右各有一个钢制挡板D和E,其中C到左挡板D的距离为40cm,B到右挡板E的距离为50cm,A、B两球相距30cm.(1)在数轴上,A球在坐标原点,B球代表的数为30,找出C球及右挡板E代表的数,填在图中的括号内;(2)碰撞实验中(钢球大小、相撞时间不计),钢球的运动都是匀速的,当一钢球以一速度撞向另一静止的钢球时,这个钢球停留在被撞钢球的位置,被撞钢球则以同样的速度向前运动;钢球撞到左右挡板则以相同的速度反向运动,现A球以每秒10cm的速度向右匀速运动,问多少秒后B球第二次撞向右挡板E ?(3)在前面的条件下,当3个钢球运动的路程和为6米时,哪个球正在运动?此时A、B、C三个钢球在数轴上代表的数分别是、、?7.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示7和1的两点之间的距离是_______.②数轴上表示﹣2和﹣9的两点之间的距离是________.(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于_______.(3)应用:①若数轴上表示数a的点位于﹣5与4之间,则|a+5|+|a﹣4|的值=________.②若a表示数轴上的一个有理数,且|a-3|=| a+1|,则a =______.③若a表示数轴上的一个有理数,且|a+5|+|a﹣4|>9,则有理数a的取值范围是______. (4)拓展:已知,如图A、B分别为数轴上的两点,A点对应的数为-10,B点对应的数为70.若当电子蚂蚁P从A点出发,以3个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以2单位/秒的速度向左运动,求经过多长时间两只电子蚂蚁在数轴上相距35个单位长度,并写出此时点P所表示的数.8.已知数轴上,一动点Q从原点O出发,沿数轴以每秒2个单位长度的速度来回移动,其移动的方式是:先向右移动1个单位,再向左移动2个单位长度,又向右移动3个单位长度,再向左移动4个单位长度…,(1)求出3秒钟时,动点Q所在的位置;(2)若5秒时,动点Q激活所在位置P点,P点立即以0.1个单位长度/秒的速度沿数轴运动,试求点P激活后第一次与继续运动的点Q相遇时所在的位置;(3)如图,在数轴上的A1、A2、A3、A4,这4个点所表示的数分别为a1、a2、a3、a4,若A1A2=A2A3=A3A4,且a1=20,|a1﹣a4|=12,|a1﹣x|=a2+a4①求x值;②在(2)的条件下,若P点激活后仍以0.1个单位长度/秒向右运动,当Q点到达数x的点处,则P点所对应的数是.9.点A、B在数轴上表示的数如图所示,动点P从点A出发,沿数轴向右以每秒1个单位长度的速度向点B运动到点B停止运动;同时,动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动设点P运动的时间为t秒,P、Q两点的距离为d (d≥0)个单位长度.(1)当t=1时,d=;(2)当P、Q两点中有一个点恰好运动到线段AB的中点时,求d的值;(3)当点P运动到线段AB的3等分点时,直接写出d的值;(4)当d=5时,直接写出t的值.10.如图,已知数轴上点A表示的数为﹣7,点B表示的数为5,点C到点A,点B的距离相等,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动的时间为t(t>0)秒.(1)点C表示的数是;(2)求当t等于多少秒时,点P到达点B处;(3)点P表示的数是(用含有t的代数式表示);(4)求当t等于多少秒时,PC之间的距离为2个单位长度.11.在数轴上,点A,B,C表示的数分别是-6,10,12.点A以每秒3个单位长度的速度向右运动,同时线段BC以每秒1个单位长度的速度也向右运动.(1)运动前线段AB的长度为________;(2)当运动时间为多长时,点A 和线段BC 的中点重合?(3)试探究是否存在运动到某一时刻,线段AB=12AC ?若存在,求出所有符合条件的点A 表示的数;若不存在,请说明理由.12.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值;(2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值; (4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).13.(阅读理解)点A 、B 、C 为数轴上三点,如果点C 在A 、B 之间且到A 的距离是点C 到B 的距离3倍,那么我们就称点C 是A ,B}的奇点.例如,如图1,点A 表示的数为﹣3,点B 表示的数为1.表示0的点C 到点A 的距离是3,到点B 的距离是1,那么点C 是A ,B}的奇点;又如,表示﹣2的点D 到点A 的距离是1,到点B 的距离是3,那么点D 就不是A ,B}的奇点,但点D 是B ,A}的奇点. (知识运用)如图2,M 、N 为数轴上两点,点M 所表示的数为﹣3,点N 所表示的数为5.(1)数所表示的点是M,N}的奇点;数所表示的点是N,M}的奇点;(2)如图3,A、B为数轴上两点,点A所表示的数为﹣50,点B所表示的数为30.现有一动点P从点B出发向左运动,当P点运动到数轴上的什么位置时,P、A和B中恰有一个点为其余两点的奇点?14.已知数轴上点A在原点的左边,到原点的距离为4,点B在原点右边,从点A走到点B,要经过16个单位长度.(1)写出A、B两点所对应的数;(2)若点C也是数轴上的点,点C到点B的距离是点C到原点距离的3倍,求C对应的数;(3)已知点M从点A开始向右出发,速度每秒1个单位长度,同时N从B点开始向右出发,速度每秒2个单位长度,设线段NO的中点为P,线段PO AM-的值是否会发生变化?若会,请说明理由,若不会,请求出求其值.15.点,A B为数轴上的两点,点A对应的数为a,点B对应的数为3,38a=-.(1)求,A B两点之间的距离;(2)若点C为数轴上的一个动点,其对应的数记为x,试猜想当x满足什么条件时,点C到A 点的距离与点C到B点的距离之和最小.请写出你的猜想,并说明理由:(3)若,P Q为数轴上的两个动点(Q点在P点右侧),,P Q两点之间的距离为,m Q,当点P到A 点的距离与点Q到B点的距离之和有最小值4时,m的值为_________.参考答案1.x的值为2或-6.解析:解:在数轴上,与-2对应的点的距离为4的点表示的数为2和-6,即x的值为2或-6.2.(1)A:-9 ; B:-8;(2)能在第3秒时相遇,此时在数轴上7的位置;(3)A、B 能在第2或4秒时相距9个单位.解析:试题分析:(1)由表格得到点B的运动速度为(27-17)÷(7-5)=5个单位长度,根据匀速运动则可得0秒时点B的位置,同理可得A点的位置;(2)根据(1)中的运算可知是相向而行,用A、B两点0秒时的距离除以两个点运动的速度和即可得相遇时刻,从而可得位置;(3)分相遇前和相遇后两种情况进行计算即可得.试题解析:(1)[(19-(-1))÷(5-0)=4,19-4×7=-9,(27-17)÷(7-5)=5,17-5×5=-8,A:-9 ; B:-8;(2)[19-(-8)]÷(4+5)=2793÷=(秒),19347-⨯=答:能在第3秒时相遇,此时在数轴上7的位置;(3)第一种:A、B相遇前相距9个单位)(秒),-÷+=(279)(452第二种:A、B相遇后相距9个单位)(秒),+÷+=(279)(454答:A、B能在第2或4秒时相距9个单位.点睛:本题主要是利用数轴来解决行程问题,能从表格中得到信息,并判断出A、B两点的运动是解题的关键.3.(1)点A表示的数的相反数是﹣2.5,点B表示的数的绝对值是2;(2)点C表示的数是﹣1.解析:试题分析:(1)根据数轴可以得到点A表示的数和点B表示的数,从而可以得到点A 表示的数的相反数和点B表示的数的绝对值;(2)根据点A先向右移动1.5个单位长度,再向左移动5个单位长度,得到点C,可以得到点C表示的数,从而可以在数轴上表示出点C,并得到点C表示的数.解:(1)∵由数轴可得,点A表示的数是2.5,点B表示的数是﹣2,∴点A表示的数的相反数是﹣2.5,点B表示的数的绝对值是2;(2)∵点A先向右移动1.5个单位长度,再向左移动5个单位长度,得到点C,点A表示的数是2.5,∴点C表示的数是:2.5+1.5﹣5=﹣1,∴点C表示的数是﹣1,在数轴上表示出点C,如下图所示,点C表示的数是﹣1.考点:数轴.4.(1)8;数轴表示见解析;(2)①-6+t; 8-3t;②t=72;点D所表示的数是-2.5;③72秒或1秒.解析:(1)求出OB的长度即可;(2)①表示出P的路程和Q的路程,根据左减右加即可表示出P、 Q的数;②令P、 Q的数相等即可列出方程,解方程即可;③表示出OP、OQ的长度,根据相等列出绝对值方程,解出即可.详解:(1)∵点A表示的数为-6∴OA=6∵OB=43OA∴OB=8∵点B在原点的右侧∴点B 对应的数是8,数轴表示如图所示(2)①∵P 的路程为t ,Q 的路程为3t ∴P 是-6+t ;Q 是8-3t②∵点P 和点Q 经过t 秒后在数轴上的点D 处相遇 ∴-6+t=8-3t ∴t=72∴点D 所表示的数=-6+72=-2.5 ③∵P 是-6+t ;Q 是8-3t ∴OP=6t -+,OQ=83t -∵点P 与点Q 分别到原点的距离相等 ∴6t -+=83t -∴-6+t=8-3t 或-6+t=3t-8 ∴t=72或t=1.