2019-2020学年广西贵港市港南区中考数学二模试卷(有标准答案)
- 格式:doc
- 大小:581.00 KB
- 文档页数:25
广西省贵港市2019-2020学年中考第二次大联考数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,将一块含有30°角的直角三角板的两个顶点放在长方形直尺的一组对边上,如果∠1=30°,那么∠2的度数为()A.30°B.40°C.50°D.60°2.如图,矩形ABCD中,AB=3,AD=4,连接BD,∠DBC的角平分线BE交DC于点E,现把△BCE 绕点B逆时针旋转,记旋转后的△BCE为△BC′E′.当线段BE′和线段BC′都与线段AD相交时,设交点分别为F,G.若△BFD为等腰三角形,则线段DG长为()A.2513B.2413C.95D.853.如图,平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y=kx的图象经过点D,则k值为()A.﹣14 B.14 C.7 D.﹣74.如图,AD为△ABC的中线,点E为AC边的中点,连接DE,则下列结论中不一定成立的是()A.DC=DE B.AB=2DE C.S△CDE=14S△ABC D.DE∥AB5.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A.310B.925C.920D.356.下列各数中,最小的数是()A.﹣4 B.3 C.0 D.﹣27.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=40°,则∠2的度数为()A.50°B.40°C.30°D.25°8.如图,已知AB∥CD,DE⊥AC,垂足为E,∠A=120°,则∠D的度数为()A.30°B.60°C.50°D.40°9.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3 B.1,1,2C.1,1,3D.1,2,310.如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与○O相交于点D,连接BD,则∠DBC的大小为( )A.15°B.35°C.25°D.45°11.-sin60°的倒数为( )A.-2 B.12C.-33D.-23312.如果关于x的方程x2﹣k x+1=0有实数根,那么k的取值范围是()A.k>0 B.k≥0C.k>4 D.k≥4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.“五一”期间,一批九年级同学包租一辆面包车前去竹海游览,面包车的租金为300元,出发时,又增加了4名同学,且租金不变,这样每个同学比原来少分摊了20元车费.若设参加游览的同学一共有x 人,为求x,可列方程_____.14.已知点A(x1,y1)、B(x2,y2)在直线y=kx+b上,且直线经过第一、二、四象限,当x1<x2时,y1与y 2的大小关系为________.15.如图,AB 是半径为2的⊙O 的弦,将»AB 沿着弦AB 折叠,正好经过圆心O ,点C 是折叠后的»AB 上一动点,连接并延长BC 交⊙O 于点D ,点E 是CD 的中点,连接AC ,AD ,EO .则下列结论:①∠ACB=120°,②△ACD 是等边三角形,③EO 的最小值为1,其中正确的是_____.(请将正确答案的序号填在横线上)16.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,测得AB =2米,BP =3米,PD =15米,那么该古城墙的高度CD 是_____米.17.在平面直角坐标系内,一次函数2y x b =-与21y x =-的图像之间的距离为3,则b 的值为__________. 18.若代数式211x --的值为零,则x=_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字﹣3、﹣1、0、2,除数字不同外,这四个球没有任何区别.从中任取一球,求该球上标记的数字为正数的概率;从中任取两球,将两球上标记的数字分别记为x 、y ,求点(x ,y )位于第二象限的概率.20.(6分)如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,A 、C 分别在坐标轴上,点B 的坐标为(4,2),直线1y x 32=-+交AB ,BC 分别于点M ,N ,反比例函数k y x=的图象经过点M ,N .(1)求反比例函数的解析式;(2)若点P 在y 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标.21.(6分)如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (﹣2,1),B (﹣1,4),C (﹣3,2)画出△ABC 关于点B 成中心对称的图形△A 1BC 1;以原点O 为位似中心,位似比为1:2,在y 轴的左侧画出△ABC 放大后的图形△A 2B 2C 2,并直接写出C 2的坐标.22.(8分)如图①,在正方形ABCD 的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M ,则图中ADE V ≌DFC △,可知ED FC =,求得DMC ∠=______.如图②,在矩形()ABCD AB BC >的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M .()1求证:ED FC =.()2若20ADE ∠=o ,求DMC ∠的度数.23.(8分)如图,在直角坐标系中△ABC 的A 、B 、C 三点坐标A (7,1)、B (8,2)、C (9,0). (1)请在图中画出△ABC 的一个以点P (12,0)为位似中心,相似比为3的位似图形△A′B′C′(要求与△ABC 同在P 点一侧),画出△A′B′C′关于y 轴对称的△A′'B′'C′'; (2)写出点A'的坐标.24.(10分)如图,在四边形ABCD 中,点E 是对角线BD 上的一点,EA ⊥AB ,EC ⊥BC ,且EA=EC .求证:AD=CD .25.(10分)某经销商从市场得知如下信息:A 品牌手表B 品牌手表 进价(元/块) 700 100 售价(元/块)900160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A 品牌手表x 块,这两种品牌手表全部销售完后获得利润为y 元.试写出y 与x 之间的函数关系式;若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;选择哪种进货方案,该经销商可获利最大;最大利润是多少元.26.(12分)对于平面直角坐标系xOy 中的点P 和直线m ,给出如下定义:若存在一点P ,使得点P 到直线m 的距离等于1,则称P 为直线m 的平行点. (1)当直线m 的表达式为y =x 时,①在点()11,1P ,(22P ,322P ⎛ ⎝⎭中,直线m 的平行点是______; ②⊙O 10,点Q 在⊙O 上,若点Q 为直线m 的平行点,求点Q 的坐标.(2)点A 的坐标为(n ,0),⊙A 半径等于1,若⊙A 上存在直线3y x =的平行点,直接写出n 的取值范围.27.(12分)如图,某游乐园有一个滑梯高度AB ,高度AC 为3米,倾斜角度为58°.为了改善滑梯AB 的安全性能,把倾斜角由58°减至30°,调整后的滑梯AD 比原滑梯AB 增加多少米?(精确到0.1米)(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】如图,因为,∠1=30°,∠1+∠3=60°,所以∠3=30°,因为AD∥BC,所以∠3=∠4,所以∠4=30°,所以∠2=180°-90°-30°=60°,故选D.2.A【解析】【分析】先在Rt△ABD中利用勾股定理求出BD=5,在Rt△ABF中利用勾股定理求出BF=258,则AF=4-258=78.再过G作GH∥BF,交BD于H,证明GH=GD,BH=GH,设DG=GH=BH=x,则FG=FD-GD=258-x,HD=5-x,由GH∥FB,得出FDGD=BDHD,即可求解.【详解】解:在Rt△ABD中,∵∠A=90°,AB=3,AD=4,∴BD=5,在Rt△ABF中,∵∠A=90°,AB=3,AF=4-DF=4-BF,∴BF2=32+(4-BF)2,解得BF=25 8,∴AF=4-258=78.过G作GH∥BF,交BD于H,∴∠FBD=∠GHD,∠BGH=∠FBG,∵FB=FD,∴∠FBD=∠FDB,∴∠FDB=∠GHD,∴GH=GD,∵∠FBG=∠EBC=12∠DBC=12∠ADB=12∠FBD,又∵∠FBG=∠BGH,∠FBG=∠GBH,∴BH=GH,设DG=GH=BH=x,则FG=FD-GD=258-x,HD=5-x,∵GH∥FB,∴FDGD=BDHD,即258x=55-x,解得x=25 13.故选A.【点睛】本题考查了旋转的性质,矩形的性质,等腰三角形的性质,勾股定理,平行线分线段成比例定理,准确作出辅助线是解题关键.3.B【解析】过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,点A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴点D的坐标为:(7,2),∴k14,故选B.4.A【解析】【分析】根据三角形中位线定理判断即可.【详解】∵AD为△ABC的中线,点E为AC边的中点,∴DC=12BC,DE=12AB,∵BC不一定等于AB,∴DC不一定等于DE,A不一定成立;∴AB=2DE,B一定成立;S△CDE=14S△ABC,C一定成立;DE∥AB,D一定成立;故选A.【点睛】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.5.A【解析】【分析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:红(红,红)(红,红)﹣﹣﹣(绿,红)(绿,红)绿(红,绿)(红,绿)(红,绿)﹣﹣﹣(绿,绿)绿(红,绿)(红,绿)(红,绿)(绿,绿)﹣﹣﹣∵所有等可能的情况数为20种,其中两次都为红球的情况有6种,∴63P2010==两次红,故选A.6.A【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可【详解】根据有理数比较大小的方法,可得﹣4<﹣2<0<3∴各数中,最小的数是﹣4故选:A【点睛】本题考查了有理数大小比较的方法,解题的关键要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小7.A【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】如图,∵∠1=40°,∴∠3=∠1=40°,∴∠2=90°-40°=50°.故选A.【点睛】此题考查了平行线的性质.利用两直线平行,同位角相等是解此题的关键.8.A【解析】分析:根据平行线的性质求出∠C,求出∠DEC的度数,根据三角形内角和定理求出∠D的度数即可.详解:∵AB∥CD,∴∠A+∠C=180°.∵∠A=120°,∴∠C=60°.∵DE⊥AC,∴∠DEC=90°,∴∠D=180°﹣∠C﹣∠DEC=30°.故选A.点睛:本题考查了平行线的性质和三角形内角和定理的应用,能根据平行线的性质求出∠C的度数是解答此题的关键.9.D【解析】【分析】根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.【详解】∵1+2=3,不能构成三角形,故选项错误;B、∵12+12)2,是等腰直角三角形,故选项错误;C=12,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选D.10.A【解析】【分析】根据等腰三角形的性质以及三角形内角和定理可得∠A =50°,再根据平行线的性质可得∠ACD=∠A=50°,由圆周角定理可行∠D=∠A=50°,再根据三角形内角和定理即可求得∠DBC 的度数.【详解】∵AB=AC ,∴∠ABC=∠ACB=65°,∴∠A=180°-∠ABC-∠ACB=50°,∵DC//AB ,∴∠ACD=∠A=50°,又∵∠D=∠A=50°,∴∠DBC=180°-∠D -∠BCD=180°-50°-(65°+50°)=15°,故选A.【点睛】本题考查了等腰三角形的性质,圆周角定理,三角形内角和定理等,熟练掌握相关内容是解题的关键. 11.D【解析】分析:sin 60-︒=根据乘积为1的两个数互为倒数,求出它的倒数即可.详解:sin 60-︒=1,23⎛⎫⎛⎫-⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭Q的倒数是3-. 故选D.点睛:考查特殊角的三角函数和倒数的定义,熟记特殊角的三角函数值是解题的关键.12.D【解析】【分析】由被开方数非负结合根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】∵关于x 的方程x 2有实数根,∴204110k ≥⎧⎪⎨∆-⨯⨯≥⎪⎩, 解得:k≥1.故选D.【点睛】本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3004x-﹣300x=1.【解析】原有的同学每人分担的车费应该为3004x-,而实际每人分担的车费为300x,方程应该表示为:3004x-﹣300x=1.故答案是:3004x-﹣300x=1.14.y1>y1【解析】分析:直接利用一次函数的性质分析得出答案.详解:∵直线经过第一、二、四象限,∴y随x的增大而减小,∵x1<x1,∴y1与y1的大小关系为:y1>y1.故答案为:>.点睛:此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键.15.①②【解析】【分析】根据折叠的性质可知,结合垂径定理、三角形的性质、同圆或等圆中圆周角与圆心的性质等可以判断①②是否正确,EO的最小值问题是个难点,这是一个动点问题,只要把握住E在什么轨迹上运动,便可解决问题.【详解】如图1,连接OA和OB,作OF⊥AB.由题知:»AB沿着弦AB折叠,正好经过圆心O∴OF=OA=12OB∴∠AOF=∠BOF=60°∴∠AOB=120°∴∠ACB=120°(同弧所对圆周角相等)∠D=12∠AOB=60°(同弧所对的圆周角是圆心角的一半)∴∠ACD=180°-∠ACB=60°∴△ACD是等边三角形(有两个角是60°的三角形是等边三角形)故,①②正确下面研究问题EO的最小值是否是1如图2,连接AE和EF∵△ACD是等边三角形,E是CD中点∴AE⊥BD(三线合一)又∵OF⊥AB∴F是AB中点即,EF是△ABE斜边中线∴AF=EF=BF即,E点在以AB为直径的圆上运动.所以,如图3,当E、O、F在同一直线时,OE长度最小此时,AE=EF,AE⊥EF∵⊙O的半径是2,即OA=2,OF=1∴3(勾股定理)∴3所以,③不正确综上所述:①②正确,③不正确.故答案是:①②.【点睛】考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.16.10【解析】【分析】首先证明△ABP∽△CDP,可得ABBP=CDPD,再代入相应数据可得答案.【详解】如图,由题意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴ABBP=CDPD,∵AB=2米,BP=3米,PD=15米,∴23=15CD,解得:CD=10米.故答案为10.【点睛】本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.17.1-351+35【解析】【分析】设直线y=2x-1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=2x-b于点D,根据直线的解析式找出点A、B、C的坐标,通过同角的余角相等可得出∠BAD=∠ACO,再利用∠ACO的余弦值即可求出直线AB的长度,从而得出关于b的含绝对值符号的方程,解方程即可得出结论.解:设直线y=2x-1与x轴交点为C,与y轴交点为A,过点A作AD⊥直线y=2x-b于点D,如图所示.∵直线y=2x-1与x轴交点为C,与y轴交点为A,∴点A(0,-1),点C(12,0),∴OA=1,OC=12,22OA OC+5,∴cos∠ACO=OCAC5∵∠BAD与∠CAO互余,∠ACO与∠CAO互余,∴∠BAD=∠ACO.∵AD=3,cos∠BAD=ADAB5,∴5∵直线y=2x-b与y轴的交点为B(0,-b),∴AB=|-b-(-1)5解得:55故答案为55.【点睛】本题考查两条直线相交与平行的问题,利用平行线间的距离转化成点到直线的距离得出关于b的方程是解题关键.18.3【解析】由题意得,21x1--=0,解得:x=3,经检验的x=3是原方程的根.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)14;(2)16.【分析】(1)直接根据概率公式求解;(2)先利用树状图展示所有12种等可能的结果数,再找出第二象限内的点的个数,然后根据概率公式计算点(x ,y )位于第二象限的概率.【详解】(1)正数为2,所以该球上标记的数字为正数的概率为14; (2)画树状图为:共有12种等可能的结果数,它们是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的点有2个,所以点(x ,y )位于第二象限的概率=212=16. 【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率.20.(1)4y x =;(2)点P 的坐标是(0,4)或(0,-4). 【解析】 【分析】(1)求出OA=BC=2,将y=2代入1y x 32=-+求出x=2,得出M 的坐标,把M 的坐标代入反比例函数的解析式即可求出答案.