∴经过72秒或1秒,点P 与点Q 分别到原点的距离相等. 点睛:本题考查了数轴上两点间的距离公式,熟知距离公式和点平移的规律是解题关键.5.(1)2 (2)−1 (3)12解析:(1)根据操作步骤可得出A'表示的数,设点B 表示的数为x ,则3x-1=-4,得出点B 表示的数;(2)设点M 表示的数为y ,则3y-1=y ,解出即可得出M 表示的数. 详解:(1)点A′表示的数是:1×3−1=2;设点B 表示的数为x ,则3x −1=−4,解得:x=−1,若点B′表示的数是:−4,则点B表示的数是−1;(2)设点M表示的数为y,则3y−1=y,解得:y=12,即点M表示的数是:12.点睛:本题考查数轴上表示的有理数,解题的关键是掌握数轴上表示的有理数.6.(1) C代表−60,E代表+80;(2) 44(秒).(3) A. B. C三个钢球在数轴上代表的数分别是−60,30,−80.解析:(1)首先可以计算出AC的距离AC=180-40-30-50=60,再根据它在负半轴上说出它表示的数是60.AE=80,再根据它在正半轴上,则表示的数是80.(2)根据题意,显然此时总路程是180×2+80,再根据时间=路程÷速度进行计算.(3)根据总路程分析得到运动的球是C球,此时正向前又运动了20厘米.则A球在C球的位置,B球在A球的位置.详解:(1)依题意得:AC=180−40−30−50=60,AE=80,又∵C在负半轴,∴C代表−60,E代表+80.(1) 依题意得T=(180×2+80)÷10=44(秒).(3)当3个钢球运动的路程和为6米时,C球正在运动,此时A. B. C三个钢球在数轴上代表的数分别是−60,30,−80.点睛:本题考查数轴的性质,涉及求数轴上两点的距离,关键是掌握两点距离公式,体现数形结合的思想.7.(1)①6;②7;(2)|m﹣n|;(3)①9;②1;③a<-5或a>4;(4)经过9秒或23秒时,两只蚂蚁相距35个单位长度,P点表示的数为17或59.解析:(1)①根据绝对值的定义解答即可;②根据绝对值的定义解答即可;(2)根据绝对值的定义解答即可;(3)①根据两点间的距离公式解答即可;②根据两点间的距离公式解答即可;③根据两点间的距离公式解答即可;(4)分情况讨论,①相遇前,两只蚂蚁相距35个单位长度;②相遇后,两只蚂蚁相距35个单位长度;根据距离÷速度=时间即可得答案.详解:(1)①71-=6,②2(9)---=7,故答案为:①6;②7(2)数轴上表示数m和数n的两点之间的距离等于m n-,故答案为:m n-(3)①∵数a位于﹣5与4之间,|a+5|+|a﹣4|表示a到-5与a到4的距离的和,∴|a+5|+|a﹣4|=4-(-5)=9,故答案为:9②∵|a-3|=|a+1|表示a到3的距离与a到-1的距离相等,∴a=3(1)2--=2,故答案为:2③∵|a+5|+|a﹣4|表示a到-5的距离与a到4的距离的和,且|a+5|+|a﹣4|>9,∴a>4,或a<-5.故答案为:a>4,或a<-5.(4)分两种情况:①相遇前,两只蚂蚁相距35个单位长度,[70-(-10)-35]÷(3+2)=9(秒),-10+3×9=17,②相遇后,两只蚂蚁相距35个单位长度,[70-(-10)+35]÷(3+2)=23(秒),-10+3×23=59,∴经过9秒或23秒时,两只蚂蚁相距35个单位长度,P点表示的数为17或59.点睛:本题考查绝对值的定义及数轴上点的运动,熟知数轴上两点间的距离的定义是解题关键.8.(1)3秒动点Q所在的位置为2;(2)﹣4919或﹣2221;(3)① x=﹣36或76,②128.9或571.3解析:(1)先找到0.5秒时的位置,根据每秒2个单位和移动方向,即可得到3秒时的位置. (2)先找到5秒时Q点所在的位置,然后分为①P点向左运动,②P点向右运动进行讨论得出答案;(3)①由数轴可得,a4与a1相距3格,则每格长度为4,然后即可得a1、a2、a3、a4表示的数,最后解绝对值方程即可;②计算出Q点到达数x处走过的路程,除以速度得到运动时间,再求P点的运动路程即可得到P点对应的数.详解:解:(1)∵数轴上,一动点Q从原点O出发,沿数轴以每秒2个单位长度的速度来回移动,其移动的方式是:先向右移动1个单位,再向左移动2个单位长度,又向右移动3个单位长度,再向右移动4个单位长度…,∴0.5秒动点Q所在的位置为1,1.5秒动点Q所在的位置为﹣1,3秒动点Q所在的位置为2;(2)∵3秒动点Q所在的位置为2,∴5秒时,动点Q所在位置为﹣2,①若P点向左运动,动点Q先向右运动5个单位长度到数轴3的位置,再向左运动6个单位长度,Q在数轴3位置向左运动时,PQ=5+52×0.1=214,设点P激活后第一次与继续运动的点Q相遇时用的时间为t,则(2﹣0.1)t=214,解得:t=105 38,∴点P激活后第一次与继续运动的点Q相遇时所在的位置为:﹣(2+52×0.1+10538×0.1)=﹣4919;②若P点向右运动,动点Q先向右运动5个单位长度到数轴3的位置,再向左运动6个单位长度,Q在数轴3位置向左运动时,PQ=5﹣52×0.1=194,设点P激活后第一次与继续运动的点Q相遇时用的时间为t,则(2+0.1)t=194,解得:t=9542,∴点P激活后第一次与继续运动的点Q相遇时所在的位置为:﹣(2﹣52×0.1﹣9542×0.1)=﹣2221;(3)①∵|a1﹣a4|=12,∴a4﹣a1=12,∴a4=12+a1=12+20=32,∵A1A2=A2A3=A3A4,∴a2=24,a3=28,∵|a1﹣x|=a2+a4,∴|a1﹣x|=24+32=56,∴x=﹣36或76②若5秒时,动点Q激活所在位置P点,当Q点到达数﹣36的点处时所走的路程为:5+6+7+…+71+72=(172)722+⨯﹣(14)42+⨯=2628﹣10=2618(单位长度),∴用的时间为:26182=1309(s),此时P点所对应的数是:1309×0.1﹣2=128.9;当Q点到达数76的点处时所走的路程为:5+6+7+…+150+151=(1151)1512+⨯﹣(14)42+⨯=11476﹣10=11466(单位长度),∴用的时间为:114662=5733(s),此时P点所对应的数是:5733×0.1﹣2=571.3;故答案为:128.9或571.3点睛:本题考查数轴上的动点问题,关键是正确理解Q点的运动方式,找到Q点运动路程是解决本题的关键.9.(1)d=3;(2)d的值为3或32;(3)所求d的值为0或4;(4)所求t的值为13或5.解析:(1)当t=1时,求出AP=1,BQ=2,根据PQ=AB﹣AP﹣BQ即可求解;(2)分①P点恰好运动到线段AB的中点;②Q点恰好运动到线段AB的中点两种情况进行讨论;(3)当点P运动到线段AB的3等分点时,分①AP=13AB;②AP=23AB两种情况进行讨论;(4)当d=5时,分①P与Q相遇之前;②P与Q相遇之后两种情况进行讨论.详解:(1)当t=1时,AP=1,BQ=2,∵AB=4﹣(﹣2)=6,∴PQ=AB﹣AP﹣BQ=3,即d=3.故答案为3;(2)线段AB的中点表示的数是:-2+42=1.①如果P点恰好运动到线段AB的中点,那么AP=12AB=3,t=31=3,BQ=2×3=6,即Q运动到A点,此时d=PQ=PA=3;②如果Q点恰好运动到线段AB的中点,那么BQ=12AB=3,t=32,AP=1×32=32,则d=PQ=AB﹣AP﹣BQ=6﹣32﹣3=32.故d的值为3或32;(3)当点P运动到线段AB的3等分点时,分两种情况:①如果AP=13AB=2,那么t=21=2,此时BQ=2×2=4,P、Q重合于原点,则d=PQ=0;②如果AP=23AB=4,那么t=41=4,∵动点Q从点B出发,沿数轴向左以每秒2个单位长度的速度向点A运动,到点A停止运动,∴此时BQ=6,即Q运动到A点,∴d=PQ=AP=4.故所求d的值为0或4;(4)当d=5时,分两种情况:①P与Q相遇之前,∵PQ=AB﹣AP﹣BQ,∴6﹣t﹣2t=5,解得t=13;②P与Q相遇之后,∵P点运动到线段AB的中点时,t=3,此时Q运动到A点,停止运动,∴d=AP=t=5.故所求t的值为13或5.点睛:本题考查了一元一次方程的应用,数轴,两点间的距离,理解题意,分清动点P与动点Q的运动方向、运动速度与运动时间,从而正确进行分类讨论是解题的关键.10.(1) -1;(2)6;(3)﹣7+2t;(4)t=2 或t=4.解析:(1)根据线段中点坐标公式可求点C表示的数;(2)根据时间=路程÷速度,可求t的值;(3)根据两点之间的距离公式可求点P表示的数;(4)分P在点C左边和点C右边两种情况讨论求解.详解:(1)(﹣7+5)÷2=﹣2÷2=﹣1.故点C表示的数是﹣1.故答案为﹣1;(2)()572--=6;(3)﹣7+2t;故答案为﹣7+2t;(4)因为PC之间的距离为2个单位长度,所以点P运动到﹣3或1,即﹣7+2t=﹣3或﹣7+2t=1,即t =2 或t =4. 点睛:此题考查了数轴,一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.注意分类思想的应用.11.(1)16;(2)172;(3)15或19. 解析:(1)根据两点间的距离公式即可求解;(2)先根据中点坐标公式求得B 、C 的中点,再设当运动时间为x 秒长时,点A 和线段BC 的中点重合,根据路程差的等量关系列出方程求解即可;(3)设运动时间为y 秒,分两种情况:①当点A 在点B 的左侧时,②当点A 在线段AC 上时,列出方程求解即可. 详解:(1)运动前线段AB 的长度为10﹣(﹣6)=16;(2)设当运动时间为x 秒长时,点A 和线段BC 的中点重合,依题意有 ﹣6+3t=11+t , 解得t=故当运动时间为秒长时,点A 和线段BC 的中点重合(3)存在,理由如下:设运动时间为y 秒,①当点A 在点B 的左侧时,依题意有(10+y)﹣(3y ﹣6)=2,解得y=7, ﹣6+3×7=15;②当点A 在线段BC 上时,依题意有(3y-6)-(10+y )= 解得y=综上所述,符合条件的点A 表示的数为15或19. 点睛:本题考查了实数与数轴的知识点,解题的关键是熟练的掌握实数与数轴的相关知识点.12.(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 解析:(1)根据平方数和绝对值的非负性计算即可; (2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可; (4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可; 详解:(1)∵()()22141268+++=----a b c d , ∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =; (2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +, ∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+, ∵2BD AC =,∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=;①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-;∴A,C相遇时对应的数为:23-,223-,10-.点睛:本题主要考查了数轴的动点问题,准确分析计算是解题的关键.13.(1)3,-1;(2)-30,10、2303-、-290.解析:(1)根据定义发现:奇点表示的数到 M,N}中,前面的点M是到后面的数N的距离的3倍,从而得出结论;根据定义发现:奇点表示的数到N,M}中,前面的点N是到后面的数M 的距离的3倍,从而得出结论;(2)点A到点B的距离为6,由奇点的定义可知:分两种情况列式:①PB=3PA;②PA=3PB;③AB=3PA;④PA=3AB;可以得出结论.详解:(1)5-(-3)=8,8÷(3+1)=2,5-2=3,-3+2=-1;故表示数3的点是M,N}的奇点;表示数-1的点是N,M}的奇点;故答案为3;-1;(2)由题意得:AB=30-(-50)=80,80÷(3+1)=20,①当PA=3PB,则点P表示的数为:30-20=10;②当PB=3PA,则点P表示的数为:-50+20=-30;③当AB=3PA,则18033PA AB==,所以点P表示的数为:802305033--=-;④当PA=3AB时,则PA=240,所以P表示的数为:50240290--=-;故点P运动到数轴上表示-30、10、2303-、-290的点的位置时,P,A,B中恰有一个点为其余两点的奇点.点睛:本题考查数轴及数轴上两点的距离、动点问题,解题的关键是认真理解新定义:奇点表示的数是与前面的点A的距离是到后面的数B的距离的3倍,列式可得结果.14.(1)-4,12;(2)-6或3;(3)不变化,6解析:(1)直接根据实数与数轴上各点的对应关系求出A,B表示的数即可;(2)设点C表示的数为c,再根据点C到点B的距离是点C到原点的距离的3倍列出关于c的方程,求出c的值即可;(3)设运动时间为t秒,则AM=t,NO=12+2t,再根据点P是NO的中点用t表示出PO的长,再求出PO-AM的值即可.详解:(1)∵数轴上点A在原点左边,到原点的距离为4个单位长度,点B在原点的右边,从点A走到点B,要经过16个单位长度,∴点A表示-4,点B表示12;(2)设点C表示的数为c,∵点C到点B的距离是点C到原点的距离的3倍,∴|c-12|=3|c|,∴c-12=3c或c-12=-3c,解得c=-6或c=3;(3)不变化.设运动时间为t秒,则AM=t,NO=12+2t,∵点P是NO的中点,∴PO=6+t,∴PO-AM=6+t-t=6,∴PO-AM的值没有变化.点睛:本题考查的是数轴,熟知数轴上各点与全体实数是一一对应关系是解答此题的关键.15.(1) 2.3,5=-==;(2)当23a b AB+有最小值5,理由见解析;(3)见解析x-≤≤时, AC BC解析:(1)根据38a=-,可得出A对应的数为-2 ,再根据数轴上两点间的距离即可得出答案;(2)当点C位于A,B之间或A,B点上时,点C到A点的距离与点C到B点的距离之和最小,即A,B点间的距离;(3)通过分析当点,P Q位于A,B之间时,符合点P到A点的距离与点Q到B点的距离之和有最小值4,此时541m=-=.详解:解:(1)∵38a=-∴ 2.3,5=-==;a b AB(2)当23-≤≤时, AC BC+有最小值.x理由如下:x<时,252+=+>;AC BC AC ABx-≤≤时,523+==;AC BC ABx>时,253+=+>;AC BC BC AB综上, 23-≤≤时,AC BC+有最小值5;x(3)通过分析当点,P Q位于A,B之间时,符合点P到A点的距离与点Q到B点的距离之和有最小值4,此时541m=-=.点睛:本题考查的知识点是数轴,读懂题意,理解动点的运动轨迹是解此题的关键.。
1.2.2数轴【课前预习练】-2021-2022学年七年级数学上册(人教版)一、选择题1、如图所示的图形为四位同学画的数轴,其中正确的是()A.B.C.D.2、下列数轴画法正确的是().A.B.C.D.-表示在数轴上,其中一个数被一只美丽的蝴蝶遮住了,则被这3、如图,若将四个数1.3,0.5,2.4,0.26只蝴蝶遮住的点所表示的数有可能是()-A.1.3 B.0.5 C.2.4 D.0.264、点A、B、C、D在数轴上的位置如图所示,表示的数是负数的点是()A.A B.B C.C D.D5、如图,在数轴上点P表示的数可能是()A.-2.3 B.-1.7 C.-0.3 D.0.36、把数轴上表示4的点移动2个单位后表示的数为()A.3 B.2 C.3或5 D.2或67、已知点A在数轴上表示的数是3-,则距离A点3个单位的点所表示的数是()A.0 B.1或0 C.0或6-D.0或±18、3-在数轴上位置的描述,正确的是()A.在点4-的左边B.在点2-和原点之间C.由点1向左平移4个单位得到D.和原点的距离是3-9、如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是( ).A.0 B.1 C.2 D.310、点A在数轴上距原点5个单位长度,将A点先向左移动2个单位长度,再向右移动6个单位长度,此时A点所表示的数是()A.-1 B.9 C.-1或9 D.1或9二、填空题11、规定了原点、和的直线叫数轴;在数轴上表示的两个数,右边的数总比左边的数.12、小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数共有_____个.13、点A、B在同一数轴上,若点A表示的数是﹣2,且AB=4,则点B表示的数是___.14、在数轴上与﹣3的距离等于4的点表示的数是___________________.15、如图,在数轴上有5个点A,B,C,D,E,每两个相邻点之间的距离如图所示,如果点C表示的数是﹣1,则点E表示的数是()A.﹣5B.0C.1D.216、四个数在数轴上的对应点分别为A ,B ,C ,D ,这四个数中最小的数的对应点是______.三、解答题17、已知下列有理数:-4,2,-3.5,0,-2,312,-0.5 (1)在数轴上标出这些有理数表示的点;(2)设表示-0.5的点为A ,那么与A 点的距离相差4个单位长度的点所表示的数是多少?18、在数轴上表示出下列各数:0, 2.5-,142,4-,6+,123,并用“<”将它们排序.19、有理数:13,4,﹣1,5,0,312,﹣212,1(1)将上面各数在数轴上表示出来,并把这些数用“<”连接.(2)请将以上各数填到相应集合的圈内:20、操作探究:已知在纸面上有一数轴(如图所示).操作一:折叠纸面,使1表示的点与1-表示的点重合,则3-表示的点与__________表示的点重合; 操作二:(2)折叠纸面,使1-表示的点与3表示的点重合,5表示的点与数__________表示的点重合.1.2.2数轴【课前预习练】-2021-2022学年七年级数学上册(人教版)(含答案)一、选择题1、如图所示的图形为四位同学画的数轴,其中正确的是()A.B.C.D.【答案】D【分析】根据数轴的概念判断所给出的四个数轴哪个正确【详解】解:A、没有原点,故此选项错误;B、单位长度不统一,故此选项错误;C、没有正方向,故此选项错误;D、符合数轴的概念,故此选项正确.故选:D.2、下列数轴画法正确的是().A.B.C.D.【答案】B【分析】利用数轴定义进行判断即可.【详解】解:A、没有正方向和原点位置,则画法错误,故此选项不合题意;B、数轴画法正确,故此选项符合题意;C、没有正方向,则画法错误,故此选项不合题意;D、数轴上的数标注错误,则画法错误,故此选项不合题意;故选:B.