(2)求出四边形BMON 的面积,求出OP 的值,即可求出P 的坐标.【详解】(1)∵B (4,2),四边形OABC 是矩形,∴OA=BC=2. 将y=2代入1y x 32=-+3得:x=2,∴M (2,2). 把M 的坐标代入k y x =得:k=4, ∴反比例函数的解析式是4y x=; (2)AOM CON BMON OABC 1S S S S 422442∆∆=--=⨯-⨯⨯=四边形矩形. ∵△OPM 的面积与四边形BMON 的面积相等,∴1OP AM 42⋅⋅=. ∵AM=2,∴OP=4.∴点P 的坐标是(0,4)或(0,-4).21.(1)画图见解析;(2)画图见解析,C 2的坐标为(﹣6,4).【解析】试题分析:()1利用关于点对称的性质得出11,A C 的坐标进而得出答案;()2利用关于原点位似图形的性质得出对应点位置进而得出答案.试题解析:(1)△A 1BC 1如图所示.(2)△A 2B 2C 2如图所示,点C 2的坐标为(-6,4).22.阅读发现:90°;(1)证明见解析;(2)100°【解析】【分析】阅读发现:只要证明15DFC DCF ADE AED ∠=∠=∠=∠=o ,即可证明.拓展应用:()1欲证明ED FC =,只要证明ADE V ≌DFC △即可.()2根据DMC FDM DFC FDA ADE DFC ∠=∠+∠=∠+∠+∠即可计算.【详解】解:如图①中,Q 四边形ABCD 是正方形,AD AB CD ∴==,90ADC ∠=o ,ADE QV ≌DFC △,DF CD AE AD ∴===,6090150FDC ∠=+=o o o Q ,15DFC DCF ADE AED ∴∠=∠=∠=∠=o ,601575FDE ∴∠=+=o o o ,90MFD FDM ∴∠+∠=o ,90FMD ∴∠=o ,故答案为90o()1ABE QV 为等边三角形,60EAB ∴∠=o ,EA AB =.ADF QV 为等边三角形,60FDA ∴∠=o ,AD FD =.Q 四边形ABCD 为矩形,90BAD ADC ∴∠=∠=o ,DC AB =.EA DC ∴=.150EAD EAB BAD ∠=∠+∠=o Q ,150CDF FDA ADC ∠=∠+∠=o ,EAD CDF ∴∠=∠.在EAD V 和CDF V中, AE CD EAD FDC AD DF =⎧⎪∠=∠⎨⎪=⎩,EAD ∴V ≌CDF V. ED FC ∴=;()2EAD QV ≌CDF V ,20ADE DFC ∴∠=∠=o ,602020100DMC FDM DFC FDA ADE DFC ∴∠=∠+∠=∠+∠+∠=++=o o o o .【点睛】本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型.23.(1)见解析;(2)点A'的坐标为(-3,3)【解析】【详解】解:(1)A B C '''V ,△A′'B′'C′'如图所示.(2)点A'的坐标为(-3,3).24.证明见解析【解析】【分析】根据垂直的定义和直角三角形的全等判定,再利用全等三角形的性质解答即可.【详解】∵EA⊥AB,EC⊥BC,∴∠EAB=∠ECB=90°,在Rt△EAB与Rt△ECB中{EA EC EB EB==,∴Rt△EAB≌Rt△ECB,∴AB=CB,∠ABE=∠CBE,∵BD=BD,在△ABD与△CBD中{AB CBABE CBE BD BD=∠=∠=,∴△ABD≌△CBD,∴AD=CD.【点睛】本题考查了全等三角形的判定及性质,根据垂直的定义和直角三角形的全等判定是解题的关键.25.(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.【解析】【分析】(1)根据利润y=(A售价﹣A进价)x+(B售价﹣B进价)×(100﹣x)列式整理即可;(2)全部销售后利润不少于1.26万元得到一元一次不等式组,求出满足题意的x的正整数值即可;(3)利用y 与x 的函数关系式的增减性来选择哪种方案获利最大,并求此时的最大利润即可.【详解】解:(1)y=(900﹣700)x+(160﹣100)×(100﹣x )=140x+6000.由700x+100(100﹣x )≤40000得x≤50.∴y 与x 之间的函数关系式为y=140x+6000(x≤50)(2)令y≥12600,即140x+6000≥12600,解得x≥47.1.又∵x≤50,∴经销商有以下三种进货方案:(3)∵140>0,∴y 随x 的增大而增大.∴x=50时y 取得最大值.又∵140×50+6000=13000, ∴选择方案③进货时,经销商可获利最大,最大利润是13000元. 【点睛】本题考查由实际问题列函数关系式;一元一次不等式的应用;一次函数的应用.26.(1)①2P ,3P ;②,(-,(,(-;(2)33n -≤≤. 【解析】【分析】(1)①根据平行点的定义即可判断;②分两种情形:如图1,当点B 在原点上方时,作OH ⊥AB 于点H ,可知OH=1.如图2,当点B 在原点下方时,同法可求;(2)如图,直线OE 的解析式为y =,设直线BC//OE 交x 轴于C ,作CD ⊥OE 于D. 设⊙A 与直线BC 相切于点F ,想办法求出点A 的坐标,再根据对称性求出左侧点A 的坐标即可解决问题;【详解】解:(1)①因为P 2、P 3到直线y =x 的距离为1,所以根据平行点的定义可知,直线m 的平行点是2P ,3P ,故答案为2P ,3P .②解:由题意可知,直线m 的所有平行点组成平行于直线m ,且到直线m 的距离为1的直线. 设该直线与x 轴交于点A ,与y 轴交于点B .如图1,当点B 在原点上方时,作OH ⊥AB 于点H ,可知OH =1.由直线m 的表达式为y =x ,可知∠OAB =∠OBA =45°. 所以2OB =. 直线AB 与⊙O 的交点即为满足条件的点Q .连接1OQ ,作1Q N y ⊥轴于点N ,可知110OQ =.在1Rt OHQ ∆中,可求13HQ =.所以12BQ =.在1Rt BHQ ∆中,可求12NQ NB ==. 所以22ON =.所以点1Q 的坐标为()2,22. 同理可求点2Q 的坐标为()22,2--.如图2,当点B 在原点下方时,可求点3Q 的坐标为(22,2点4Q 的坐标为(2,22-, 综上所述,点Q 的坐标为2,22,(22,2--,(22,2,(2,22-. (2)如图,直线OE 的解析式为3y x =,设直线BC ∥OE 交x 轴于C ,作CD ⊥OE 于D .当CD =1时,在Rt △COD 中,∠COD =60°, ∴3sin 603CD OC ==︒, 设⊙A 与直线BC 相切于点F ,在Rt △ACE 中,同法可得23AC =, ∴43OA = ∴43n = 根据对称性可知,当⊙A 在y 轴左侧时,433n =-, 观察图象可知满足条件的N 的值为:434333n -≤≤. 【点睛】 此题考查一次函数综合题、直线与圆的位置关系、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题.27.调整后的滑梯AD 比原滑梯AB 增加2.5米【解析】试题分析: Rt △ABD 中,根据30°的角所对的直角边是斜边的一半得到AD 的长,然后在Rt △ABC 中,求得AB 的长后用AD AB -即可求得增加的长度.试题解析: Rt △ABD 中,∵30ADB ∠=o ,AC=3米,∴AD=2AC=6(m)∵在Rt △ABC 中,58 3.53AB AC sin m =÷≈o ,∴AD−AB=6−3.53≈2.5(m).∴调整后的滑梯AD比原滑梯AB增加2.5米.。
广西省贵港市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,与∠1是内错角的是( )A .∠2B .∠3C .∠4D .∠52.将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,朝上一面上的数字分别为a ,b ,c ,则a ,b ,c 正好是直角三角形三边长的概率是( )A .1216B .172C .136D .1123.点(,2)A a a -是一次函数2y x m =+图象上一点,若点A 在第一象限,则m 的取值范围是( ). A .24m -<< B .42m -<< C .24m -≤≤ D .42m -≤≤4.如图,AB 为⊙O 的直径,C 、D 为⊙O 上的点,若AC =CD =DB ,则cos ∠CAD =( )A .13B .22C .12D .3 5.如图,数轴上的,,A B C 三点所表示的数分别为a b c 、、,其中AB BC =,如果||||||a c b >>那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边6.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A.121x yx y-=⎧⎨-=⎩B.121x yx y-=-⎧⎨-=-⎩C.121x yx y-=-⎧⎨-=⎩D.121x yx y-=⎧⎨-=-⎩7.如图,D是等边△ABC边AD上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=()A.34B.45C.56D.678.计算22783-⨯的结果是()A.3B.433C.533D.239.下列运算结果正确的是()A.(x3﹣x2+x)÷x=x2﹣x B.(﹣a2)•a3=a6C.(﹣2x2)3=﹣8x6D.4a2﹣(2a)2=2a210.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组111222,y k x by k x b=+⎧⎨=+⎩的解为()A.2,4xy=⎧⎨=⎩B.4,2xy=⎧⎨=⎩C.4,xy=-⎧⎨=⎩D.3,xy=⎧⎨=⎩112)A.4B.2x C.29D.1212.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于()A.255B.55C.2 D.12二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,正方形ABCD的边长为2,点B与原点O重合,与反比例函数y=kx的图像交于E、F两点,若△DEF的面积为98,则k的值_______ .14.已知a1=32,a2=55,a3=710,a4=917,a5=1126,…,则a n=_____.(n为正整数).15.如图,为了解全校300名男生的身高情况,随机抽取若干男生进行身高测量,将所得数据(精确到1cm)整理画出频数分布直方图(每组数据含最低值,不含最高值),估计该校男生的身高在170cm﹣175cm 之间的人数约有_____人.16.如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF=1,则S△ADF的值为_____.17.若代数式4x-在实数范围内有意义,则实数x的取值范围为_____.18.小明统计了家里3月份的电话通话清单,按通话时间画出频数分布直方图(如图所示),则通话时间不足10分钟的通话次数的频率是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:x/元…15 20 25 …y/件…25 20 15 …已知日销售量y是销售价x的一次函数.求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;当每件产品的销售价定为35元时,此时每日的销售利润是多少元?20.(6分)抛物线y=﹣3x2+bx+c(b,c均是常数)经过点O(0,0),A(4,43),与x轴的另一交点为点B,且抛物线对称轴与线段OA交于点P.(1)求该抛物线的解析式和顶点坐标;(2)过点P作x轴的平行线l,若点Q是直线上的动点,连接QB.①若点O关于直线QB的对称点为点C,当点C恰好在直线l上时,求点Q的坐标;②若点O关于直线QB的对称点为点D,当线段AD的长最短时,求点Q的坐标(直接写出答案即可).21.(6分)解方程311(1)(2)xx x x-=--+.22.(8分)如图,AB为⊙O的直径,点E在⊙O,C为弧BE的中点,过点C作直线CD⊥AE于D,连接AC、BC.试判断直线CD与⊙O的位置关系,并说明理由若AD=2,AC=6,求⊙O的半径.23.(8分)如图平行四边形ABCD中,对角线AC,BD交于点O,EF过点O,并与AD,BC分别交于点E,F,已知AE=3,BF=5(1)求BC的长;(2)如果两条对角线长的和是20,求三角形△AOD的周长.24.(10分)如图,菱形ABCD的边长为20cm,∠ABC=120°,对角线AC,BD相交于点O,动点P从点A出发,以4cm/s的速度,沿A→B的路线向点B运动;过点P作PQ∥BD,与AC相交于点Q,设运动时间为t秒,0<t<1.(1)设四边形PQCB的面积为S,求S与t的关系式;(2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N,当t为何值时,点P、M、N在一直线上?(3)直线PN与AC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN 的面积?若存在,求出t的值;若不存在,请说明理由.25.(10分)如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).(1)求该抛物线的解析式;(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:。
广西省贵港市2019-2020学年中考数学仿真第二次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,小颖为测量学校旗杆AB 的高度,她在E 处放置一块镜子,然后退到C 处站立,刚好从镜子中看到旗杆的顶部B .已知小颖的眼睛D 离地面的高度CD =1.5m ,她离镜子的水平距离CE =0.5m ,镜子E 离旗杆的底部A 处的距离AE =2m ,且A 、C 、E 三点在同一水平直线上,则旗杆AB 的高度为( )A .4.5mB .4.8mC .5.5mD .6 m2.下列实数中,无理数是( )A .3.14B .1.01001C .39D .2273. “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为( ) A .567×103 B .56.7×104 C .5.67×105 D .0.567×1064.在,90ABC C ∆∠=o 中,2AC BC =,则tan A 的值为( )A .12B .2C .5D .25 5.如图,在△ABC 中,过点B 作PB ⊥BC 于B ,交AC 于P ,过点C 作CQ ⊥AB ,交AB 延长线于Q ,则△ABC 的高是( )A .线段PB B .线段BC C .线段CQD .线段AQ6.计算(x -l)(x -2)的结果为( )A .x 2+2B .x 2-3x +2C .x 2-3x -3D .x 2-2x +27.下面运算结果为6a 的是( )A .33a a +B .82a a ÷C .23•a aD .()32a -8.,a b 是两个连续整数,若7a b <,则,a b 分别是( ). A .2,3 B .3,2 C .3,4 D .6,89.如图钓鱼竿AC 长6m ,露在水面上的鱼线BC 长32m ,钓者想看看鱼钓上的情况,把鱼竿AC 逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是( )A .3mB .33 mC .23 mD .4m10.如图,在ABC V 中,30B ∠=︒,BC 的垂直平分线交AB 于点E ,垂足为D .如果8CE =,则ED 的长为( )A .2B .3C .4D .611.如图所示,将矩形ABCD 的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH ,若EH=3,EF=4,那么线段AD 与AB 的比等于( )A .25:24B .16:15C .5:4D .4:312.如图,二次函数y=ax 1+bx+c (a≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x=1,且OA=OC .则下列结论:①abc >0;②9a+3b+c >0;③c >﹣1;④关于x 的方程ax 1+bx+c=0(a≠0)有一个根为﹣1a;⑤抛物线上有两点P (x 1,y 1)和Q (x 1,y 1),若x 1<1<x 1,且x 1+x 1>4,则y 1>y 1.其中正确的结论有( )A .1个B .3个C .4个D .5个二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,直线a ∥b ,∠P=75°,∠2=30°,则∠1=_____.14.计算1x x +﹣11x +的结果为_____. 15.如图,在平面直角坐标系中,矩形ABCD 的边AB :BC=3:2,点A (-3,0),B (0,6)分别在x 轴,y 轴上,反比例函数y=k x (x >0)的图象经过点D ,且与边BC 交于点E ,则点E 的坐标为__.16.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数的图像上,OA=1,OC=6,则正方形ADEF 的边长为 .17.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为_______________.18.如图,Rt △ABC 中,∠ABC =90°,AB =BC ,直线l 1、l 2、l 1分别通过A 、B 、C 三点,且l 1∥l 2∥l 1.若l 1与l 2的距离为5,l 2与l 1的距离为7,则Rt △ABC 的面积为___________三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,抛物线y=ax 2+bx+c 与x 轴的交点分别为A (﹣6,0)和点B (4,0),与y 轴的交点为C(0,3).(1)求抛物线的解析式;(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M 在线段AB上,点N在线段AC上.①是否同时存在点D和点P,使得△APQ和△CDO全等,若存在,求点D的坐标,若不存在,请说明理由;②若∠DCB=∠CDB,CD是MN的垂直平分线,求点M的坐标.20.(6分)如图所示,AB是⊙O的一条弦,DB切⊙O于点B,过点D作DC⊥OA于点C,DC与AB 相交于点E.(1)求证:DB=DE;(2)若∠BDE=70°,求∠AOB的大小.21.(6分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:(1)该调查小组抽取的样本容量是多少?(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;(3)请估计该市中小学生一天中阳光体育运动的平均时间.22.(8分)解不等式组:1(1)1213x x ⎧-≤⎪⎨⎪-<⎩,并求出该不等式组所有整数解的和.23.(8分)为了传承祖国的优秀传统文化,某校组织了一次“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“山重水复疑无路”.(1)小明回答该问题时,仅对第二个字是选“重”还是选“穷”难以抉择,随机选择其中一个,则小明回答正确的概率是 ;(2)小丽回答该问题时,对第二个字是选“重”还是选“穷”、第四个字是选“富”还是选“复”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.九宫格24.(10分)如图,在平面直角坐标系中有Rt △ABC ,∠A=90°,AB=AC ,A (﹣2,0),B (0,1). (1)求点C 的坐标;(2)将△ABC 沿x 轴的正方向平移,在第一象限内B 、C 两点的对应点B'、C'正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B'C'的解析式.(3)若把上一问中的反比例函数记为y 1,点B′,C′所在的直线记为y 2,请直接写出在第一象限内当y 1<y 2时x 的取值范围.25.(10分)如图,M 、N 为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M 、N 两点之间的直线距离,选择测量点A 、B 、C ,点B 、C 分别在AM 、AN 上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M 、N 两点之间的距离.26.(12分)直角三角形ABC 中,BAC 90∠=o ,D 是斜边BC 上一点,且AB AD =,过点C 作CE AD ⊥,交AD 的延长线于点E ,交AB 延长线于点F .()1求证:ACB DCE ∠∠=;()2若BAD 45o ∠=,AF 22=+,过点B 作BG FC ⊥于点G ,连接DG.依题意补全图形,并求四边形ABGD 的面积.27.(12分)解方程组:222232()x y x y x y ⎧-=⎨-=+⎩.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据题意得出△ABE ∽△CDE ,进而利用相似三角形的性质得出答案.【详解】解:由题意可得:AE =2m ,CE =0.5m ,DC =1.5m ,∵△ABC ∽△EDC ,∴,即,解得:AB =6,故选:D .【点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出△ABE∽△CDE是解答此题的关键.2.C【解析】【分析】先把能化简的数化简,然后根据无理数的定义逐一判断即可得.【详解】A、3.14是有理数;B、1.01001是有理数;CD、227是分数,为有理数;故选C.【点睛】本题主要考查无理数的定义,属于简单题.3.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【详解】567000=5.67×105,【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.A【解析】【分析】本题可以利用锐角三角函数的定义求解即可.【详解】解:tanA=BC AC,∵AC=2BC,∴tanA=12.故选:A.【点睛】本题考查了正切函数的概念,掌握直角三角形中角的对边与邻边的比是关键.5.C【解析】【分析】根据三角形高线的定义即可解题.【详解】解:当AB为△ABC的底时,过点C向AB所在直线作垂线段即为高,故CQ是△ABC的高,故选C.【点睛】本题考查了三角形高线的定义,属于简单题,熟悉高线的作法是解题关键.6.B【解析】【分析】根据多项式的乘法法则计算即可.【详解】(x-l)(x-2)= x2-2x-x+2= x2-3x+2.故选B.【点睛】本题考查了多项式与多项式的乘法运算,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.7.B【解析】【分析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.【详解】A.3332+=,此选项不符合题意;a a aB.826÷=,此选项符合题意;a a aC.235⋅=,此选项不符合题意;a a aD .236()a a -=-,此选项不符合题意;故选:B .【点睛】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方.8.A【解析】【分析】<< 【详解】<<a=2,b=1. 故选A .【点睛】< 9.B【解析】【分析】因为三角形ABC 和三角形AB′C′均为直角三角形,且BC 、B′C′都是我们所要求角的对边,所以根据正弦来解题,求出∠CAB ,进而得出∠C′AB′的度数,然后可以求出鱼线B'C'长度.【详解】解:∵sin ∠CAB =62BC AC == ∴∠CAB =45°.∵∠C′AC =15°,∴∠C′AB′=60°.∴sin60°=''6B C =解得:B′C′=故选:B .【点睛】此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题.10.C【解析】【分析】先利用垂直平分线的性质证明BE=CE=8,再在Rt △BED 中利用30°角的性质即可求解ED .【详解】解:因为DE 垂直平分BC ,所以8BE CE ==,在Rt BDE V 中,30B ∠=︒, 则118422ED BE ==⨯=; 故选:C .【点睛】本题主要考查了线段垂直平分线的性质、30°直角三角形的性质,线段的垂直平分线上的点到线段的两个端点的距离相等.11.A【解析】【分析】先根据图形翻折的性质可得到四边形EFGH 是矩形,再根据全等三角形的判定定理得出Rt △AHE ≌Rt △CFG ,再由勾股定理及直角三角形的面积公式即可解答.【详解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四边形EFGH 的其它内角都是90°,∴四边形EFGH 是矩形,∴EH=FG (矩形的对边相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt △AHE ≌Rt △CFG ,∴AH=CF=FN ,又∵HD=HN ,∴AD=HF ,在Rt △HEF 中,EH=3,EF=4,根据勾股定理得,又∵HE•EF=HF•EM ,∴EM=125, 又∵AE=EM=EB (折叠后A 、B 都落在M 点上),∴AB=2EM=245, ∴AD :AB=5:245=2524=25:1. 故选A【点睛】本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等.12.D【解析】【分析】根据抛物线的图象与系数的关系即可求出答案.【详解】解:由抛物线的开口可知:a <0,由抛物线与y 轴的交点可知:c <0,由抛物线的对称轴可知:2b a ->0,∴b >0,∴abc >0,故①正确;令x=3,y >0,∴9a+3b+c >0,故②正确;∵OA=OC <1,∴c >﹣1,故③正确;∵对称轴为直线x=1,∴﹣2b a=1,∴b=﹣4a . ∵OA=OC=﹣c ,∴当x=﹣c 时,y=0,∴ac 1﹣bc+c=0,∴ac ﹣b+1=0,∴ac+4a+1=0,∴c=41a a +-,∴设关于x 的方程ax 1+bx+c=0(a≠0)有一个根为x ,∴x ﹣c=4,∴x=c+4=1a-,故④正确; ∵x 1<1<x 1,∴P 、Q 两点分布在对称轴的两侧,∵1﹣x 1﹣(x 1﹣1)=1﹣x 1﹣x 1+1=4﹣(x 1+x 1)<0,即x 1到对称轴的距离小于x 1到对称轴的距离,∴y 1>y 1,故⑤正确.故选D .【点睛】 本题考查的是二次函数图象与系数的关系,二次函数y=ax 1+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.本题属于中等题型.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.45°【解析】过P作PM∥直线a,根据平行线的性质,由直线a∥b,可得直线a∥b∥PM,然后根据平行线的性质,由∠P=75°,∠2=30°,可得∠1=∠P-∠2=45°.故答案为45°.点睛:本题考查了平行线的性质的应用,能正确根据平行线的性质进行推理是解此题的关键,注意:两直线平行,内错角相等.14.11 xx-+.【解析】【分析】根据同分母分式加减运算法则化简即可.【详解】原式=11 xx-+,故答案为11 xx-+.【点睛】本题考查了分式的加减运算,熟记运算法则是解题的关键.15.(-2,7).【解析】【详解】解:过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,点A(﹣3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴点D的坐标为:(﹣7,2),∴反比例函数的解析式为:y=﹣14 x①,点C的坐标为:(﹣4,8).设直线BC的解析式为:y=kx+b,则b=6-4k+b=8⎧⎨⎩解得:1k=-2b=6⎧⎪⎨⎪⎩∴直线BC的解析式为:y=﹣12x+6②,联立①②得:x=-2y=7⎧⎨⎩或x=14y=-1⎧⎨⎩(舍去),∴点E的坐标为:(﹣2,7).故答案为(﹣2,7).16.2【解析】试题分析:由OA=1,OC=6,可得矩形OABC的面积为6;再根据反比例函数系数k的几何意义,可知k=6,∴反比例函数的解析式为6yx=;设正方形ADEF的边长为a,则点E的坐标为(a+1,a),∵点E 在抛物线上,∴61aa=+,整理得260a a+-=,解得2a=或3a=-(舍去),故正方形ADEF的边长是2.考点:反比例函数系数k的几何意义.17.4610⨯【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】60000小数点向左移动4位得到6,所以60000用科学记数法表示为:6×1,故答案为:6×1.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.17【解析】过点B作EF⊥l2,交l1于E,交l1于F,如图,∵EF⊥l2,l1∥l2∥l1,∴EF⊥l1⊥l1,∴∠ABE+∠EAB=90°,∠AEB=∠BFC=90°,又∵∠ABC=90°,∴∠ABE+∠FBC=90°,∴∠EAB=∠FBC,在△ABE和△BCF中,{AEB BFC EAB FCB AB BC∠=∠∠=∠=,∴△ABE≌△BCF,∴BE=CF=5,AE=BF=7,在Rt△ABE中,AB2=BE2+AE2,∴AB2=74,∴S△ABC=12AB⋅BC=12AB2=17.故答案是17.点睛:本题考查了全等三角形的判定和性质、勾股定理、平行线间的距离,三角形的面积公式,解题的关键是做辅助线,构造全等三角形,通过证明三角形全等对应边相等,再利用三角形的面积公式即可得解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=﹣18x2﹣14x+3;(2)①点D坐标为(﹣32,0);②点M(32,0).【解析】【分析】(1)应用待定系数法问题可解;(2)①通过分类讨论研究△APQ和△CDO全等②由已知求点D坐标,证明DN∥BC,从而得到DN为中线,问题可解.【详解】(1)将点(-6,0),C (0,3),B (4,0)代入y=ax 2+bx+c ,得366016400a b c a b c c -+⎧⎪++⎨⎪⎩===, 解得:18143a b c ⎧-⎪⎪⎪-⎨⎪⎪⎪⎩=== , ∴抛物线解析式为:y=-18x 2-14x+3; (2)①存在点D ,使得△APQ 和△CDO 全等,当D 在线段OA 上,∠QAP=∠DCO ,AP=OC=3时,△APQ 和△CDO 全等,∴tan ∠QAP=tan ∠DCO ,OC OD OA OC=, ∴3 63OD =, ∴OD=32, ∴点D 坐标为(-32,0). 由对称性,当点D 坐标为(32,0)时, 由点B 坐标为(4,0),此时点D (32,0)在线段OB 上满足条件. ②∵OC=3,OB=4,∴BC=5,∵∠DCB=∠CDB ,∴BD=BC=5,∴OD=BD-OB=1,则点D 坐标为(-1,0)且AD=BD=5,连DN ,CM ,则DN=DM ,∠NDC=∠MDC ,∴∠NDC=∠DCB ,∴DN ∥BC , ∴1AN AD NC DB==, 则点N 为AC 中点.∴DN 时△ABC 的中位线,∵DN=DM=12BC=52, ∴OM=DM-OD=32 ∴点M (32,0) 【点睛】 本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识.解答时,注意数形结合.20.(1)证明见解析;(2)110°.【解析】分析:(1)欲证明DB=DE ,只要证明∠BED=∠ABD 即可;(2)因为△OAB 是等腰三角形,属于只要求出∠OBA 即可解决问题;详解:(1)证明:∵DC ⊥OA ,∴∠OAB+∠CEA=90°,∵BD 为切线,∴OB ⊥BD ,∴∠OBA+∠ABD=90°,∵OA=OB ,∴∠OAB=∠OBA ,∴∠CEA=∠ABD ,∵∠CEA=∠BED ,∴∠BED=∠ABD,∴DE=DB.(2)∵DE=DB,∠BDE=70°,∴∠BED=∠ABD=55°,∵BD为切线,∴OB⊥BD,∴∠OBA=35°,∵OA=OB,∴∠OBA=180°-2×35°=110°.点睛:本题考查圆周角定理、切线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(4)500;(4)440,作图见试题解析;(4)4.4.【解析】【分析】(4)利用0.5小时的人数除以其所占比例,即可求出样本容量;(4)利用样本容量乘以4.5小时的百分数,即可求出4.5小时的人数,画图即可;(4)计算出该市中小学生一天中阳光体育运动的平均时间即可.【详解】解:(4)由题意可得:0.5小时的人数为:400人,所占比例为:40%,∴本次调查共抽样了500名学生;(4)4.5小时的人数为:500×4.4=440(人),如图所示:(4)根据题意得:1000.5200120 1.580210020012080⨯+⨯+⨯+⨯+++=4.4,即该市中小学生一天中阳光体育运动的平均时间为4.4小时.考点:4.频数(率)分布直方图;4.扇形统计图;4.加权平均数.22.1【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:() 111 213xx⎧-≤⎪⎨⎪-<⎩①②,解不等式①得:x≤3,解不等式②得:x>﹣2,所以不等式组的解集为:﹣2<x≤3,所以所有整数解的和为:﹣1+0+1+2+3=1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.23.(1)12;(2)14【解析】试题分析:(1)利用概率公式直接计算即可;(2)画出树状图得到所有可能的结果,再找到回答正确的数目即可求出小丽回答正确的概率.试题解析:(1)∵对第二个字是选“重”还是选“穷”难以抉择,∴若随机选择其中一个正确的概率=,故答案为;(2)画树形图得:由树状图可知共有4种可能结果,其中正确的有1种,所以小丽回答正确的概率=.考点:列表法与树状图法;概率公式.24.(1)C(﹣3,2);(2)y1=6x,y2=﹣13x+3;(3)3<x<1.【解析】分析:(1)过点C作CN⊥x轴于点N,由已知条件证Rt△CAN≌Rt△AOB即可得到AN=BO=1,CN=AO=2,NO=NA+AO=3结合点C在第二象限即可得到点C的坐标;(2)设△ABC向右平移了c个单位,则结合(1)可得点C′,B′的坐标分别为(﹣3+c,2)、(c,1),再设反比例函数的解析式为y1=kx,将点C′,B′的坐标代入所设解析式即可求得c的值,由此即可得到点C′,B′的坐标,这样用待定系数法即可求得两个函数的解析式了;(3)结合(2)中所得点C′,B′的坐标和图象即可得到本题所求答案. 详解:(1)作CN⊥x轴于点N,∴∠CAN=∠CAB=∠AOB=90°,∴∠CAN+∠CAN=90°,∠CAN+∠OAB=90°,∴∠CAN=∠OAB,∵A(﹣2,0)B(0,1),∴OB=1,AO=2,在Rt△CAN和Rt△AOB,∵ACN OABANC AOBAC AB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴Rt△CAN≌Rt△AOB(AAS),∴AN=BO=1,CN=AO=2,NO=NA+AO=3,又∵点C在第二象限,∴C(﹣3,2);(2)设△ABC沿x轴的正方向平移c个单位,则C′(﹣3+c,2),则B′(c,1),设这个反比例函数的解析式为:y1=kx,又点C′和B′在该比例函数图象上,把点C′和B′的坐标分别代入y1=kx,得﹣1+2c=c,解得c=1,即反比例函数解析式为y1=6x,此时C′(3,2),B′(1,1),设直线B′C′的解析式y2=mx+n,∵32 61m nm n+=⎧⎨+=⎩,∴133mn⎧=-⎪⎨⎪=⎩,∴直线C′B′的解析式为y2=﹣13x+3;(3)由图象可知反比例函数y1和此时的直线B′C′的交点为C′(3,2),B′(1,1),∴若y 1<y 2时,则3<x <1.