-表示在数轴上,其中一个数被一只美丽的蝴蝶遮住了,则被这3、如图,若将四个数1.3,0.5,2.4,0.26只蝴蝶遮住的点所表示的数有可能是()-A.1.3 B.0.5 C.2.4 D.0.26【答案】A【分析】根据数轴上点的位置得出它表示的数.【详解】解:∵被遮住的数在1和2之间,∴可能是1.3.故选:A.4、点A、B、C、D在数轴上的位置如图所示,表示的数是负数的点是()A.A B.B C.C D.D【答案】A【分析】根据正数在原点的右边,负数在原点的左边解题即可.【详解】解:根据题意,点A在原点的左边,比0小,是负数;点B在原点,等于0;点C、D在原点的右边,比0大,是正数,故选:A.5、如图,在数轴上点P表示的数可能是()A.-2.3 B.-1.7 C.-0.3 D.0.3【答案】B【分析】根据图示的内容求出P表示的数的值,即可解答.【详解】由题意可知P在-1到-2之间,只有-1.7符合题意,所以P=−1.7,故选B.6、把数轴上表示4的点移动2个单位后表示的数为()A.3 B.2 C.3或5 D.2或6【答案】D【分析】根据数轴上的点左移即在原数上减,右移即在原数上加计算即可.【详解】解:两种情况,即:4+2=6或4﹣2=2,故选:D.7、已知点A在数轴上表示的数是3-,则距离A点3个单位的点所表示的数是()A.0 B.1或0 C.0或6-D.0或±1【答案】C【分析】此题借助数轴用数形结合的方法求解.由于点A为-3,则距离A点3个单位的点应有两个点,分别位于A点两侧,通过数轴上“右加左减”的规律,即可求得平移后点A表示的数.-,则距离A点3个单位的点,【详解】A在数轴上表示的数是3-3-3=-6,-3+3=0,故选C.8、3-在数轴上位置的描述,正确的是()A.在点4-的左边B.在点2-和原点之间C.由点1向左平移4个单位得到D.和原点的距离是3-【答案】C【分析】比较-3和选项中的数的大小,依据右边的数总是大于左边的数即可判断.【详解】解:A、-3>-4,则-3在-4的右边,选项错误;B、-3∠-2,则-3在-2的左边,选项错误;C、点1向左平移4个单位得到-3,选项正确;D、-3和原点的距离是3,选项错误.故选:C.9、如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是( ).A.0 B.1 C.2 D.3【答案】D【分析】直接利用数轴结合,A B点位置进而得出答案.【详解】解:∵数轴的单位长度为1,如果点A表示的数是-1,∴点B表示的数是:3故选D.10、点A在数轴上距原点5个单位长度,将A点先向左移动2个单位长度,再向右移动6个单位长度,此时A点所表示的数是()A.-1 B.9 C.-1或9 D.1或9【答案】C【分析】分点A在原点左边和右边两种情况,根据向左移动减,向右移动加列式计算即可得解.【详解】解:∵点A在数轴上距原点5个单位长度,∴点A表示的数是−5或5,∵A点先向左移动2个单位长度,再向右移动6个单位长度,∴−5−2+6=−1或5−2+6=9,∴此时点A所表示的数是−1或9.故选C.二、填空题11、规定了原点、和的直线叫数轴;在数轴上表示的两个数,右边的数总比左边的数.【解答】解:规定了原点单位长度和正方向的直线叫数轴;在数轴上表示的两个数,右边的数总比左边的数大,故答案为:单位长度,正方向,大.12、小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数共有_____个.【答案】3【解析】设被污染的部分为a ,由题意得13a -<<,在数轴上这一部分的整数有:0,1,2,∴被污染的部分共有3个整数,故答案为:3.13、点A 、B 在同一数轴上,若点A 表示的数是﹣2,且AB =4,则点B 表示的数是___. 【答案】2或﹣6【解析】解:点B 表示的数是﹣2+4=2或﹣2﹣4=﹣6. 故答案为:2或﹣6.14、在数轴上与﹣3的距离等于4的点表示的数是___________________. 【答案】7-或1【分析】根据数轴上两点间的距离即可求解.【详解】解:在数轴上与﹣3的距离等于4的点表示的数有两个, 在数轴上分别位于﹣3的左右两侧, 它们是7-或1, 故答案为:7-或1.15、如图,在数轴上有5个点A ,B ,C ,D ,E ,每两个相邻点之间的距离如图所示,如果点C 表示的数是﹣1,则点E 表示的数是( )A.﹣5B.0C.1D.2【分析】先确定原点,根据D和E的距离可得结论.【解答】解:如果点C表示的数是﹣1,则点D表示原点,所以E表示的数是2,故选:D.16、四个数在数轴上的对应点分别为A,B,C,D,这四个数中最小的数的对应点是______.【答案】A【分析】根据数轴的定义即可得.【详解】由数轴的定义得:数轴上的点表示的数,左边的总小于右边的,则这四个数中最小的数的对应点是A,故答案为:A.三、解答题17、已知下列有理数:-4,2,-3.5,0,-2,312,-0.5(1)在数轴上标出这些有理数表示的点;(2)设表示-0.5的点为A,那么与A点的距离相差4个单位长度的点所表示的数是多少?【答案】(1)答案见解析;(2)3.5或−4.5.【分析】(1)根据所给有理数画出数轴标出各数据即可.(2)直接利用数轴结合与A点的距离相差4个单位长度,即可得出答案.【详解】(1)如图所示:;(2)设表示−0.5的点为A ,则与A 点的距离相差4个单位长度的点所表示的数是:−0.5+4=3.5或−0.5−4=−4.5.18、在数轴上表示出下列各数:0, 2.5-,142,4-,6+,123,并用“<”将它们排序.【答案】数轴见解析,114 2.5024632-<-<<<<+ 【分析】先把各数在数轴上表示出来,再从左到右用“<”连接起来即可. 【详解】解:如图所示:从左到右用“<”连接为:114 2.5024632-<-<<<<+.19、有理数:13,4,﹣1,5,0,312,﹣212,1(1)将上面各数在数轴上表示出来,并把这些数用“<”连接. (2)请将以上各数填到相应集合的圈内:【答案】(1)﹣212<﹣1<0<13<1<312<4<5;(2)答案见解析. 【分析】根据表示数的点在数轴上的位置即可得出所对应数的大小关系和正负关系.【详解】解:(1)如图,数轴上从左到右的顺序即是这些数从小到大的顺序,因此它们的大小排列如下:﹣212<﹣1<0<13<1<312<4<5.(2)根据原点右边的数是正数,原点及其左边的数是非正数,即可将数字填入得:20、操作探究:已知在纸面上有一数轴(如图所示).操作一:折叠纸面,使1表示的点与1-表示的点重合,则3-表示的点与__________表示的点重合; 操作二:(2)折叠纸面,使1-表示的点与3表示的点重合,5表示的点与数__________表示的点重合.【答案】(1)3;(2)-3【分析】(1)根据折叠的性质,1与-1重合,可得折痕点为原点,即可求得-3表示的点与3表示的点重合;(2)根据折叠的性质,-1表示的点与3表示的点重合,则折痕点为1,因此可得5表示的点与数-3表示的点重合.【详解】解:(1)∵1与-1重合,∴折痕点为原点,∴-3表示的点与3表示的点重合.故答案为:3;(2)∵由表示-1的点与表示3的点重合,∴折痕点是表示1的点,∴5表示的点与数-3表示的点重合.故答案为:-3.。
暑假预习人教版数学七年级上册第一章《有理数》知识梳理1.有理数:凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0a+b=0a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 10.有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11.有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,. 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an 或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.同步练习。
七上数学每日一练:数轴及有理数在数轴上的表示练习题及答案_2020年综合题版答案解析答案解析答案解析答案解析2020年七上数学:数与式_有理数_数轴及有理数在数轴上的表示练习题1.(2020鄞州.七上期末) 如图,点A ,B 在数轴上表示的数分别为-2与+6,动点P 从点A 出发,沿A→B 以每秒2个单位长度的速度向终点B 运动,同时,动点Q 从点B出发,沿B→A 以每秒4个单位长度的速度向终点A 运动,当一个点到达时,另一点也随之停止运动。
(1) 当Q 为AB 的中点时,求线段PQ 的长;(2) 当Q 为PB 的中点时,求点P 表示的数。
考点: 数轴及有理数在数轴上的表示;一元一次方程的实际应用-行程问题;线段的中点;2.(2020通榆.七上期末) 如图,在数轴上有A ,B 两点,所表示的数分别为-10,-4,点A 以每秒5个单位长度的速度向右运动,同时点B 以每秒3个单位长度的速度也向右运动,设运动时间为t 秒,解答下列问题:(1) 运动前线段AB 的长为; 运动1秒后线段AB 的长为;(2) 运动t 秒后,点A ,点B 运动的距离分别为和。
(3) 求t 为何值时,点A 和点B 恰好重合;(4) 在上述运动过程中,是否存在某一时刻t 使得线段AB 的长为4,若存在,求出t 的值:若不存在,请说明理由。