点睛:本题是一道综合考查“全等三角形”、“一次函数”、“反比例函数”和“平移的性质”的综合题,解题的关键是:(1)通过作如图所示的辅助线,构造出全等三角形Rt △CAN 和Rt △AOB ;(2)利用平移的性质结合点B 、C 的坐标表达出点C′和B′的坐标,由点C′和B′都在反比例函数的图象上列出方程,解方程可得点C′和B′的坐标,从而使问题得到解决.25.1.5千米【解析】【分析】先根据相似三角形的判定得出△ABC ∽△AMN,再利用相似三角形的性质解答即可【详解】在△ABC 与△AMN 中,305549AC AB ==,151.89AM AN ==, ∴AC AM AB AN =,∵∠A=∠A ,∴△ABC ∽△ANM , ∴AC AM BC MN =,即30145MN =,解得MN=1.5(千米) ,因此,M 、N 两点之间的直线距离是1.5千米.【点睛】此题考查相似三角形的应用,解题关键在于掌握运算法则26.(1)证明见解析;(2)补图见解析;ABGD S 2四边形=【解析】【分析】()1根据等腰三角形的性质得到ABD ADB ∠=∠,等量代换得到ABD CDE ∠=∠,根据余角的性质即可得到结论;()2根据平行线的判定定理得到AD ∥BG ,推出四边形ABGD 是平行四边形,得到平行四边形ABGD 是菱形,设AB=BG=GD=AD=x ,解直角三角形得到22BF BG x == ,过点B 作BH AD ⊥ 于H ,根据平行四边形的面积公式即可得到结论.【详解】解:()1AB AD Q =, ABD ADB ∠∠∴=,ADB CDE ∠∠=Q ,ABD CDE ∠∠∴=,BAC 90∠=o Q ,ABD ACB 90∠∠∴+=o ,CE AE ⊥Q ,DCE CDE 90∠∠∴+=o ,ACB DCE ∠∠∴=;()2补全图形,如图所示:BAD 45∠=o Q ,BAC 90∠=o ,BAE CAE 45∠∠∴==o ,F ACF 45∠∠==o ,AE CF ⊥Q ,BG CF ⊥,AD //BG ∴,BG CF ⊥Q ,BAC 90∠=o ,且ACB DCE ∠∠=,AB BG ∴=,AB AD =Q ,BG AD ∴=,∴四边形ABGD 是平行四边形,AB AD =Q ,∴平行四边形ABGD 是菱形,设AB BG GD AD x ====,BF ∴==,AB BF x 2∴+==x ∴=过点B 作BH AD ⊥于H ,BH 1∴==.ABGD S AD BH ∴=⨯=四边形故答案为(1)证明见解析;(2)补图见解析;ABGD S 四边形.【点睛】本题考查等腰三角形的性质,平行四边形的判定和性质,菱形的判定和性质,解题的关键是正确的作出辅助线.27.111,1x y =⎧⎨=-⎩;223232x y ⎧=-⎪⎪⎨⎪=⎪⎩;331252x y ⎧=-⎪⎪⎨⎪=-⎪⎩. 【解析】分析:把原方程组中的第二个方程通过分解因式降次,转化为两个一次方程,再分别和第一方程组合成两个新的方程组,分别解这两个新的方程组即可求得原方程组的解.详解:由方程222()x y x y -=+可得,0x y +=,2x y -=;则原方程组转化为223,0.x y x y ⎧-=⎨+=⎩(Ⅰ)或223,2.x y x y ⎧-=⎨-=⎩ (Ⅱ), 解方程组(Ⅰ)得21123,1,21;3.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩, 解方程组(Ⅱ)得43341,1,21;5.2x x y y ⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=-⎪⎩,∴原方程组的解是21123,1,21;3.2xxyy⎧=-⎪=⎧⎪⎨⎨=-⎩⎪=⎪⎩331,25.2xy⎧=-⎪⎪⎨⎪=-⎪⎩.点睛:本题考查的是二元二次方程组的解法,解题的要点有两点:(1)把原方程组中的第2个方程通过分解因式降次转化为两个二元一次方程,并分别和第1个方程组合成两个新的方程组;(2)将两个新的方程组消去y,即可得到关于x的一元二次方程.。
广西省贵港市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列各数中比﹣1小的数是( ) A .﹣2 B .﹣1C .0D .12.一、单选题如图: 在ABC ∆中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若5CM =,则22CE CF +等于( )A .75B .100C .120D .1253.函数y =ax 2与y =﹣ax+b 的图象可能是( )A .B .C .D .4.如图,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ).A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定5.下列图案中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .6.如图,在菱形ABCD 中,AB=BD ,点E 、F 分别是AB 、AD 上任意的点(不与端点重合),且AE=DF ,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE的大小为定值.其中正确的结论个数为()A.4 B.3 C.2 D.17.如图中任意画一个点,落在黑色区域的概率是()A.1B.12C.πD.508.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正确的是()A.a=b•co sA B.c=a•sinA C.a•cotA=b D.a•tanA=b9.如图,把一个矩形纸片ABCD沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′为()。
广西贵港市港南区中考数学二模试卷一、选择题(每题3分,共36分)1.﹣2017的倒数是()A.2017 B.C.﹣D.02.若点A(a﹣2,3)和点B(﹣1,b+5)关于y轴对称,则点C(a,b)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知,则的值是()A.B.C.D.4.若等腰三角形的两条边的长分别为5cm和8cm,则它的周长是()A.13cm B.18cm C.21cm D.18cm或21cm5.下列命题中,真命题的个数是()①同位角相等②经过一点有且只有一条直线与这条直线平行③长度相等的弧是等弧④顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个6.在同一直角坐标系中,若直线y=k1x与双曲线y=没有公共点,则()A.k1k2<0 B.k1k2>0 C.k1+k2<0 D.k1+k2>07.若一元二次方程ax2﹣c=0(ac>0)的两个根分别是n+1与2n﹣4,则=()A.﹣2 B.1 C.2 D.48.已知不等式组仅有2个整数解,那么a的取值范围是()A.a≥2 B.a<4 C.2≤a<4 D.2<a≤49.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是()A.B.C.D.10.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于()A.12.5°B.15° C.20° D.22.5°11.如图,正方形ABCD边长为4,点P从点A运动到点B,速度为1,点Q沿B﹣C﹣D运动,速度为2,点P、Q同时出发,则△BPQ的面积y与运动时间t(t≤4)的函数图象是()A.B.C.D.12.如图,将一个等腰Rt△ABC对折,使∠A与∠B重合,展开后得折痕CD,再将∠A折叠,使C落在AB 上的点F处,展开后,折痕AE交CD于点P,连接PF、EF,下列结论:①tan∠CAE=﹣1;②图中共有4对全等三角形;③若将△PEF沿PF翻折,则点E一定落在AB上;④PC=EC;⑤S四边形DFEP=S△APF.正确的个数是()A.1个B.2个C.3个D.4个二、填空题(每题3分,共18分)13.36的算术平方根是.14.已知a2﹣b2=5,a+b=﹣2,那么代数式a﹣b的值.15.二次函数y=(a﹣1)x2﹣x+a2﹣1 的图象经过原点,则a的值为.16.如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B= .17.如图,在Rt△ABC中,∠CAB=30°,∠C=90°.AD=AC,AB=8,E是AB上任意一点,F是AC上任意一点,则折线DEFB的最短长度为.18.如图,在平面直角坐标系中,直线l:y=x+1交x轴于点A,交y轴于点B,点A1、A2、A3,…在x 轴的正半轴上,点B1、B2、B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A6B7A7的周长是.三、解答题(本大题共8小题,满分66分)19.(1)(π﹣2017)0+|2﹣|﹣4cos30°+(2)先化简,再求值:﹣÷,其中a=.20.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4)、B(3,﹣2)、C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.(3)直接写出C2的坐标.21.如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数(k≠0)的图象上.(1)求a的值;(2)直接写出点P′的坐标;(3)求反比例函数的解析式.22.2016年3月,我校举办了以“读城记”为主题的校读书节暨文化艺术节,为了解初中学生更喜欢下列A、B、C、D哪个比赛,从初中学生随机抽取了部分学生进行调查,每个参与调查的学生只选择最喜欢的一个项目,并把调查结果绘制了两幅不完整的统计图,请回答下列问题:A.“寻找星主播”校园主持人大赛B.“育才音超”校园歌手大赛C.阅读之星评选D.“超级演说家”演讲比赛(1)这次被调查的学生共有人.请你将统计图补充完整.(2)在此调查汇总,抽到了七年级(1)班3人.其中2人喜欢“育才音超”校园歌手大赛、1人喜欢阅读之星评选.抽到八年级(5)班2人,其中1人喜欢“超级演说家”演讲比赛、1人喜欢阅读之星评选.从这5人中随机选两人.用列表或用树状图求出两人都喜欢阅读之星评选的概率.23.小明所在的学校加强学生的体育锻炼,准备从某体育用品商店一次购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据实际情况,需从该商店一次性购买篮球和足球功60个,要求购买篮球和足球的总费用不超过4000元,那么最多可以购买多少个篮球?24.已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为3,∠EAC=60°,求AD的长.25.如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B(3,0).(1)求b、c的值;(2)如图1直线y=kx+1(k>0)与抛物线第一象限的部分交于D点,交y轴于F点,交线段BC于E点.求的最大值;(3)如图2,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.问在直线BC下方的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.26.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.广西贵港市港南区中考数学二模试卷参考答案与试题解析一、选择题(每题3分,共36分)1.﹣2017的倒数是()A.2017 B.C.﹣D.0【考点】17:倒数.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:﹣2017的倒数是﹣.故选:C.2.若点A(a﹣2,3)和点B(﹣1,b+5)关于y轴对称,则点C(a,b)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】P5:关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点的横坐标互为相反数,纵坐标相等,可得答案.【解答】解:点A(a﹣2,3)和点B(﹣1,b+5)关于y轴对称,得a﹣2=1,b+5=3.解得a=3,b=﹣2.则点C(a,b)在第四象限,故选:D.3.已知,则的值是()A.B.C.D.【考点】S1:比例的性质.【分析】根据等式的性质,可用b表示a,根据分式的性质,可得答案.【解答】解:由,得a=b,==﹣,故选:D.4.若等腰三角形的两条边的长分别为5cm和8cm,则它的周长是()A.13cm B.18cm C.21cm D.18cm或21cm【考点】KH:等腰三角形的性质;K6:三角形三边关系.【分析】等腰三角形两边的长为5cm和8cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是5cm,底边是8cm时,能构成三角形,则其周长=5+5+8=18cm;②当底边是5cm,腰长是8cm时,能构成三角形,则其周长=5+8+8=21cm.故选D.5.下列命题中,真命题的个数是()①同位角相等②经过一点有且只有一条直线与这条直线平行③长度相等的弧是等弧④顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个【考点】O1:命题与定理.【分析】根据平行线的性质对①进行判断;根据平行公理对②进行判断;根据等弧的定义对③进行判断;根据中点四边的判定方法可判断顺次连接菱形各边中点得到的四边形为平行四边形,加上菱形的对角线垂直可判断中点四边形为矩形.【解答】解:两直线平行,同位角相等,所以①错误;经过直线外一点有且只有一条直线与这条直线平行,所以②错误;在同圆或等圆中,长度相等的弧是等弧,所以③选项错误;顺次连接菱形各边中点得到的四边形是矩形,所以④正确.故选A.6.在同一直角坐标系中,若直线y=k1x与双曲线y=没有公共点,则()A.k1k2<0 B.k1k2>0 C.k1+k2<0 D.k1+k2>0【考点】G8:反比例函数与一次函数的交点问题.【分析】因为直线y=k1x(k1≠0)和双曲线y=(k2≠0)在同一坐标系内的图象无交点,那么方程k1x=无解,据此可得结果.【解答】解:依题意可得,方程k1x=无解,∴x2=<0,也就是k1和k2异号,即k1k2<0.故选A.7.若一元二次方程ax2﹣c=0(ac>0)的两个根分别是n+1与2n﹣4,则=()A.﹣2 B.1 C.2 D.4【考点】AB:根与系数的关系.【分析】根据题意得到n+1与2n﹣4互为相反数,求出n的值,确定出所求式子的值即可.【解答】解:∵一元二次方程ax2﹣c=0(ac>0)的两个根分别是n+1与2n﹣4,∴n+1与2n﹣4互为相反数,即n+1+2n﹣4=0,解得:n=1,∴方程的两根为2和﹣2,则=4,故选D8.已知不等式组仅有2个整数解,那么a的取值范围是()A.a≥2 B.a<4 C.2≤a<4 D.2<a≤4【考点】CC:一元一次不等式组的整数解.【分析】首先解不等式组确定不等式组的解集,然后根据不等式组仅有2个整数解即可得到关于a的不等式组,求得a的值.【解答】解:,解①得:x>3﹣a,解②得:x<4,则不等式组的解集是:3﹣a<x<4.不等式组仅有2个整数解,则是2,3.则1≤3﹣<2.解得:2<a≤4.故选D.9.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是()A.B.C.D.【考点】MO:扇形面积的计算;L5:平行四边形的性质.【分析】根据题意可以得到平行四边形底边AB上的高,由图可知图中阴影部分的面积是平行四边形的面积减去扇形的面积和△EBC的面积.【解答】解:作DF⊥AB于点F,∵AD=2,∠A=30°,∠DFA=90°,∴DF=1,∵AD=AE=2,AB=4,∴BE=2,∴阴影部分的面积是:4×1﹣=3﹣,故选A.10.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于()A.12.5°B.15° C.20° D.22.5°【考点】M5:圆周角定理;KM:等边三角形的判定与性质;L5:平行四边形的性质.【分析】根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.【解答】解:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圆周角定理得∠BAF=∠BOF=15°,故选:B.11.如图,正方形ABCD边长为4,点P从点A运动到点B,速度为1,点Q沿B﹣C﹣D运动,速度为2,点P、Q同时出发,则△BPQ的面积y与运动时间t(t≤4)的函数图象是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】本题应分两段进行解答,①点P在AB上运动,点Q在BC上运动,②点P在AB上运动,点Q在CD 上运动,依次得出y与t的关系式即可得出函数图象.【解答】解:①点P在AB上运动,点Q在BC上运动,即0≤t≤2,此时AP=t,BP=4﹣t,QB=2t,故可得y=PB•QB=(4﹣t)•2t=﹣t2+4t,函数图象为开口向下的抛物线;②点P在AB上运动,点Q在CD上运动,即2<t≤4此时AP=t,BP=4﹣t,△BPQ底边PB上的高保持不变,为正方形的边长4,故可得y=BP×4=﹣2t+8,函数图象为直线.综上可得全过程的函数图象,先是开口向下的抛物线,然后是直线;故选:B.12.如图,将一个等腰Rt△ABC对折,使∠A与∠B重合,展开后得折痕CD,再将∠A折叠,使C落在AB 上的点F处,展开后,折痕AE交CD于点P,连接PF、EF,下列结论:①tan∠CAE=﹣1;②图中共有4对全等三角形;③若将△PEF沿PF翻折,则点E一定落在AB上;④PC=EC;⑤S四边形DFEP=S△APF.正确的个数是()A.1个B.2个C.3个D.4个【考点】KD:全等三角形的判定与性质;PB:翻折变换(折叠问题).【分析】①正确.作EM∥AB交AC于M.设CM=CE=a,则ME=AM=a,根据tan∠CAE=即可判断.②正确.根据△CDA≌△CDB,△AEC≌△AEF,△APC≌△APF,△PEC≌△PEF即可判断.③正确.由△PEC≌△PEF得到∠PFA=∠PFE=45°,由此即可判断.④正确.只要证明∠CPE=∠CEP=67.5°,⑤错误.假设结论成立,推出矛盾即可.【解答】解:①正确.作EM∥AB交AC于M.∵CA=CB,∠ACB=90°,∴∠CAB=∠CBA=45°,∵∠CAE=∠BAE=∠CA B=22.5°,∴∠MEA=∠EAB=22.5°,∴∠CME=45°=∠CEM,设CM=CE=a,则ME=AM=a,∴tan∠CAE===﹣1,故①正确,②正确.△CDA≌△CDB,△AEC≌△AEF,△APC≌△APF,△PEC≌△PEF,故②正确,③正确.∵△PEC≌△PEF,∴∠PCE=∠PFE=45°,∵∠EFA=∠ACE=90°,∴∠PFA=∠PFE=45°,∴若将△PEF沿PF翻折,则点E一定落在AB上,故③正确.④正确.∵∠CPE=∠CAE+∠ACP=67.5°,∠CEP=90°﹣∠CAE=67.5°,∴∠CPE=∠CEP,∴CP=CE,故④正确,⑤错误.∵△APC≌△APF,∴S△APC=S△APF,假设S△APF=S四边形DFPE,则S△APC=S四边形DFPE,∴S△ACD=S△AEF,∵S△ACD=S△ABC,S△AEF=S△AEC≠S△ABC,∴矛盾,假设不成立.故⑤错误.二、填空题(每题3分,共18分)13.36的算术平方根是 6 .【考点】22:算术平方根.【分析】根据算术平方根的定义,即可解答.【解答】解:36的算术平方根是6.故答案为:6.14.已知a2﹣b2=5,a+b=﹣2,那么代数式a﹣b的值﹣2.5 .【考点】54:因式分解﹣运用公式法.【分析】利用平方差公式可得a﹣b=(a2﹣b2)÷(a+b),然后把已知条件代入求值即可.【解答】解:∵a2﹣b2=5,a+b=﹣2,∴a﹣b=(a2﹣b2)÷(a+b)=5÷(﹣2)=﹣2.5.故答案为:﹣2.5.15.二次函数y=(a﹣1)x2﹣x+a2﹣1 的图象经过原点,则a的值为﹣1 .【考点】H5:二次函数图象上点的坐标特征.【分析】将(0,0)代入y=(a﹣1)x2﹣x+a2﹣1 即可得出a的值.【解答】解:∵二次函数y=(a﹣1)x2﹣x+a2﹣1 的图象经过原点,∴a2﹣1=0,∴a=±1,∵a﹣1≠0,∴a≠1,∴a的值为﹣1.故答案为:﹣1.16.如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B= 36°.【考点】JA:平行线的性质.【分析】根据角平分线的定义可得∠BCD=2∠DCE,然后根据两直线平行,内错角相等可得∠B=∠BCD.【解答】解:∵CE平分∠BCD,∴∠BCD=2∠DCE=2×18=36°,∵AB∥CD,∴∠B=∠BCD=36°.故答案为:36°.17.如图,在Rt△ABC中,∠CAB=30°,∠C=90°.AD=AC,AB=8,E是AB上任意一点,F是AC上任意一点,则折线DEFB的最短长度为.【考点】PA:轴对称﹣最短路线问题.【分析】利用轴对称求最短路径的方法,重新构造直角三角形,进而利用勾股定理求出即可.【解答】解:作D点关于AB的对称点D′,B点关于AC的对称点B′,连接D′B′分别交AB于点E,AC 于点F,作B′R⊥AB,过点D′作D′W⊥B′R于点W,∵∠CAB=30°,∠C=90°.AD=AC,AB=8,∴BC=4,AC=4,则AD=,BB′=8,B′R=4,∴DT=AD=,AT==,BR=4,∴RW=,D′W=8﹣﹣4=,∴B′W=,B′D′===.故答案为:.18.如图,在平面直角坐标系中,直线l:y=x+1交x轴于点A,交y轴于点B,点A1、A2、A3,…在x 轴的正半轴上,点B1、B2、B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A6B7A7的周长是192.【考点】F8:一次函数图象上点的坐标特征;D2:规律型:点的坐标.【分析】先根据直线的解析式求出直线l与两坐标轴的交点坐标,即得出OA=,OB=1,并求出∠OAB=30°,再由等边三角形和外角定理依次求出∠OB1A=∠AB2A1=∠AB3A2=30°,根据等角对等边得:A1A2=A1B2=AA1=2OA1=2,从而发现了规律得出等边△A6B7A7的边长为64,从而求得周长.【解答】解:当x=0时,y=1,则B(0,1),当y=0时,x=﹣,则A(﹣,0),∴OA=,OB=1,∵tan∠OAB===,∴∠OAB=30°,∵△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,∴∠A1OB1=∠A2A1B2=∠A3A2B3=60°,∴∠OB1A=∠AB2A1=∠AB3A2=30°,∴OB1=OA=,A1B2=AA1,A2B3=AA2,则OA1=OB1=,A1B2=AA1=2,∴A1A2=A1B2=AA1=2OA1=2,同理:A2A3=A2B3=2A1A2=4,A3A4=2A2A3=8,A4A5=2A3A4=16,A5A6=2A4A5=32∴A6A7=2A5A6=64,∴△A6B7A7的周长是:3×64=192,故答案为:192.三、解答题(本大题共8小题,满分66分)19.(1)(π﹣2017)0+|2﹣|﹣4cos30°+(2)先化简,再求值:﹣÷,其中a=.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】(1)根据零指数幂、绝对值、特殊角的三角函数值可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:(1)(π﹣2017)0+|2﹣|﹣4cos30°+=1+﹣4×+4=1+2﹣+4=7﹣3;(2)﹣÷===,当a=时,原式=.20.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4)、B(3,﹣2)、C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.(3)直接写出C2的坐标.【考点】SD:作图﹣位似变换;P7:作图﹣轴对称变换.【分析】(1)作出A、B、C关于x轴的对称点A1,B1,C1,△A1B1C1即为所求;(2)延长OA1到A2使得OA2=2OA1,同法作出B2,C2,△A2B2C2即为所求;(3)观察图象即可解决问题;【解答】解:(1)△ABC关于x轴对称的△A1B1C1如图所示;(2)△A1B1C1的位似图形△A2B2C2如图所示,(3)由图象可知C2(11,4).21.如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数(k≠0)的图象上.(1)求a的值;(2)直接写出点P′的坐标;(3)求反比例函数的解析式.【考点】G7:待定系数法求反比例函数解析式;F8:一次函数图象上点的坐标特征;P5:关于x轴、y轴对称的点的坐标.【分析】(1)把(﹣2,a)代入y=﹣2x中即可求a;(2)坐标系中任一点关于y轴对称的点的坐标,其中横坐标等于原来点横坐标的相反数,纵坐标不变;(3)把P′代入y=中,求出k,即可得出反比例函数的解析式.【解答】解:(1)把(﹣2,a)代入y=﹣2x中,得a=﹣2×(﹣2)=4,∴a=4;(2)∵P点的坐标是(﹣2,4),∴点P关于y轴的对称点P′的坐标是(2,4);(3)把P′(2,4)代入函数式y=,得4=,∴k=8,∴反比例函数的解析式是y=.22.2016年3月,我校举办了以“读城记”为主题的校读书节暨文化艺术节,为了解初中学生更喜欢下列A、B、C、D哪个比赛,从初中学生随机抽取了部分学生进行调查,每个参与调查的学生只选择最喜欢的一个项目,并把调查结果绘制了两幅不完整的统计图,请回答下列问题:A.“寻找星主播”校园主持人大赛B.“育才音超”校园歌手大赛C.阅读之星评选D.“超级演说家”演讲比赛(1)这次被调查的学生共有200 人.请你将统计图补充完整.(2)在此调查汇总,抽到了七年级(1)班3人.其中2人喜欢“育才音超”校园歌手大赛、1人喜欢阅读之星评选.抽到八年级(5)班2人,其中1人喜欢“超级演说家”演讲比赛、1人喜欢阅读之星评选.从这5人中随机选两人.用列表或用树状图求出两人都喜欢阅读之星评选的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1))根据A的人数为20人,所以占10%,可得总人数=20÷10%=200人,由此即可解决问题;(2)利用列表法,求出共有20种可能,其中所选两人都喜欢阅读之星有2种,再根据概率公式计算即可;【解答】解:(1)∵A的人数为20人,所以占10%,∴总人数=20÷10%=200人,∴B的人数为200×40%=80人,C的人数=200﹣80﹣20﹣40=60人,条形图如图所示,故答案为200.(2)设绿1,绿2表示喜欢阅读之星的学生,红1,红2,红3表示喜欢其他的学生,列表如下:由表格可知,共有20种可能,其中所选两人都喜欢阅读之星有2种,所以两人都喜欢阅读之星评选的概率==.23.小明所在的学校加强学生的体育锻炼,准备从某体育用品商店一次购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据实际情况,需从该商店一次性购买篮球和足球功60个,要求购买篮球和足球的总费用不超过4000元,那么最多可以购买多少个篮球?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)设每个篮球x元,每个足球y元,根据买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元,列出方程组,求解即可;(2)设买m个篮球,则购买(60﹣m)个足球,根据总价钱不超过4000元,列不等式求出x的最大整数解即可.【解答】解:(1)设每个篮球x元,每个足球y元,由题意得,,解得:,答:每个篮球80元,每个足球50元;(2)设买m个篮球,则购买(60﹣m)个足球,由题意得,80,m+50(60﹣m)≤4000,解得:m≤33,∵m为整数,∴m最大取33,答:最多可以买33个篮球.24.已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为3,∠EAC=60°,求AD的长.【考点】MD:切线的判定.【分析】(1)连接FO,由F为BC的中点,AO=CO,得到OF∥AB,由于AC是⊙O的直径,得出CE⊥AE,根据OF∥AB,得出OF⊥CE,于是得到OF所在直线垂直平分CE,推出FC=FE,OE=OC,再由∠ACB=90°,即可得到结论.(2)证出△AOE是等边三角形,得到∠EOA=60°,再由直角三角形的性质即可得到结果.【解答】证明:(1)如图1,连接FO,∵F为BC的中点,AO=CO,∴OF∥AB,∵AC是⊙O的直径,∴CE⊥AE,∵OF∥AB,∴OF⊥CE,∴OF所在直线垂直平分CE,∴FC=FE,OE=OC,∴∠FEC=∠FCE,∠0EC=∠0CE,∵∠ACB=90°,即:∠0CE+∠FCE=90°,∴∠0EC+∠FEC=90°,即:∠FEO=90°,∴FE为⊙O的切线;(2)如图2,∵⊙O的半径为3,∴AO=CO=EO=3,∵∠EAC=60°,OA=OE,∴∠EOA=60°,∴∠COD=∠EOA=60°,∵在Rt△OCD中,∠COD=60°,OC=3,∴CD=,∵在Rt△ACD中,∠A CD=90°,CD=,AC=6,∴AD=.25.如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B(3,0).(1)求b、c的值;(2)如图1直线y=kx+1(k>0)与抛物线第一象限的部分交于D点,交y轴于F点,交线段BC于E点.求的最大值;(3)如图2,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.问在直线BC下方的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)将点A、B的坐标带入到抛物线解析式中,得出关于b、c的二元一次方程组,解方程组即可得出结论;(2)作DN∥CF交CB于N,由DN∥CF可得出△DEN∽△FEC,根据相似三角形的性质得出,由(1)可得出抛物线的解析式,令抛物线解析式中x=0则可得出点C的坐标,由点B、C的坐标可得出直线BC的解析式,设出点D的坐标,则可得出点N的坐标,由直线DF的解析式可得出点F的坐标,从而得出DN、CF 的长度,由DN的长度结合二次函数的性质即可得出结论;(3)假设存在符合题意的点Q.设PM与x轴交于点G,过点G作作直线BC的平行线.由抛物线的解析式可得出顶点P的坐标,由此得出对称轴的解析式,结合直线BC的解析式可得出点M的坐标,结合点G的坐标可知PM=GM,由此得出满足题意的点Q为“过点G与直线BC平行的直线和抛物线的交点”,由G点的坐标结合直线BC的解析式即可得出过点G与BC平行的直线的解析式,联立直线与抛物线解析式得出关于x、y的二元二次方程组,解方程即可得出结论.【解答】解:(1)将点A(﹣1,0)、B(3,0)带入到抛物线解析式中得:,解得:.(2)作DN∥CF交CB于N,如图1所示.∵DN∥CF,∴△DEN∽△FEC,∴.∵抛物线的解析式为y=﹣x2+2x+3,∴点C的坐标为(0,3).∴直线BC的解析式为y=﹣x+3.令直线y=kx+1中x=0,则y=1,即点F的坐标为(0,1).设点D的坐标为(m,﹣m2+2m+3),则点N的坐标为(m,﹣m+3),∴DN=﹣m2+3m,CF=3﹣1=2,∴=,∵DN=﹣m2+3m=﹣+的最大值为,∴的最大值为.(3)假设存在符合题意的点Q.∵抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴P点的坐标为(1,4),PM的解析式为x=1,∵直线BC的解析式为y=﹣x+3,∴M的坐标为(1,2),∵点G的坐标为(1,0),∴PM=GM=2.设PM与x轴交于点G,过点G作作直线BC的平行线,如图2所示.∴过点G与BC平行的直线为y=﹣x+1.联立直线与抛物线解析式得:,解得:或.∴点Q的坐标为(,﹣)或(,﹣).∵平行线间距离处处相等,且点M为线段PG的中点,∴点Q到直线BC的距离与点P到直线的距离相等.故在直线BC下方的抛物线上存在点Q,使得△QMB与△PMB的面积相等,点Q的坐标为(,﹣)或(,﹣).26.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:垂直.②BC,CD,CF之间的数量关系为:BC=CD+CF ;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.【考点】LO:四边形综合题.【分析】(1)①根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论;②由正方形ADEF的性质可推出△DAB≌△FAC,根据全等三角形的性质得到CF=BD,∠ACF=∠ABD,根据余角的性质即可得到结论;(2)根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质以及等腰直角三角形的角的性质可得到结论.(3)根据等腰直角三角形的性质得到BC=AB=4,AH=BC=2,求得DH=3,根据正方形的性质得到AD=DE,∠ADE=90°,根据矩形的性质得到NE=CM,EM=CN,由角的性质得到∠ADH=∠DEM,根据全等三角形的性质得到EM=DH=3,DM=AH=2,等量代换得到CN=EM=3,EN=CM=3,根据等腰直角三角形的性质得到CG=BC=4,根据勾股定理即可得到结论.【解答】解:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠B=∠ACF,∴∠ACB+∠ACF=90°,即BC⊥CF;故答案为:垂直;②△DAB≌△FAC,∴CF=BD,∵BC=BD+CD,∴BC=CF+CD;故答案为:BC=CF+CD;(2)CF⊥BC成立;BC=CD+CF不成立,CD=CF+BC.∵正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠ABD=∠ACF,∵∠BAC=90°,AB=AC,∴∠ACB=∠ABC=45°.∴∠ABD=180°﹣45°=135°,∴∠BCF=∠ACF﹣∠ACB=135°﹣45°=90°,∴CF⊥BC.∵CD=DB+BC,DB=CF,∴CD=CF+BC.(3)解:过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,∵∠BAC=90°,AB=AC,∴BC=AB=4,AH=BC=2,∴CD=BC=1,CH=BC=2,∴DH=3,由(2)证得BC⊥CF,CF=BD=5,∵四边形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四边形CMEN是矩形,∴NE=CM,EM=CN,∵∠AHD=∠ADE=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠DEM=90°,∴∠ADH=∠DEM,在△ADH与△DEM中,,∴△ADH≌△DEM,∴EM=DH=3,DM=AH=2,∴CN=EM=3,EN=CM=3,∵∠ABC=45°,∴∠BGC=45°,∴△BCG是等腰直角三角形,∴CG=BC=4,∴GN=1,∴EG==.。