考点: 数轴及有理数在数轴上的表示;两点间的距离;3.(2020大安.七上期末) 阅读下面材料:点A 、B 在数轴上分别表示有理数a 、b , A 、B 两点之间的距离表示为AB , 在数轴上A 、B 两点之间的距离AB =|a ﹣b |.回答下列问题:(1) 数轴上表示﹣3和1两点之间的距离是,数轴上表示﹣2和3的两点之间的距离是;(2) 数轴上表示x 和﹣1的两点之间的距离表示为;(3) 若x 表示一个有理数,则|x ﹣2|+|x +3|有最小值吗?若有,请求出最小值;若没有,请说明理由.考点: 数轴及有理数在数轴上的表示;绝对值及有理数的绝对值;4.(2020扬州.七上期末) 如图,点O 为原点,A 、B 为数轴上两点,点A 表示的数a ,点B 表示的数是b ,且.(1) a=,b=;(2)在数轴上是否存在一点P ,使,若有,请求出点P 表示的数,若没有,请说明理由?(3) 点M 从点A 出发,沿 的路径运动,在路径 的速度是每秒2个单位,在路径 上的速度是每秒4个单位,同时点N 从点B 出发以每秒3个单位长向终点A 运动,当点M 第一次回到点A 时整个运动停止.几秒后MN=1?考点: 数轴及有理数在数轴上的表示;绝对值的非负性;偶次幂的非负性;一元一次方程的其他应用;5.答案解析(2020扬州.七上期末) 数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F是AE的中点.(1) 如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB =,AC =,BE =;(2) 当线段CE 运动到点A 在C 、E 之间时,①设AF 长为,用含 的代数式表示BE 的值(结果需化简);②求BE 与CF 的数量关系;(3) 当点C 运动到数轴上表示数﹣14的位置时,动点P 从点E 出发,以每秒3个单位长度的速度向右运动,抵达B 后,立即以原来一半速度返回,同时点Q 从A 出发,以每秒2个单位长度的速度向终点B 运动,设它们运动的时间为t 秒(t≤8),求t 为何值时,P 、Q 两点间的距离为1个单位长度.考点: 数轴及有理数在数轴上的表示;一元一次方程的其他应用;2020年七上数学:数与式_有理数_数轴及有理数在数轴上的表示练习题答案1.答案:2.答案:3.答案:4.答案:5.答案:。
2021年人教版七年级数学上册暑假预习练习(Word 版含解答):第一章 有理数一、选择题(共10题;共30分)1.黄山是安徽省著名的旅游景点之一,其冬季气温一般在零下3℃到零上4℃之间,若零上4℃记作+4℃,那么零下3℃记作( )A. +4℃B. -4℃C. +3℃D. -3℃2.下列算式中,计算结果是负数的是 ( )A. 3×(−2)B. |−1|C. (−2)+7D. (−1)23.有理数2,1,-1,0中,最小的数是( )A. 2B. 1C. 0D. -14.4的绝对值为( )A. ±4B. 4C. ﹣4D. 25.计算 4−(−1) 的结果等于( )A. 4B. −4C. 3D. 56.若 n +2 的绝对值与 m −1 的绝对值均为0,则 m −n 的倒数为( )A. 1B. 12C. 13D. −17.十三五,我国经济社会发展取得新的历史性成就.经济运行总体平稳,经济结构持续优化,国内生产总值从不到70万亿元增加到超过100万亿元.创新型国家建设成果丰硕,在载人航天、探月工程、深海工程、超级计算、量子信息等领域取得一批重大科技成果.脱贫攻坚成果举世瞩目,5575万农村贫困人口实现脱贫.用科学计数法表示100万亿为( )A. 1×106B. 1×108C. 1×1012D. 1×10148.若 a 2=25 , |b|=3 ,则 a +b 所有可能的值为( )A. 8B. 8或2C. 8或 −2D. ±8 或 ±29.中国快递越来越“科技范儿”,分拣机器人、大数据AI 调度等智能装备系统让分拣效率大大提升.某分拣仓库采用智能分拣系统计划平均每天分拣20万件包裹,但实际每天分拣量与计划相比有出入,超过计划量记为正,未达计划量记为负,下面是该仓库10月份第一周分拣包裹的情况(单位:万件):+5,﹣1,﹣3,+6,﹣1,+4,﹣8,该仓库本周实际分拣包裹一共是( )A. 138万件B. 140万件C. 141万件D. 142万件10.数轴上表示整数的点称为整点.某数轴的单位长度是1 cm ,若在这个数轴上随意画出一条长为2020 cm 的线段 AB ,则线段 AB 盖住的整点个数是( )A. 2018或2019B. 2019或2020C. 2020或2021D. 2021或2022 二、填空题(共8题;共24分)11.数轴上表示-2的点与原点的距离是________.12.某超市出售的一种品牌大米袋上,标有质量为 (20±0.15)kg 的字样,从超市中任意拿出该品牌大米两袋,它们的质量最多相差________ kg .13.已知|x|=3,|y|=5,且xy <0,则x ﹣y 的值等于________.14.若a ,b 互为相反数,c ,d 互为倒数,e 的绝对值等于3,则2e ﹣3cd +(a +b )2=________.15.计算: −22+(−2)2−(−1)3= ________.16.若 ▲ 表示最小的正整数, ■ 表示最大的负整数, • 表示绝对值最小的有理数,则 (▲+•)×■= ________.17.如图,某点从数轴上的原点O 出发,第1次向右移动1个单位长度至A 1点,第2次从A 1点向左移动2个单位长度至A 2点,第3次从A 2点向右移动3个单位长度至A 3点,第4次从A 3点向左移动4个单位长度至A 4点,…,按此规律,第2020次移动至A 2020点,则点A 2020到原点O 的距离是________个单位长度.18.已知a ,b ,c 都是有理数,且满足 |a|a +|b|b +|c|c =1,那么6﹣ |abc| =________.三、解答题(共6题;共46分)19.(1)计算:3+ (−14)−|−4|−(−3.5) ; (2)(﹣2)3﹣ |−12+(1−23)÷(−12)| ;20.月球距地球大约为3.84×105千米,一艘宇宙飞船的速度约为8×102千米/时,如果该宇宙飞船从地球飞到月球,那么需要飞行多少天?21.在数轴上表示下列各数: 4,−1.5,−312,0,2.5,−|−5| ,并将它们按从小到大的顺序排列.22.某公交车每月的支出费用为5000元,每月的乘车人数x与每月的利润(利润=收入费用﹣支出费用)y(元)的变化关系如表所示(票价是固定不变的):(2)观察表中数据可知,每月的乘车人数达到________人时,该公交车才不会亏损;(3)当每月乘车人数为4000时,请你估计每月的利润为多少元.23.某自行车厂一周内计划平均每天生产200辆自行车,由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正,减产记为负):________辆.(2)根据上表记录的数据可知,该厂本周实际生产自行车________辆.(3)该厂实行每日计件工资制,每生产一辆自行车可得60元,若超额完成任务,则超过部分每辆另外奖励15元,若完不成每天的计划量,则少生产一辆扣20元,那么该厂工人这一周的工资总额是多少元?(4)若该厂实行每周计件工资制,每生产一辆自行车可得60元,若超额完成周计划工作量,则超过部分每辆另外奖励15元,若完不成每周的计划量,则少生产一辆扣20元,那么该厂工人这一周的工资总额是多少元?24.如图,数轴上点A在原点O的左侧,点B在原点的右侧,AO=5,BO=7。
数轴学校:___________某某:___________班级:___________一.选择题(共16小题)1.如图所示,数轴上A、B、C三点表示的数分别为a、b、c,下列说法正确的是()A.a>0 B.b>c C.b>a D.a>c2.如图,a、b两个数在数轴上的位置如图所示,则下列各式正确的是()A.a+b<0 B.ab<0 C.b﹣a<0 D.3.若数轴上表示﹣2和3的两点分别是点A和B,则点A和点B之间的距离是()A.﹣5 B.﹣1 C.1 D.54.数轴上A,B两点所表示的数分别是3,﹣2,则表示AB之间距离的算式是()A.3﹣(﹣2)B.3+(﹣2)C.﹣2﹣3 D.﹣2﹣(﹣3)5.已知有理数a、b、c在数轴上对应的点如图所示,则下列结论正确的是()A.c+b>a+b B.cb<ab C.﹣c+a>﹣b+a D.ac>ab6.如图,在数轴上点M表示的数可能是()A.1.5 B.﹣1.57.一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是()A.0 B.2 C.l D.﹣18.数轴上的点A到原点的距离是4,则点A表示的数为()A.4 B.﹣4 C.4或﹣4 D.2或﹣29.在数轴上与数﹣2所对应的点相距4个单位长度的点表示的数是()A.2 B.4 C.﹣6 D.﹣6或210.有理数a,b在数轴上的位置如图所示,则下列结论正确的是()A.a﹣b>0 B.a+b>0 C.ab>0 D.>011.如图,在数轴上有六个点,且AB=BC=CD=DE=EF,则这条数轴的原点在()A.在点A,B之间B.在点B,C之间C.在点C,D之间D.在点D,E之间12.有理数a,b在数轴的位置如图,则下面关系中正确的个数为()①a﹣b>0 ②ab<0 ③>④a2>b2.A.1 B.2 C.3 D.413.有理数a,b在数轴上的位置如图,则下列各式的符号为正的是()A.a+b B.a﹣b C.ab D.﹣a414.有理数a,b在数轴上的位置如图所示,则下列各式成立的是()A.b﹣a>0 B.﹣b>0 C.a>﹣b D.