广西贵港市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.7的相反数是()A.7 B.﹣7 C.D.﹣2.数据3,2,4,2,5,3,2的中位数和众数分别是()A.2,3 B.4,2 C.3,2 D.2,23.如图是一个空心圆柱体,它的左视图是()A.B.C.D.4.下列二次根式中,最简二次根式是()A.B.C. D.5.下列运算正确的是()A.3a2+a=3a3B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a26.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限7.下列命题中假命题是()A.正六边形的外角和等于360°B.位似图形必定相似C.样本方差越大,数据波动越小D.方程x2+x+1=0无实数根8.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A.B.C.D.19.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A.45°B.60°C.75°D.85°10.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=2(x﹣1)2+1 D.y=2(x+1)2+111.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC 的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()A.4 B.3 C.2 D.112.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②的最小值是,其中正确△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN结论的个数是()A.2 B.3 C.4 D.5二、填空题(每题3分,满分18分,将答案填在答题纸上)13.计算:﹣3﹣5= .14.中国的领水面积约为370 000km2,将数370 000用科学记数法表示为.15.如图,AB∥CD,点E在AB上,点F在CD上,如果∠CFE:∠EFB=3:4,∠ABF=40°,那么∠BEF的度数为.16.如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为.17.如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与交于点D,以O为圆心,OC的长为半径作交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为.(结果保留π)18.如图,过C(2,1)作AC∥x轴,BC∥y轴,点A,B都在直线y=﹣x+6上,若双曲线y=(x>0)与△ABC总有公共点,则k的取值范围是.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(1)计算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化简,在求值:(﹣)+,其中a=﹣2+.20.尺规作图(不写作法,保留作图痕迹):已知线段a和∠AOB,点M在OB上(如图所示).(1)在OA边上作点P,使OP=2a;(2)作∠AOB的平分线;(3)过点M作OB的垂线.21.如图,一次函数y=2x﹣4的图象与反比例函数y=的图象交于A,B两点,且点A的横坐标为3.(1)求反比例函数的解析式;(2)求点B的坐标.22.在开展“经典阅读”活动中,某学校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题:频率分布表阅读时间(小时)频数(人)频率1≤x<2180.12 2≤x<3a m 3≤x<4450.3 4≤x<536n5≤x<6210.14合计b1(1)填空:a= ,b= ,m= ,n= ;(2)将频数分布直方图补充完整(画图后请标注相应的频数);(3)若该校由3000名学生,请根据上述调查结果,估算该校学生一周的课外阅读时间不足三小时的人数.23.某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?24.如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=,求⊙O的半径.25.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.(1)写出C,D两点的坐标(用含a的式子表示);(2)设S△BCD :S△ABD=k,求k的值;(3)当△BCD是直角三角形时,求对应抛物线的解析式.26.已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC边上的一个动点,将△ABD沿BD所在直线折叠,使点A落在点P处.(1)如图1,若点D是AC中点,连接PC.①写出BP,BD的长;②求证:四边形BCPD是平行四边形.(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求PH的长.广西贵港市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.7的相反数是()A.7 B.﹣7 C.D.﹣【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:7的相反数是﹣7,故选:B.2.数据3,2,4,2,5,3,2的中位数和众数分别是()A.2,3 B.4,2 C.3,2 D.2,2【考点】W5:众数;W4:中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:2,2,2,3,3,4,5,最中间的数是3,则这组数据的中位数是3;2出现了3次,出现的次数最多,则众数是2.故选:C.3.如图是一个空心圆柱体,它的左视图是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是三个矩形,中间矩形的左右两边是虚线,故选:B.4.下列二次根式中,最简二次根式是()A.B.C. D.【考点】74:最简二次根式.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含分母,故C不符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意;故选:A.5.下列运算正确的是()A.3a2+a=3a3B.2a3•(﹣a2)=2a5C.4a6+2a2=2a3D.(﹣3a)2﹣a2=8a2【考点】49:单项式乘单项式;35:合并同类项;47:幂的乘方与积的乘方.【分析】运用合并同类项,单项式乘以单项式,幂的乘方等运算法则运算即可.【解答】解:A.3a2与a不是同类项,不能合并,所以A错误;B.2a3•(﹣a2)=2×(﹣1)a5=﹣2a5,所以B错误;C.4a6与2a2不是同类项,不能合并,所以C错误;D.(﹣3a)2﹣a2=9a2﹣a2=8a2,所以D正确,故选D.6.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】D1:点的坐标.【分析】分点P的横坐标是正数和负数两种情况讨论求解.【解答】解:①m﹣3>0,即m>3时,﹣2m<﹣6,4﹣2m<﹣2,所以,点P(m﹣3,4﹣2m)在第四象限,不可能在第一象限;②m﹣3<0,即m<3时,﹣2m>﹣6,4﹣2m>﹣2,点P(m﹣3,4﹣2m)可以在第二或三象限,综上所述,点P不可能在第一象限.故选A.7.下列命题中假命题是()A.正六边形的外角和等于360°B.位似图形必定相似C.样本方差越大,数据波动越小D.方程x2+x+1=0无实数根【考点】O1:命题与定理.【分析】根据正确的命题是真命题,错误的命题是假命题进行分析即可.【解答】解:A、正六边形的外角和等于360°,是真命题;B、位似图形必定相似,是真命题;C、样本方差越大,数据波动越小,是假命题;D、方程x2+x+1=0无实数根,是真命题;故选:C.8.从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A.B.C.D.1【考点】X6:列表法与树状图法;K6:三角形三边关系.【分析】列举出所有等可能的情况数,找出能构成三角形的情况数,即可求出所求概率.【解答】解:从长为3,5,7,10的四条线段中任意选取三条作为边,所有等可能情况有:3,5,7;3,5,10;3,7,10;5,7,10,共4种,其中能构成三角形的情况有:3,5,7;5,7,10,共2种,则P(能构成三角形)==,故选B9.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A.45°B.60°C.75°D.85°【考点】M5:圆周角定理;M4:圆心角、弧、弦的关系.【分析】根据圆周角定理求得∠AOB的度数,则∠AOB的度数一定不小于∠AMB的度数,据此即可判断.【解答】解:∵B是的中点,∴∠AOB=2∠BDC=80°,又∵M是OD上一点,∴∠AMB≤∠AOB=80°.则不符合条件的只有85°.故选D.10.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=2(x﹣1)2+1 D.y=2(x+1)2+1【考点】H6:二次函数图象与几何变换.【分析】根据平移规律,可得答案.【解答】解:由图象,得y=2x2﹣2,由平移规律,得y=2(x﹣1)2+1,故选:C.11.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC 的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()A.4 B.3 C.2 D.1【考点】R2:旋转的性质.【分析】如图连接PC.思想求出PC=2,根据PM≤PC+CM,可得PM≤3,由此即可解决问题.【解答】解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故选B.12.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S的最小值是,其中正确△OMN结论的个数是()A.2 B.3 C.4 D.5【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质.【分析】根据正方形的性质,依次判定△CNB≌△DMC,△OCM≌△OBN,△CON≌△DOM,△OMN ∽△OAD,根据全等三角形的性质以及勾股定理进行计算即可得出结论.【解答】解:∵正方形ABCD中,CD=BC,∠BCD=90°,∴∠BCN+∠DCN=90°,又∵CN⊥DM,∴∠CDM+∠DCN=90°,∴∠BCN=∠CDM,又∵∠CBN=∠DCM=90°,∴△CNB≌△DMC(ASA),故①正确;根据△CNB≌△DMC,可得CM=BN,又∵∠OCM=∠OBN=45°,OC=OB,∴△OCM≌△OBN(SAS),∴OM=ON,∠COM=∠BON,∴∠DOC+∠COM=∠COB+∠BPN,即∠DOM=∠CON,又∵DO=CO,∴△CON≌△DOM(SAS),故②正确;∵∠BON+∠BOM=∠COM+∠BOM=90°,∴∠MON=90°,即△MON是等腰直角三角形,又∵△AOD是等腰直角三角形,∴△OMN∽△OAD,故③正确;∵AB=BC,CM=BN,∴BM=AN,又∵Rt△BMN中,BM2+BN2=MN2,∴AN2+CM2=MN2,故④正确;∵△OCM≌△OBN,∴四边形BMON的面积=△BOC的面积=1,即四边形BMON的面积是定值1,∴当△MNB的面积最大时,△MNO的面积最小,设BN=x=CM,则BM=2﹣x,∴△MNB的面积=x(2﹣x)=﹣x2+x,∴当x=1时,△MNB的面积有最大值,此时S的最小值是1﹣=,故⑤正确;△OMN综上所述,正确结论的个数是5个,故选:D.二、填空题(每题3分,满分18分,将答案填在答题纸上)13.计算:﹣3﹣5= ﹣8 .【考点】1A:有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣3﹣5=﹣8.故答案为:﹣8.14.中国的领水面积约为370 000km2,将数370 000用科学记数法表示为 3.7×105.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n为整数)中n的值,由于370 000有6位,所以可以确定n=6﹣1=5.【解答】解:370 000=3.7×105,故答案为:3.7×105.15.如图,AB∥CD,点E在AB上,点F在CD上,如果∠CFE:∠EFB=3:4,∠ABF=40°,那么∠BEF的度数为60°.【考点】JA:平行线的性质.【分析】先根据平行线的性质,得到∠CFB的度数,再根据∠CFE:∠EFB=3:4以及平行线的性质,即可得出∠BEF的度数.【解答】解:∵AB∥CD,∠ABF=40°,∴∠CFB=180°﹣∠B=140°,又∵∠CFE:∠EFB=3:4,∴∠CFE=∠CFB=60°,∵AB∥CD,∴∠BEF=∠CFE=60°,故答案为:60°.16.如图,点P在等边△ABC的内部,且PC=6,PA=8,PB=10,将线段PC绕点C顺时针旋转60°得到P'C,连接AP',则sin∠PAP'的值为.【考点】R2:旋转的性质;KK:等边三角形的性质;T7:解直角三角形.【分析】连接PP′,如图,先利用旋转的性质得CP=CP′=6,∠PCP′=60°,则可判定△CPP′为等边三角形得到PP′=PC=6,再证明△PCB≌△P′CA得到PB=P′A=10,接着利用勾股定理的逆定理证明△APP′为直角三角形,∠APP′=90°,然后根据正弦的定义求解.【解答】解:连接PP′,如图,∵线段PC绕点C顺时针旋转60°得到P'C,∴CP=CP′=6,∠PCP′=60°,∴△CPP′为等边三角形,∴PP′=PC=6,∵△ABC为等边三角形,∴CB=CA,∠ACB=60°,∴∠PCB=∠P′CA,在△PCB和△P′CA中,∴△PCB≌△P′CA,∴PB=P′A=10,∵62+82=102,∴PP′2+AP2=P′A2,∴△APP′为直角三角形,∠APP′=90°,∴sin∠PAP′===.故答案为.17.如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与交于点D,以O为圆心,OC的长为半径作交OB于点E,若OA=4,∠AOB=120°,则图中阴影部分的面积为π+2.(结果保留π)【考点】MO:扇形面积的计算;KG:线段垂直平分线的性质.【分析】连接OD、AD,根据点C为OA的中点可得∠CDO=30°,继而可得△ADO为等边三角形,求出扇形AOD的面积,最后用扇形AOB的面积减去扇形COE的面积,再减去S空白ADC即可求出阴影部分的面积.【解答】解:连接O、AD,∵点C为OA的中点,∴∠C DO=30°,∠DOC=60°,∴△ADO为等边三角形,∴S扇形AOD==π,∴S阴影=S扇形AOB﹣S扇形COE﹣(S扇形AOD﹣S△COD)=﹣﹣(π﹣×2×2)=π﹣π﹣π+2=π+2.故答案为π+2.18.如图,过C(2,1)作AC∥x轴,BC∥y轴,点A,B都在直线y=﹣x+6上,若双曲线y=(x>0)与△ABC总有公共点,则k的取值范围是2≤k≤9 .【考点】G8:反比例函数与一次函数的交点问题.【分析】把C的坐标代入求出k≥2,解两函数组成的方程组,根据根的判别式求出k≤9,即可得出答案.【解答】解:当反比例函数的图象过C点时,把C的坐标代入得:k=2×1=2;把y=﹣x+6代入y=得:﹣x+6=,x2﹣6x+k=0,△=(﹣6)2﹣4k=36﹣4k,∵反比例函数y=的图象与△ABC有公共点,∴36﹣4k≥0,k≤9,即k的范围是2≤k≤9,故答案为:2≤k≤9.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(1)计算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化简,在求值:(﹣)+,其中a=﹣2+.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;(2)先化简原式,然后将a的值代入即可求出答案.【解答】解:(1)原式=3+1﹣(﹣2)2﹣2×=4﹣4﹣1=﹣1(2)当a=﹣2+原式=+===7+520.尺规作图(不写作法,保留作图痕迹):已知线段a和∠AOB,点M在OB上(如图所示).(1)在OA边上作点P,使OP=2a;(2)作∠AOB的平分线;(3)过点M作OB的垂线.【考点】N3:作图—复杂作图.【分析】(1)在OA上截取OP=2a即可求出点P的位置;(2)根据角平分线的作法即可作出∠AOB的平分线;(3)以M为圆心,作一圆与射线OB交于两点,再以这两点分别为圆心,作两个相等半径的圆交于D点,连接MD即为OB的垂线;【解答】解:(1)点P为所求作;(2)OC为所求作;(3)MD为所求作;21.如图,一次函数y=2x﹣4的图象与反比例函数y=的图象交于A,B两点,且点A的横坐标为3.(1)求反比例函数的解析式;(2)求点B的坐标.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)把x=3代入一次函数解析式求得A的坐标,利用待定系数法求得反比例函数解析式;(2)解一次函数与反比例函数解析式组成的方程组求得B的坐标.【解答】解:(1)把x=3代入y=2x﹣4得y=6﹣4=2,则A的坐标是(3,2).把(3,2)代入y=得k=6,则反比例函数的解析式是y=;(2)根据题意得2x﹣4=,解得x=3或﹣1,把x=﹣1代入y=2x﹣4得y=﹣6,则B的坐标是(﹣1,﹣6).22.在开展“经典阅读”活动中,某学校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题:频率分布表阅读时间(小时)频数(人)频率1≤x<2180.12 2≤x<3a m 3≤x<4450.3 4≤x<536n 5≤x<6210.14合计b1(1)填空:a= 30 ,b= 150 ,m= 0.2 ,n= 0.24 ;(2)将频数分布直方图补充完整(画图后请标注相应的频数);(3)若该校由3000名学生,请根据上述调查结果,估算该校学生一周的课外阅读时间不足三小时的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据阅读时间为1≤x<2的人数及所占百分比可得,求出总人数b=150,再根据频率、频数、总人数的关系即可求出m、n、a;(2)根据数据将频数分布直方图补充完整即可;(3)由总人数乘以时间不足三小时的人数的频率即可.【解答】解:(1)b=18÷0.12=150(人),∴n=36÷150=0.24,∴m=1﹣0.12﹣0.3﹣0.24﹣0.14=0.2,∴a=0.2×150=30;故答案为:30,150,0.2,0.24;(2)如图所示:(3)3000×(0.12+0.2)=960(人);即估算该校学生一周的课外阅读时间不足三小时的人数为960人.23.某次篮球联赛初赛阶段,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,积分超过15分才能获得参赛资格.(1)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;(2)如果乙队要获得参加决赛资格,那么乙队在初赛阶段至少要胜多少场?【考点】C9:一元一次不等式的应用;8A:一元一次方程的应用.【分析】(1)设甲队胜了x场,则负了(10﹣x)场,根据每队胜一场得2分,负一场得1分,利用甲队在初赛阶段的积分为18分,进而得出等式求出答案;(2)设乙队在初赛阶段胜a场,根据积分超过15分才能获得参赛资格,进而得出答案.【解答】解:(1)设甲队胜了x场,则负了(10﹣x)场,根据题意可得:2x+10﹣x=18,解得:x=8,则10﹣x=2,答:甲队胜了8场,则负了2场;(2)设乙队在初赛阶段胜a场,根据题意可得:2a+(10﹣a)≥15,解得:a≥5,答:乙队在初赛阶段至少要胜5场.24.如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.(1)求证:AB是⊙O的切线;(2)若AC=8,tan∠BAC=,求⊙O的半径.【考点】ME:切线的判定与性质;L8:菱形的性质;T7:解直角三角形.【分析】(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP ⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;(2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠DAC=,得到DF=2,根据勾股定理得到AD==2,求得AE=,设⊙O的半径为R,则OE=R ﹣,OA=R,根据勾股定理列方程即可得到结论.【解答】解:(1)连结OP、OA,OP交AD于E,如图,∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°,∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°,∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,∴直线AB与⊙O相切;(2)连结BD,交AC于点F,如图,∵四边形ABCD为菱形,∴DB与AC互相垂直平分,∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,∴DF=2,∴AD==2,∴AE=,在Rt△PAE中,tan∠1==,∴PE=,设⊙O的半径为R,则OE=R﹣,OA=R,在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,∴R=,即⊙O的半径为.25.如图,抛物线y=a(x﹣1)(x﹣3)与x轴交于A,B两点,与y轴的正半轴交于点C,其顶点为D.(1)写出C,D两点的坐标(用含a的式子表示);(2)设S△BCD :S△ABD=k,求k的值;(3)当△BCD是直角三角形时,求对应抛物线的解析式.【考点】HF:二次函数综合题.【分析】(1)令x=0可求得C点坐标,化为顶点式可求得D点坐标;(2)令y=0可求得A、B的坐标,结合D点坐标可求得△ABD的面积,设直线CD交x轴于点E,由C、D坐标,利用待定系数法可求得直线CD的解析式,则可求得E点坐标,从而可表示出△BCD的面积,可求得k的值;(3)由B、C、D的坐标,可表示出BC2、BD2和CD2,分∠CBD=90°和∠CDB=90°两种情况,分别利用勾股定理可得到关于a的方程,可求得a的值,则可求得抛物线的解析式.【解答】解:(1)在y=a(x﹣1)(x﹣3),令x=0可得y=3a,∴C(0,3a),∵y=a(x﹣1)(x﹣3)=a(x2﹣4x+3)=a(x﹣2)2﹣a,∴D(2,﹣a);(2)在y=a(x﹣1)(x﹣3)中,令y=0可解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∴S△ABD=×2×a=a,如图,设直线CD交x轴于点E,设直线CD解析式为y=kx+b,把C、D的坐标代入可得,解得,∴直线CD解析式为y=﹣2ax+3a,令y=0可解得x=,∴E(,0),∴BE=3﹣=∴S△BCD =S△BEC+S△BED=××(3a+a)=3a,∴S△BCD :S△ABD=(3a):a=3,∴k=3;(3)∵B(3,0),C(0,3a),D(2,﹣a),∴BC2=32+(3a)2=9+9a2,CD2=22+(﹣a﹣3a)2=4+16a2,BD2=(3﹣2)2+a2=1+a2,∵∠BCD<∠BCO<90°,∴△BCD为直角三角形时,只能有∠CBD=90°或∠CDB=90°两种情况,①当∠CBD=90°时,则有BC2+BD2=CD2,即9+9a2+1+a2=4+16a2,解得a=﹣1(舍去)或a=1,此时抛物线解析式为y=x2﹣4x+3;②当∠CDB=90°时,则有CD2+BD2=BC2,即4+16a2+1+a2=9+9a2,解得a=﹣(舍去)或a=,此时抛物线解析式为y=x2﹣2x+;综上可知当△BCD是直角三角形时,抛物线的解析式为y=x2﹣4x+3或y=x2﹣2x+.26.已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC边上的一个动点,将△ABD沿BD所在直线折叠,使点A落在点P处.(1)如图1,若点D是AC中点,连接PC.①写出BP,BD的长;②求证:四边形BCPD是平行四边形.(2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求PH的长.【考点】LO:四边形综合题.【分析】(1)①分别在Rt△ABC,Rt△BDC中,求出AB、BD即可解决问题;②想办法证明DP∥BC,DP=BC即可;(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x,在Rt△BDC中,可得x2=(4﹣x)2+22,推出x=,推出DN==,由△BDN∽△BAM,可得=,由此求出AM,由△ADM∽△APE,可得=,由此求出AE=,可得EC=AC﹣AE=4﹣=由此即可解决问题.【解答】解:(1)①在Rt△ABC中,∵BC=2,AC=4,∴AB==2,∵AD=CD=2,∴BD==2,由翻折可知,BP=BA=2.②如图1中,∵△BCD是等腰直角三角形,∴∠BDC=45°,∴∠ADB=∠BDP=135°,∴∠PDC=135°﹣45°=90°,∴∠BCD=∠PDC=90°,∴DP∥BC,∵PD=AD=BC=2,∴四边形BCPD是平行四边形.(2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x,在Rt△BDC中,∵BD2=CD2+BC2,∴x2=(4﹣x)2+22,∴x=,∵DB=DA,DN⊥AB,∴BN=AN=,在Rt△BDN中,DN==,由△BDN∽△BAM,可得=,∴=,∴AM=2,∴AP=2AM=4,由△ADM∽△APE,可得=,∴=,∴AE=,∴EC=AC﹣AE=4﹣=,易证四边形PECH是矩形,∴PH=EC=.。
广西贵港市2019-2020学年数学中考模拟试卷(含答案)一、单选题1.若一个数的倒数是﹣2 ,则这个数是()A.B.﹣C.D.﹣【答案】B【考点】有理数的倒数2.下列运算正确的是()A.a3﹣a2=aB.a2•a3=a6C.a6÷a2=a3D.(a2)3=a6【答案】 D【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方3.下列四个从左到右的变形中,是因式分解是的()A.(x+1)(x﹣1)=x2﹣1B.(a+b)(m﹣n)=(m﹣n)(a+b)C.a2﹣8ab+16b2=(a﹣4b)2D.m2﹣2m﹣3=m(m﹣2)﹣3【答案】C【考点】因式分解的定义4.如图,AB是⊙O的直径,AB=10,P是半径OA上的一动点,PC⊥AB交⊙O于点C,在半径OB上取点Q,使得OQ=CP,DQ⊥AB交⊙O于点D,点C,D位于AB两侧,连接CD交AB于点E,点P从点A出发沿AO 向终点O运动,在整个运动过程中,△CEP与△DEQ的面积和的变化情况是()A.一直减小B.一直不变C.先变大后变小D.先变小后变大【答案】C【考点】反比例函数的性质,全等三角形的判定与性质,几何图形的面积计算-割补法5.由5个完全相同的小长方形搭成的几何体的主视图和左视图如图所示,则这个几何体的俯视图是()A.B.C.D.【答案】A【考点】简单组合体的三视图,由三视图判断几何体6.对于抛物线y= (x+4)2﹣5,下列说法正确的是()A.开口向下B.对称轴是直线x=4C.顶点坐标(4,﹣5 )D.向右平移4个单位,再向上平移5个单位得到y= x2【答案】 D【考点】二次函数图象的几何变换,二次函数y=a(x-h)^2+k的性质7.下列命题中正确的个数是()①直角三角形的两条直角边长分别是6和8,那么它的外接圆半径为;②如果两个直径为10厘米和6厘米的圆,圆心距为16厘米,那么两圆外切;③过三点可以确定一个圆;④两圆的公共弦垂直平分连心线.A.0个B.4个C.2个D.3个【答案】A【考点】确定圆的条件,三角形的外接圆与外心,圆与圆的位置关系,相交两圆的性质8.如图,A、B、C是⊙O上的三点,若∠A+∠C=75°,则∠AOC的度数为()A.150°B.140°C.130°D.120°【答案】A【考点】等腰三角形的性质,圆周角定理9.如图,在平面直角坐标系中,梯形OACB的顶点O是坐标原点,OA边在y轴正半轴上,OB边在x轴正半轴上,且OA∥BC,双曲线y= (x>0)经过AC边的中点,若S梯形OACB=4,则双曲线y= 的k值为()A.5B.4C.3D.2【答案】 D【考点】反比例函数系数k的几何意义,全等三角形的判定与性质,矩形的判定与性质10.如图,点D是正△ABC内的一点,DB=3,DC=4,DA=5,则∠BDC的度数是()A.120°B.135°C.140°D.150°【答案】 D【考点】全等三角形的判定与性质,等边三角形的判定与性质,勾股定理的逆定理11.如图,以线段AB为边分别作直角三角形ABC和等边三角形ABD,其中∠ACB=90°.连接CD,当CD的长度最大时,此时∠CAB的大小是()A. 75°B. 45°C. 30°D. 15°【答案】B【考点】点与圆的位置关系12.在矩形ABCD中,AB=2,AD=4,对角线AC,BD相交于点O,点P是对角线OC上的任意一点(不包括端点),以P为圆心的圆与AD相切,则⊙P与AB的位置关系是()A.相离B.相切C.相交D.不确定【答案】A【考点】矩形的性质13.函数y= 的自变量x的取值范围是________.【答案】x≥﹣且x≠3【考点】分式有意义的条件,二次根式有意义的条件二、填空题14.计算:﹣2﹣(﹣7)的结果为________.【答案】5【考点】有理数的减法15.科学家发现,距离地球2540000光年之遥的仙女星系正在向银河系靠近.其中2540000用科学记数法表示为________.【答案】2.54×106【考点】科学记数法—表示绝对值较大的数16.已知圆锥的侧面积是40π,底面圆直径为2,则圆锥的母线长是________.【答案】40【考点】圆锥的计算17.二次函数y=ax2+bx+c的图象如图所示,给出下列说法:①abc<0;②方程ax2+bx+c=0的根为x1=﹣1、x2=3;③当x>1时,y随x值的增大而减小;④当y>0时,﹣1<x<3.其中正确的说法是().A.①;B.①②;C.①②③;D.①②③④【答案】 D【考点】二次函数图象与系数的关系,二次函数图像与坐标轴的交点问题,二次函数与不等式(组)的综合应用,通过函数图像获取信息并解决问题,二次函数y=ax^2+bx+c的性质18.如图,点A1(1,0)在x轴上,过点A1作A1B1∥y轴交直线y= x于点B1,以A1B1为边在A1B1的右侧作等边△A1B1C1,再过点C1作A2B2∥y轴,分别交直线x轴和直线y= x于A2,B2两点,再以A2B2为边在A2B2的右侧作等边△A2B2C2…,按此规律进行下去,则等边△A n B n C n的面积为________(用含正整数n的代数式表示).【答案】【考点】探索图形规律三、解答题19.(1)计算:(﹣)﹣1﹣|1- |+2sin60°+(π﹣4)0【答案】解:(﹣)﹣1﹣|1﹣|+2sin60°+(π﹣4)0=-2﹣+1+2× +1=-2﹣+1+ +1=0.(1)解不等式组.并写出它的整数解.【答案】(1)解:解:由①得由②得∴此不等式组的解集为整数解为2, 3【考点】实数的运算,0指数幂的运算性质,负整数指数幂的运算性质,一元一次不等式组的特殊解,特殊角的三角函数值,实数的绝对值20.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(3,4)、B(1,1)、C(4,2).(1)画出△ABC绕点B逆时针旋转90°后得到的△A1BC1,其中A、C分别和A1、C1对应.(2)平移△ABC,使得A点落在x轴上,B点落在y轴上,画出平移后的△A2B2C2,其中A、B、C分别和A2B2C2对应.(3)填空:在(2)的条件下,设△ABC,△A2B2C2的外接圆的圆心分别为M、M2,则MM2=________.【答案】(1)解:△A1BC1如图所示(2)解:△A2B2C2如图所示(3)【考点】平移的性质,作图﹣平移,作图﹣旋转21.如图,已知点A(1,a)是反比例函数y1= 的图象上一点,直线y2=﹣与反比例函数y1= 的图象的交点为点B、D,且B(3,﹣1),求:(1)求反比例函数的解析式;(2)求点D坐标,并直接写出y1>y2时x的取值范围;(3)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.【答案】(1)解:∵B(3,﹣1)在反比例函数的图象上,∴-1= ,∴m=-3,∴反比例函数的解析式为(2)解:,∴= ,x2-x-6=0,(x-3)(x+2)=0,x1=3,x2=-2,当x=-2时,y= ,∴D(-2,);y1>y2时x的取值范围是-2<x<0或x>(3)解:∵A(1,a)是反比例函数的图象上一点,∴a=-3,∴A(1,-3),设直线AB为y=kx+b,,∴,∴直线AB为y=x-4,令y=0,则x=4,∴P(4,0)【考点】待定系数法求反比例函数解析式,反比例函数与一次函数的交点问题22.“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了两幅尚不完整的统计图,如图所示,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有________人,扇形统计图中“基本了解”部分所对应扇形的圆心角为________;(2)请补全条形统计图;(3)若从对校园安全知识达到了“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.【答案】(1)60;90°(2)解:“了解”的人数为:60﹣15﹣30﹣10=5;补全条形统计图得:(3)解:画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,∴恰好抽到1个男生和1个女生的概率为.【考点】扇形统计图,条形统计图,列表法与树状图法,概率公式23.我市在创建全国文明城市过程中,决定购买A,B两种树苗对某路段道路进行绿化改造,已知购买A种树苗8棵,B种树苗3棵,需要950元;若购买A种树苗5棵,B种树苗6棵,则需要800元.(1)求购买A,B两种树苗每棵各需多少元?(2)考虑到绿化效果和资金周转,购进A种树苗不能少于52棵,且用于购买这两种树苗的资金不能超过7650元,若购进这两种树苗共100棵,则有哪几种购买方案?(3)某包工队承包种植任务,若种好一棵A种树苗可获工钱30元,种好一棵B种树苗可获工钱20元,在第(2)问的各种购买方案中,种好这100棵树苗,哪一种购买方案所付的种植工钱最少?最少工钱是多少元?【答案】(1)解:设购买A种树苗每棵需要x元,B种树苗每棵需要y元,由已知得:,解得:.答:购买A种树苗每棵需要100元,B种树苗每棵需要50元.(2)解:解:设购买A种树苗m棵,则购买B种树苗100﹣m棵,根据已知,得,解得:52≤m≤53.故有2种购买方案:①、购买A种树苗52棵,B种树苗48棵;②、购买A种树苗53棵,B种树苗47棵;(3)解:设种植工钱为W,由已知得:W=30m+20(100-m)=10m+2000,∴当m=52时,W最小,最小值为2520元.故购买A种树苗52棵、B种树苗548棵时所付的种植工钱最少,最少工钱是2520元.【考点】一元一次不等式组的应用,一次函数的实际应用,二元一次方程组的实际应用-鸡兔同笼问题24.如图,已知Rt△ABC中,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求⊙O的半径.【答案】(1)证明:连接OE、EC.∵AC是⊙O的直径,∴∠AEC=∠BEC=90°.∵D为BC的中点,∴ED=DC=BD,∴∠1=∠2.∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠2+∠4,即∠OED=∠ACB.∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切线(2)解:由(1)知:∠BEC=90°.在Rt△BEC与Rt△BCA中,∵∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴BE:BC=BC:BA,∴BC2=BE•BA.∵AE:EB=1:2,设AE=x,则BE=2x,BA=3x.∵BC=6,∴62=2x•3x,解得:x= ,即AE= ,∴AB= ,∴AC= = ,∴⊙O的半径= .【考点】直角三角形斜边上的中线,圆周角定理,切线的判定,相似三角形的判定与性质25.抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE 与△AOC相似时,求点D的坐标.【答案】(1)解:由题意,得解得.∴这条抛物线的表达式为(2)解:作BH⊥AC于点H,∵A点坐标是(-1,0),C点坐标是(0,3),B点坐标是(,0),∴AC=,AB=,OC=3,BC=.∵,即,∴.Rt△BCH中,,BC=,∠BHC=90º,∴.又∵∠ACB是锐角,∴(3)解:延长CD交x轴于点G,∵Rt△AOC中,AO=1,AC=,∴.∵△DCE∽△AOC,∴只可能∠CAO=∠DCE.∴AG = CG.∴.∴AG=5.∴G点坐标是(4,0).∵点C坐标是(0,3),∴.∴解得,(舍).∴点D坐标是【考点】待定系数法求一次函数解析式,待定系数法求二次函数解析式,锐角三角函数的定义,特殊角的三角函数值,二次函数与一次函数的综合应用26.如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D在边AB上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.【答案】(1)证明:∵△CDE是等边三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=30°,∴∠EDB=∠B,∴DE=EB(2)解:ED=EB,理由如下:取AB的中点O,连接CO、EO,∵∠ACB=90°,∠ABC=30°,∴∠A=60°,OC=OA,∴△ACO为等边三角形,∴CA=CO,∵△CDE是等边三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB(3)解:取AB的中点O,连接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△COE≌△BOE,∴EC=EB,∴ED=EB,∵EH⊥AB,∴DH=BH=3,∵GE∥AB,∴∠G=180°﹣∠A=120°,∴△CEG≌△DCO,∴CG=OD,设CG=a,则AG=5a,OD=a,∴AC=OC=4a,∵OC=OB,∴4a=a+3+3,解得,a=2,即CG=2.【考点】全等三角形的判定与性质,等腰三角形的性质,等边三角形的判定与性质。