﹣ab<015.下列数轴画正确的是()A.B. C.D.16.把数轴上表示数2的点向右移动3个单位长度后,表示的数为()A.1 B.﹣1 C.5 D.﹣5二.填空题(共10小题)17.如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为.18.数轴上的两个数﹣3与a,并且a>﹣3,它们之间的距离可以表示为.19.如图所示,把半径为2个长度单位的圆形纸片放在数轴上,圆形纸片上的A点对应原点,将圆形纸片沿着数轴无滑动的逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是.20.如图所示,直径为单位1的硬币从1处沿着数轴无滑动的逆时针滚动一周到达A点,则A 点表示的数是.21.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“1cm”和“9cm”分别对应数轴上的﹣3和x,那么x的值为.22.在数轴上,表示﹣3的点A与表示﹣8的点B相距个单位长度.23.已知,线段AB在数轴上且它的长度为5,点A在数轴上对应的数为﹣2,则点B在数轴上对应的数为.24.在数轴上与表示数﹣1的点的距离为3个单位长度的点所表示的数是.25.小红在写作业时,不慎将一滴墨水滴在数轴上,根据图中的数据,请确定墨迹遮盖住的整数共有个.26.如图,数轴上相邻刻度之间的距离是,若BC=,A点在数轴上对应的数值是﹣,则B 点在数轴上对应的数值是.三.解答题(共3小题)27.已知小华家、小夏家、小红家及学校在同一条大路旁,一天,他们放学后从学校出发,先向南行1000m到达小华家A处,继续向北行3000m到达小红B家处,然后向南行6000m到小夏家C 处.(1)以学校以原点,以向南方向为正方向,用1个单位长度表示1000m,请你在数轴上表示出小华家、小夏家、小红家的位置;(2)小红家在学校什么位置?离学校有多远?28.解决问题:一辆货车从超市出发,向东走了3千米到达小彬家,继续走2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家,小彬家,小颖家的位置.(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?(4)货车每千米耗油0.2升,这次共耗油多少升?29.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数A: B:;(2)观察数轴,与点A的距离为4的点表示的数是:;(3)若将数轴折叠,使得A点与﹣3表示的点重合,则B点与数表示的点重合.参考答案与试题解析一.选择题(共16小题)1.解:由数轴上A,B,C对应的位置可得:a<0,故选项A错误;b<c,故选项B错误;b>a,故选项C正确;a<c,故选项D错误;故选:C.2.解:∵a在原点的左侧,b再原点的右侧,∴a<0,b>0,∴ab<0,∴B正确;∵a到原点的距离小于b到原点的距离,∴|a|<|b|,∴a+b>0,b﹣a>0,∴A、C错误;∵a、b异号,∴<0,∴D错误.故选:B.3.解:因为3﹣(﹣2)=5故选:D.4.解:∵数轴上A、B两点所表示的数分别是3、﹣2,∴A、B之间距离为3﹣(﹣2).故选:A.5.解:由数轴上各点的位置判断:c<b<0<a,|b|<|a|<|c|,A.c+b<0,a+b>0,所以c+b<a+b,故该选项错误;B.c,b同号,所以cb>0,同理,ab<0,所以cb<ab,故该选项错误;C.﹣c>0,﹣b>0,a>0,因为|c|>|b|,所以﹣c>﹣b,不等式两边同时加a,不等号方向不变,故该选项正确;D.c<b,所以不等式两边同时乘以正数a,不等号的方向不变,故该选项错误;故选:C.6.解;点M表示的数大于﹣3且小于﹣2,>﹣2,故A错误;>﹣2,故B错误;C、﹣3<<﹣2,故C正确;>﹣2,故D错误.故选:C.7.解:根据题意得:﹣2+7﹣4=1,则此时这个点表示的数是1,故选:C.8.解:在数轴上,4和﹣4到原点的距离为4.∴点A所表示的数是4和﹣4.故选:C.9.解:分为两种情况:①当点在表示﹣2的点的左边时,数为﹣2﹣4=﹣6;②当点在表示﹣2的点的右边时,数为﹣2+4=2;故选:D.10.解:如图所示:﹣1<a<0,1<b<2,则a﹣b<0,故选项A错误,a+b>0,故选项B正确;ab<0,故选项C错误;<0,故选项D错误;故选:B.11.解:∵|11﹣(﹣5)|=16,AB=BC=CD=DE=EF,∴AB=BC=CD=DE=EF==3.2,∴这条数轴的原点在B与C之间.故选:B.12.解:由图可知:b<0<a,|b|>|a|,∴a﹣b>0,ab<0,>,∵|b|>|a|,∴a2<b2,所以只有①、②、③成立.故选:C.13.解:由图可知,a>0,b<0,且|a|<|b|,A、a+b<0,故本选项错误;B、a﹣b>0,故本选项正确;C、ab<0,故本选项错误;D、﹣a4<0,故本选项错误.故选:B.14.解:A、由大数减小数得正,得b﹣a>0,故A正确;B、b>0,﹣b<0,故B错误;C、由|b|<|a|,得a<﹣b,故C错误;D、由ab异号得,ab<0,﹣ab>0,故D错误;故选:A.15.解:A没有单位长度,故A错误;B、没有正方向,故B错误;C、原点、单位长度、正方向都符合条件,故C正确;D、原点左边的单位表示错误,应是从左到右由小到大的顺序,故D错误;故选:C.16.解:把数轴上表示数2的点向右移动3个单位长度后,即2+3=5,表示的数为5,故选:C.二.填空题(共10小题)17.解:设点C所表示的数为x,∵数轴上A、B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,∴AB=4﹣(﹣1),AC=﹣1﹣x,根据题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6.故答案为:﹣6.18.解:∵数轴上的两个数﹣3与a,且a>﹣3,∴两数之间的距离为|a﹣(﹣3)|=|a+3|=a+3.故答案为:a+3.19.解:该圆的周长为2π×2=4π,所以A′与A的距离为4π,由于圆形是逆时针滚动,所以A′在A的左侧,所以A′表示的数为﹣4π,故答案为﹣4π,20.解:由题意可得:圆的周长为π,∵直径为单位1的硬币从1处沿着数轴无滑动的逆时针滚动一周到达A点,∴A点表示的数是:1﹣π.故答案为:1﹣π.21.解:x的值为9﹣4=5.故答案为:5.22.解:∵﹣3﹣(﹣8)=﹣3+8=5,∴在数轴上,表示﹣3的点A与表示﹣8的点B相距5个单位长度,故答案为:5.23.解:由线段AB在数轴上且它的长度为5,点A在数轴上对应的数为﹣2,得﹣2+5=3,或﹣2﹣5=﹣2+(﹣5)=﹣7.故答案为:3或﹣7.24.解:因为点与﹣1的距离为3,所以这两个点对应的数分别是﹣1﹣3和﹣1+3,即为﹣4或2.故答案为﹣4或2.25.解:∵﹣和2之间的整数有3个:﹣1、0、1,∴墨迹遮盖住的整数共有3个.故答案为:3.26.解:﹣﹣+×5=﹣+1=,∵BC=,∴点B表示的有理数是0或.故答案为:0或.三.解答题(共3小题)27.解:(1)因为学校是原点,向南方向为正方向,用1个单位长度表示1000m.从学校出发南行1000m到达小华家,所以点A在1处,从A向北行3000m到达小红家,所以点B在﹣2处,从B向南行6000m到小夏家,所以点C在4处.(2)点B是﹣2,所以小红家在学校的北面,距离学校2000m.28.解:(1)如图所示:(2)根据数轴可知:小明家距小彬家是7.5个单位长度,因而是7.5千米;(3)路程是2×10=20千米,(4)耗油量是:20×0.2=4升.答:小明家距小彬家7.5千米,这趟路货车共耗油4升.29.解:(1)由数轴上AB两点的位置可知,A点表示1,B点表示﹣2.5.故答案为:1,﹣2.5;(2)∵A点表示1,∴与点A的距离为4的点表示的数是5或﹣3.故答案为:5或﹣3;(3)∵A点与﹣3表示的点重合,∴其中点==﹣1,∵点B表示﹣2.5,∴与B点重合的数=﹣2+2.5=0.5.故答案为:0.5.。
1.2.2数轴1.关于数轴,下列说法中,最准确的是()A.一条直线B.有原点、正方向的一条直线C.有单位长度的一条直线D.规定了原点、正方向、单位长度的直线2.下面给出的四条数轴中,画法正确的是()A. B.C. D.3.(2021西安碑林区模拟)如图,在数轴上,若点B表示一个负数,则原点可以()A.点EB.点DC.点CD.点A4.如图,数轴上点A表示的数是()A.-1B.0C.1D.25.如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是()A.0B.1C.2D.36.如图,在数轴上有A,B,C,D,E,F六个点,且AB=BC=CD=DE=EF,则点C表示的数是()A.-2B.0C.2D.47.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O′点,点O′对应的数是______.拓点2数轴上两点之间的距离8.如图,数轴上A,B两点所表示的数分别是-4和2,点C是线段AB 的中点,则点C所表示的数是______.9.如图,数轴上表示-2的点A到原点的距离是()A.-2B.2C.-12D.1 210.数轴上点A表示的数是-3,将点A在数轴上平移7个单位长度得到点B,则点B表示的数是()A.4B.-4或10C.-10D.4或-1011.如图,数轴上点A对应的数是32,将点A沿数轴向左移动2个单位长度至点B,则点B对应的数是()A.12-B.-2 C.72D.1212.下列说法:①数轴上的点只能表示整数;②数轴是一条线段;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.其中正确的有()A.1个B.2个C.3个D.4个13.下面所画数轴,画法正确的是___________.(填序号)14.如图,已知点A,B,C在数轴上表示的数分别是-1,-5,2.回答下列问题:(1)将B点向右移动6个单位长度,此时B点表示的数是多少?(2)将C点向左移动6个单位长度,此时C点表示的数是多少?(3)移动A,B,C三个点中的任意两个,能使三个点表示的数相等吗?你有几种移动方法?15.如图,数轴的单位长度为1,点A表示的数是-4.(1)在数轴上用0标出原点;(2)写出点B表示的数;(3)在数轴上找一点C,使它与点B的距离为2个单位长度,那么点C表示什么数?16.找规律.(1)借助数轴,回答下列问题:①从-1到1有3个整数,分别是__________;②从-2到2有5个整数,分别是__________;③从-3到3有7个整数,分别是__________;④从-100到100有_______________个整数;⑤从-n到n有_______个整数;(n为正整数)(2)根据以上规律,知从-3.9到3.9有___________个整数,从-10.1到10.1有__________个整数;(3)在单位长度是1cm的数轴上任意画一条长度为1000cm的线段AB,线段AB盖住的整数点最多有多少个?17.如图,已知在纸面上有一个数轴.操作一(1)折叠纸面,使表示1的点与表示-1的点重合,则表示-2的点与表示______的点重合.操作二(2)折叠纸面,使表示-1的点与表示3的点重合,回答以下问题:①表示5的点与表示______的点重合;②若数轴上A,B两点之间的距离为9(A在B的左侧),且折叠后A,B两点重合,求A,B两点表示的数.参考答案1.D2.B3.D4.C5.D6.C7.p8.-19.B10.D11.A12.A13.①④14.(1)将B点向右移动6个单位长度,此时B点表示的数是1.(2)将C点向左移动6个单位长度,此时C点表示的数是-4.(3)能.有三种移动方法:①A点不动,将B点向右移动4个单位长度,并将C点向左移动3个单位长度;②B点不动,将A点向左移动4个单位长度,并将C点向左移动7个单位长度;③C点不动,将A点向右移动3个单位长度,并将B点向右移动7个单位长度.15.(1)原点在点A的右侧4个单位长度处,如图.(2)点B表示3.(3)点C表示1或5.16.(1)①-1,0,1②-2,-1,0,1,2③-3,-2,-1,0,1,2,3④201⑤(2n+1)(2)7;21(3)1000+1=1001(个).17.(1)2(2)①-3②A点表示的数是-3.5,B点表示的数是5.5.。
第一讲 有理数与数轴入门测成绩(满分10): 完成情况: 优/中/差1.如果向右走5步记为+5,那么向左走3步记为A .+3B .﹣3C .31+D .31-B2.以下4个有理数中,最小的是A .-1B .1C .0D .-2D 3.31-的相反数是 . 134.下列说法正确的是①0是绝对值最小的有理数 ②相反数大于本身的数是负数 ③一个有理数不是正数就是负数 ④两个数比较,绝对值大的反而小 A .①② B .①③ C .①②③ D .①②③④ A5.若数轴上点A 表示的数是-3, 则与点A 相距4个单位长度的点B 表示的数是 . -7或16.有理数a ,b ,c ,d 在数轴上对应点的位置如图所示,这四个数中,绝对值最大的是 AA .aB .bC .cD .d7.小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正数,不足的千克数记为负数,称重后的记录分别为25.0+,1-,5.0+,75.0-.小红快速准确地算出了4筐白菜的总质量为 千克.99教学目标1.理解并掌握有理数、数轴、相反数、绝对值的意义2.会比较有理数的大小3.会求有理数的相反数和绝对值4.会利用绝对值的知识解决简单的化简问题知识梳理1.正数和负数大于的数叫做0 正数,等在正数前面加上负号"" 的数小于的数叫做,形如-3-0.50 负数0 既不是正数也不是负数2.有理数、和统称为正整数0 负整数整数、统称为正分数负分数分数和统称为整数分数有理数所以有理数可以分为.和正有理数 0 负有理数 3.数轴数轴:规定了 . 和 的直线叫做数轴原点 正方向 单位长度所有的有理数都可用数轴上的点来表示4.数轴的画法(1)画一条直线(一般画成水平的直线)(2)在直线上根据需要选取一点为原点(在原点下面标上“0”) (3)确定正方向(一般规定向右为正,并用箭头表示出来); (4)选取适当的长度为单位长度,从原点向右,每隔一个单位长度取一点,依次表示1,2,3,… 从原点向左,用类似的方法依次表示-1,-2,-3,…5.相反数相反数:只有 不同的两个数叫做互为相反数符号就是0的相反数 0求一个数的相反数只要在 加上"-"即可,若求一个代数式的相反数就是用括号把这 个代数式括起来,再在这个 加上"-".前面括号前性质:若a 与b 互为相反数,则0a b +=,1ab=-(b 0≠)两个数相加为零,则这两个数互为,他们分别位于原点的,且到原点的相反数两侧距离相等6.绝对值绝对值的几何意义:一个数的绝对值是这个数在数轴上的对应点到原点的距离在数轴上离开的距离就叫做这个数的原点绝对值一个正数的绝对值是它本身一个负数的绝对值是它的相反数0的绝对值是绝对值的代数意义:||() () ()aa aaa a=>=-<⎧⎨⎪⎩⎪00典型例题例题1:1.我们把向东运动5米记作“+5米”,则向西运动3米记作________米.-32.中国人很早就开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入了负数.如果收入100元记作+100元,那么-80元表示A.支出80元B.收入20元C.支出20元D.收入80元A练习1:1.如果零上5℃记作5+℃,那么零下5℃记作CA.-5B.-10C.-5 D.-10练习2:1.在-3,-1,2,0这四个数中,是正数的数是CA.-3 B.-1 C.2 D.0例题2:1.有8筐白菜, 以每筐25千克为标准, 超过的千克数记作正数, 不足的千克数记作负数,称后的记录如下:1.5 -3 2 -0.5 1 -2 -2 -2.5回答下列问题:(1)这8筐白菜中, 最接近25千克的那筐白菜为__________千克; 24.5(2)以每筐25千克为标准, 这8筐白菜总计超过多少千克或不足多少千克?5.5(3)若白菜每千克售价2.6元, 则出售这8筐白菜可卖多少元?505.7练习1:1.某日,司机小张作为志愿者在东西向的公路上免费接送游客。
1.2.2数轴一、选择题1.如图,在数轴上点A,B,C,D表示的数,可能正确的是()A.点A表示1.25B.点B表示1.75C.点C表示-1.25D.点D表示-2.52.在数轴上距原点2017个单位长度的点表示的数是()A.2017B.-2017C.2017或-2017D.以上都不对二、填空题3.规定了、和的直线叫做数轴.4.数轴上,原点及原点右边的点表示的数是.5.从数轴上观察大于-3且小于2的整数是.6.数轴上,表示数-4的点位于原点侧,距原点个单位长度.7.在数轴上与表示-3的点的距离是4个单位长度的点表示的数是________.8.在数轴上依次有6个等距离的点A,B,C,D,E,F,若点A对应的数为-5,点F对应的数为11,则与点C所对应的数最接近的整数是________.三、解答题9.如图,写出数轴上点A、B、C、D、E表示的数B DAC10.画出数轴,并在数轴上表示下列有理数:3,-0.25,-5,9211.下图为北京地铁1号线的部分线路,假设各站之间的距离相等且都表示一个单位长度.现以万寿路站为原点,向东的方向为正方向,那么木樨地站表示的数是,古城站表示的数是;如果改以西单站为原点,那么木樨地站表示的数是,天安门东站表示的数是.12.有几滴墨水滴在数轴上,根据图中标出的数值,写出墨迹盖住的整数.13.如图,在数轴上有三点A,B,C.请回答下列问题:(1)三点A,B,C中,任意两点之间的距离是多少个单位长度?(2)将点C沿数轴向左移动8个单位长度,此时A,B,C中任意两点之间的距离是多少个单位长度?参考答案一、选择题1.B2.C二、填空题3.原点、正方向、单位长度4非负数5.-2,-1,0,1,26.左,47.1或-78.19.点A表示的数:-1点D表示的数:4点E表示的数:0点B表示的数:72点C表示的数:11410.C A211.3,-5;-3,212.解:-8~-3之间的整数有-4,-5,-6,-7;4~9之间的整数有5,6,7,8.13.解:(1)A,B间的距离是5个单位长度,A,C间的距离是7个单位长度,B,C间的距离是2个单位长度;(2)点C向左移动8个单位长度,对应的数变为-6,则A,B间的距离是5个单位长度,A,C间的距离是1个单位长度,B,C间的距离是6个单位长度.。
第3天数轴
一、单选题
1.(2017·江苏省初一课时练习)数轴上点A 表示a,将点A 沿数轴向左移动3 个单位得到点B,设点B 所表示的数为x,则x 可以表示为()
A.a)3 B.a+3 C.3)a D.3a+3
【答案】A
【解析】试题解析:由题意得,把点A 向左移动3 个单位长度,即点A 表示的数减小3.
故B点所表示的数为a﹣3.
故选A.
2.(2019·罗平县腊山一中初一月考)一个点从数轴上表示﹣2的点开始,向右移动7个单位长度,再向左移动4个单位长度.则此时这个点表示的数是()
A.0B.2C.l D.)1
【答案】C
【解析】
2 向右移动7个单位长度5,向右移动4个单位长度为1,
故选C.
3.(2018·天津南开中学初一月考)在数轴上任取一条长度为
1
2000
9
的线段,则此线段在这条数轴上最多能
盖住的整数点的个数是()
A.1998B.1999C.2000D.2001
【答案】D
【解析】
解:把这条线段的一个端点覆盖第一个整数点若记作0,则覆盖的最后一个数是2000,因而共有从0到2000共有2001个数.
故选:D.
【点睛】
此题主要考查了数轴上的点与实数的对应关系,能够理解什么情况最多是解决本题的关键.4.(2019·上海初一期中)数轴上原点和原点右边的点所表示的数是( )
A.所有实数B.正实数C.非负实数D.负实数
【答案】C
【解析】
解:因为数轴向右为正方向,所以原点及原点右边的点表示的数是非负实数.
故选C.
【点睛】
本题考查了数轴上的点和数之间的对应关系.
5.(2019·广西壮族自治区初一期中)已知数轴上A,B两点,点A对应的数为3,若线段AB的长为5,则点B对应的数为()
A.-2B.5C.-2或8D.8
【答案】C
【解析】
解:把A点向左移动5个单位与点B重合,所以B对应-2,
把A点向右移动5个单位与点B重合,所以点B对应8.
所以点B对应的数为-2或8.
故选C.
【点睛】
本题考查的是数轴上线段的长度与点的移动的关系,掌握向左,向右移动时数的变化规律是解题的关键.6.(2019·广西壮族自治区初一期中)以下是四位同学画的数轴,其中正确的是()
A.B.
C.D.
【答案】B
【解析】
解:A.图中缺少原点和正方向,故错误;
B.图中数轴正确;
C.图中-1和-2的位置标反并且缺少正方向,故错误;
D.图中-1和-2的位置标反,故错误.
故选B.
【点睛】
此题考查的是数轴的画法,掌握数轴的定义和特征是解决此题的关键.
7.(2019·山西省初一期中)数轴的原型来源于生活实际,数轴体现了()的数学思想,是我们学习和研
究有理数的重要工具.
A.整体B.方程C.转化D.数形结合
【答案】D
【解析】
解:数轴是数学的重要内容之一,它体现的数学思想是数形结合的思想.
故选:D
【点睛】
本题考查几种数学思想,解题的关键是理解数形结合的定义:根据数与形之间的一一对应关系,数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,从而起到优化解题途径的目的.8.(2020·福建省初一期末)如图,数轴上蝴蝶所在点表示的数可能为()
A.3B.2C.1D.-1
【答案】D
【解析】
解:数轴上蝴蝶所在点表示的数可能为-1,
故选:D.
【点睛】
本题考查了有理数与数轴上点的关系,任何一个有理数都可以用数轴上的点表示,在数轴上,原点左边的点表示的是负数,原点右边的点表示的是正数,右边的点表示的数比左边的点表示的数大.
二、填空题
9.(2018·四川省双流县棠湖中学实验学校初一月考)数轴上的A点表示-3的点距离是5个单位长度,则A 点表示的数为________.
【答案】-8或2
【解析】
解:当A点在-3表示的点的左边时,
-3-5=-8;
当A点在-3表示的点的右边时,-3+5=2;
所以A点表示的数为-8或2.
故答案为:-8或2.
【点睛】
本题主要考查了在数轴上表示数的方法,以及数轴上两点间的距离的求法,要熟练掌握.
10.(2018·唐山市第五十四中学初一月考)已知点A在数轴上对应的有理数为a,将点A向左移动3个单位长度后,再向右移动1个单位长度得到点B,其在数轴上对应的有理数为﹣4.5,则有理数a=_____.
【答案】-2.5
【解析】
设点A表示的数是x.
则有x+3-1=-4.5,
x=-2.5.
故答案为-2.5.
【点睛】
本题考查了数轴,掌握平移的关键在于点对应的数的大小变化和平移的规律.
11.(2018·靖江外国语学校初一月考)不小于3 而小于2的非正整数是______.
【答案】-3,-2,-1,0
【解析】
如图所示:
,
由图可知,大于-3而小于2的非正整数是-3,-2,-1,0.
故答案为:-3,-2,-1,0.
【点睛】
本题考查的是数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.
12.(2018·云南省初一期末)一只蚂蚁从数轴上一点A出发)爬了7 个单位长度到了+1)则点A 所表示
的数是_____
【答案】﹣6 或 8
【解析】当往右移动时,此时点A 表示的点为﹣6,当往左移动时,此时点A 表示的点为8. 13.(2020·黑龙江省初一期末)在数轴上与﹣4相距3个单位长度的点有______个,它们分别是_____和_____.【答案】2 ﹣1 ﹣7
【解析】
解:如图所示:
在数轴上与﹣4相距3个单位长度的点有2个,它们分别是﹣1和﹣7.
故答案为:2,﹣1,﹣7.
【点睛】
此题主要考查了数轴,正确画出数轴是解题关键.
14.(2019·射阳外国语学校初一月考)数轴的三要素是_____________、正方向和单位长度;
【答案】原点.
【解析】
解:数轴的三要素是:原点、正方向和单位长度.故答案为:原点.
【点睛】
本题考查了数轴的概念,熟知数轴的三要素:原点、正方向和单位长度是解答的关键. 15.(2018·吉林省初一期末)如图,在数轴上点A和点B之间表示整数的点有___个.
【答案】6
【解析】
∵-3.14<-3<-2<-1<0<1<2<2.65,
∴在数轴上点A和点B之间表示整数的点有6个)
故答案是:6.
【点睛】
本题主要考查有理在数轴上的表示,掌握有理数在数轴上从左到右,依次增大,是解题的关键.16.(2019·四川省初一期末)在数轴上点A表示数1,点B与点A相距3个单位,点B表示数是__________.【答案】2
或4
【解析】
解:∵点A表示数1,点B与点A相距3个单位,若点B在A点左边,则点B表示的数为1−3=−2;若点B在A点右边,则点B表示的数为1+3=4,
即点B表示的数为:−2或4.
故答案为:−2或4.
【点睛】
本题考查了数轴:规定了原点、正方向、单位长度的直线叫做数轴;数轴的三要素:原点,单位长度,正方向;一般来说,数轴上右边的数总比左边的数大.。