广西贵港港南区六校联考2019-2020学年中考数学模拟试卷一、选择题1.如图,在△ABC 中,∠C =90°,AC >BC ,若以AC 为底面圆半径、BC 为高的圆锥的侧面积为S 1,以BC 为底面圆半径、AC 为高的圆锥的侧面积为S 2,则( )A .S 1=S 2B .S 1>S 2C .S 1<S 2D .S 1、S 2的大小关系不确定2.如图,在平面直角坐标系中,点P 是以C 1为半径的⊙C 上的一个动点,已知A (﹣1,0),B (1,0),连接PA ,PB ,则PA 2+PB 2的最小值是( )A .6B .8C .10D .12 3.已知圆锥的底面半径为4cm ,母线长为6cm ,则圆锥的侧面积是( )A.24cm 2B.24πcm 2C.48cm 2D.48πcm 24.“六一”儿童节快到了,小芳的妈妈计划用1000元在唯品会购买价格分别为80元和120元的两种儿童玩具赠送给某幼儿园,则可供小芳妈妈选择的购买方案有 A.4种 B.5种 C.6种 D.7种 5.若数轴上表示﹣2和3的两点分别是点A 和点B ,则点A 和点B 之间的距离是( ) A .﹣4B .﹣2C .3D .56.已知二次函数y =﹣(x ﹣k+2)(x+k )+m ,其中k ,m 为常数.下列说法正确的是( ) A .若k≠1,m≠0,则二次函数y 的最大值小于0 B .若k <1,m >0,则二次函数y 的最大值大于0 C .若k =1,m≠0,则二次函数y 的最大值小于0 D .若k >1,m <0,则二次函数y 的最大值大于07.若点,,在反比例函数的图象上,则,,的大小关系是( )A. B.C.D.8.如图,矩形ABCD 的顶点A 和对称中心在反比例函数(0,0)ky k x x=≠>上,若矩形ABCD 的面积为8,则k 的值为( )A .4B .C .D .89.计算|﹣3|﹣20180的结果是( ) A .﹣2021 B .﹣2015 C .﹣4 D .2 10.最小的素数是( )A .1B .2C .3D .411.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( )A .B .C .D .12.如图,以点A 为中心,把ABC ∆逆时针旋转120,得到''AB C ∆(点B ,C 的对应点分别为点''B C ,),连接'BB ,若'//'AC BB ,则'CAB ∠的度数为( )A.45°B.60°C.70°D.90°二、填空题13.若正方形的面积是9,则它的对角线长是_____.14.甲、乙两人进行射击测试,每人10次射击的平均成绩恰好都是9.5环,方差分别是S 甲2=0.90平方环,S 乙2=1.22平方环,在本次射击测试中,甲、乙两人中成绩较稳定的是__. 15.设a ,b 是方程220190x x +-=的两个实数根,则22a a b ++的值是________.16.今有甲、乙、丙三名候选人参与某村村长选举,共发出1800张选票,得票数最高者为当选人,且废票不计入任何一位候选人的得票数内.全村设有四个投票点,目前第一、第二、第三投票点已公布投票结果,剩下第四投票点尚未公布投票结果,如表所示:(单位:票)17.把一个圆心角为120°扇形纸片围成一个底面圆的半径为3 cm 圆锥侧面,,则扇形半径是___________cm.18.如图,将一块30°角的直角三角板ACB (∠B =30°)绕直角顶点C 逆时针旋转到△A′CB′的位置,此时点A′刚好在AB 上,若AC =3,则点B 与点B'的距离为_____.三、解答题19﹣1)2+(π0﹣2|. 20.求方程x 2﹣2x ﹣2=0的根x 1,x 2(x 1>x 2),并求x 12+2x 2的值.21.如图,抛物线y =ax 2+bx ﹣2与x 轴交于两点A (﹣1,0)和B (4,0),与Y 轴交于点C ,连接AC 、BC 、AB ,(1)求抛物线的解析式;(2)点D 是抛物线上一点,连接BD 、CD ,满足ABC35DBC S S ∆=,求点D 的坐标;(3)点E 在线段AB 上(与A 、B 不重合),点F 在线段BC 上(与B 、C 不重合),是否存在以C 、E 、F 为顶点的三角形与△ABC 相似,若存在,请直接写出点F 的坐标,若不存在,请说明理由.22.如图1,在△ABC 中,∠ABC=90°,AO 是△ABC 的角平分线,以O 为圆心,OB 为半径作圆交BC 于点D ,(1)求证:直线AC 是⊙O 的切线;(2)在图2中,设AC 与⊙O 相切于点E ,连结BE ,如果AB=4,tan ∠CBE=12. ①求BE 的长;②求EC 的长.23.一只不透明的袋子中装有1个蓝球和2个红球,这些球除颜色外都相同. (1)搅匀后从中任意摸出1个球,摸到蓝球的概率为 ;(2)搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求至少有1次摸到红球的概率. 24.解方程: (1)2x ﹣3=1(2)1+221x x -=2x(3)2x 2﹣4x+1=0.25.如图,在△ABC 中,E 为BC 边上一点,以BE 为直径的AR 半圆D 与AC 相切于点F ,且EF ∥AD ,AD 交半圆D 于点G .(1)求证:AB 是半圆D 的切线; (2)若EF =2,AD =5,求切线长AB .【参考答案】*** 一、选择题1314.甲 15.201816.甲或丙 ∵第一、第二、第三投票箱甲得票数为:200+286+97=583;乙得票数为:211+85+41=337;丙得票数为:147 + 244 + 205 =596:∴596﹣583=13丙目前领先甲13票,所以,第四投票所甲赢丙14票以上,则甲当选,故甲可能当选;第四投票所甲赢丙13票以下,则丙当选,故丙可能当选;而596﹣337=259>250,若第四投票点的250票皆给乙,乙的总票数仍然比丙低,故乙不可能当选,即:甲或丙有机会当选村长, 17.918三、解答题19.﹣【解析】 【分析】根据负整数指数幂的性质、乘方的定义、零指数幂的性质、二次根式的性质及绝对值的性质依次计算后,,再合并即可求解. 【详解】3+1﹣. 【点睛】本题考查了实数的混合运算,熟知实数的运算法则及运算顺序是解决问题的关键. 20.6 【解析】 【分析】根据方程x 2﹣2x ﹣2=0的根x 1,x 2,得到211220x x --=,即2112 2.x x =+则()1212122222222x x x x x x =++=+++,根据根与系数的关系即可求解.【详解】解:方程x 2﹣2x ﹣2=0的根x 1,x 2,∴211220x x --=,12 2.x x +=∴()112122222222262.22x x x x x x =++=++=⨯+=+【点睛】考查一元二次方程解的概念以及根与系数的关系,掌握根与系数的关系是解题的关键.21.(1)213y x x 222=--;(2)D的坐标为2⎛- ⎝⎭,2⎛+ ⎝⎭,(1,﹣3)或(3,﹣2).(3)存在,F 的坐标为48,55⎛⎫- ⎪⎝⎭,(2,﹣1)或53,24⎛⎫- ⎪⎝⎭. 【解析】 【分析】(1)根据点A ,B 的坐标,利用待定系数法可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可求出点C 的坐标,结合点A ,B 的坐标可得出AB ,AC ,BC 的长度,由AC 2+BC 2=25=AB 2可得出∠ACB =90°,过点D 作DM ∥BC ,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,由D 1M 1∥BC 可得出△AD 1M 1∽△ACB ,利用相似三角形的性质结合S △DBC =35S ABC ∆ ,可得出AM 1的长度,进而可得出点M 1的坐标,由BM 1=BM 2可得出点M 2的坐标,由点B ,C 的坐标利用待定系数法可求出直线BC 的解析式,进而可得出直线D 1M 1,D 2M 2的解析式,联立直线DM 和抛物线的解析式成方程组,通过解方程组即可求出点D 的坐标;(3)分点E 与点O 重合及点E 与点O 不重合两种情况考虑:①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC ,由点A ,C 的坐标利用待定系数法可求出直线AC 的解析式,进而可得出直线OF 1的解析式,联立直线OF 1和直线BC 的解析式成方程组,通过解方程组可求出点F 1的坐标;②当点E 不和点O 重合时,在线段AB 上取点E ,使得EB =EC ,过点E 作EF 2⊥BC 于点F 2,过点E 作EF 3⊥CE ,交直线BC 于点F 3,则△CEF 2∽△BAC ∽△CF 3E .由EC =EB 利用等腰三角形的性质可得出点F 2为线段BC 的中点,进而可得出点F 2的坐标;利用相似三角形的性质可求出CF 3的长度,设点F 3的坐标为(x ,12x ﹣2),结合点C 的坐标可得出关于x 的方程,解之即可得出x 的值,将其正值代入点F 3的坐标中即可得出结论.综上,此题得解. 【详解】(1)将A (﹣1,0),B (4,0)代入y =ax 2+bx ﹣2,得:2016420a b a b --=⎧⎨+-=⎩ ,解得:1232a b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴抛物线的解析式为y =12 x 2﹣32x ﹣2. (2)当x =0时,y =12x 2﹣32x ﹣2=﹣2, ∴点C 的坐标为(0,﹣2).∵点A 的坐标为(﹣1,0),点B 的坐标为(4,0), ∴AC,BC=AB =5.∵AC 2+BC 2=25=AB 2, ∴∠ACB =90°.过点D 作DM ∥BC ,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,如图1所示. ∵D 1M 1∥BC , ∴△AD 1M 1∽△ACB . ∵S △DBC =35S ABC ∆, ∴125AM AB =, ∴AM 1=2,∴点M 1的坐标为(1,0), ∴BM 1=BM 2=3,∴点M 2的坐标为(7,0).设直线BC 的解析式为y =kx+c (k≠0), 将B (4,0),C (0,﹣2)代入y =kx+c ,得: 402k c c +=⎧⎨=-⎩ ,解得:122k c ⎧=⎪⎨⎪=-⎩ , ∴直线BC 的解析式为y =12x ﹣2. ∵D 1M 1∥BC ∥D 2M 2,点M 1的坐标为(1,0),点M 2的坐标为(7,0), ∴直线D 1M 1的解析式为y =12 x ﹣12 ,直线D 2M 2的解析式为y =12x ﹣72. 联立直线DM 和抛物线的解析式成方程组,得:2112213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩或2172213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,解得:112x y ⎧=⎪⎨=⎪⎩,222x y ⎧=⎪⎨=⎪⎩,3313x y =⎧⎨=-⎩ ,4432x y =⎧⎨=-⎩,∴点D 的坐标为(2,2),(,2),(1,﹣3)或(3,﹣2).(3)分两种情况考虑,如图2所示.①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC , 设直线AC 的解析设为y =mx+n (m≠0), 将A (﹣1,0),C (0,﹣2)代入y =mx+n ,得:-02m n n +=⎧⎨=-⎩ ,解得:22m n =-⎧⎨=-⎩ , ∴直线AC 的解析式为y =﹣2x ﹣2. ∵AC ⊥BC ,OF 1⊥BC ,∴直线OF 1的解析式为y =﹣2x .连接直线OF 1和直线BC 的解析式成方程组,得:2122y xy x =-⎧⎪⎨=-⎪⎩ ,解得:4585xy⎧=⎪⎪⎨⎪=⎪⎩,∴点F1的坐标为(45,﹣85);②当点E不和点O重合时,在线段AB上取点E,使得EB=EC,过点E作EF2⊥BC于点F2,过点E作EF3⊥CE,交直线BC于点F3,则△CEF2∽△BAC∽△CF3E.∵EC=EB,EF2⊥BC于点F2,∴点F2为线段BC的中点,∴点F2的坐标为(2,﹣1);∵BC=,∴CF2=12BC,EF2=12CF2=2,F2F3=12EF2,∴CF3.设点F3的坐标为(x,12x﹣2),∵CF3,点C的坐标为(0,﹣2),∴x2+[12x﹣2﹣(﹣2)]2=12516,解得:x1=﹣52(舍去),x2=52,∴点F3的坐标为(52,﹣34).综上所述:存在以C、E、F为顶点的三角形与△ABC相似,点F的坐标为(45,﹣85),(2,﹣1)或(52,﹣34).【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、勾股定理的逆定理、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、平行线的性质、相似三角形的性质以及两点间的距离公式,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)找出过点D 且与直线BC 平行的直线的解析式;(3)分点E 与点O 重合及点E 与点O 不重合两种情况,利用相似三角形的性质及等腰三角形的性质求出点F 的坐标. 22.(1)见解析;(2)①5;②83.【解析】 【分析】(1)作作OE ⊥AC,由AO 是∠BAC 的角平分线,得到∠BAO =∠EAO,判断出△ABO ≌△AEO (AAS ),得到OE =OB,所以直线AC 是⊙O 的切线;(2)先利用AE 与⊙O 相切于点E , AB =AE =4,再用三角函数求出OB,BC,然后用三角形相似,得到BC =2CE ,12CD CE = ,用勾股定理求出CD,最后用切割线定理即可 【详解】证明:(1)如图1,作OE ⊥AC , ∴∠OEA =90°, ∵∠ABC =90,∴∠OEA =∠ABC ,∵AO 是△ABC 的角平分线,∴∠BAO =∠EAO , 在△ABO 和△AEO 中,ABO AEO OA OA ⎧⎪=⎨⎪=⎩∠BA0=∠EAO∠∠ ,∴△ABO ≌△AEO (AAS ),∴OE =OB ,∵OB 是⊙O 的半径,∴OE 是⊙O 的半径, ∴直线AC 是⊙O 的切线; (2)①如图2,∵∠ABO =90°,∴AB 切⊙O 于B ,∵AE 与⊙O 相切于点E , ∴AB =AE =4,∵AO 是△ABC 的角平分线, ∴AO ⊥BE , ∴∠BAO+∠ABE =90°, ∵∠CBE+∠ABE =90°, ∴∠BAO =∠CBE , ∵tan ∠CBE =12 , ∴tan ∠BAO =12, 在Rt △ABO 中,AB =4,tan ∠BAO =12OB AB = , ∴122OB AB == , ∴BD =2OB =4, ∵AB 是⊙O 的直径, ∴∠BED =90°, 又∵tan ∠CBE =DE BE =12, ∴BE =2DE ,在Rt △BDE 中, ∵BE 2+DE 2=BD 2, ∴2221()42BE BE += , 解得BE =; ②∵AC 是⊙O 的切线, ∴∠CED =∠CBE , ∵∠DCE =∠ECB ,∴△CDE ∽△CEB , ∴CE DE CDBC BE CE== , 又∵tan ∠CBE =DE BE =12, ∴BC =2CE ,12CD CE = ,∵BD =BC ﹣CD ∴1242CE CE -= , 解得83CE = . 【点睛】此题考查切线的判定与性质,利用全等三角形的性质和直角三角形的性质是解题关键 23.(1)13;(2)89. 【解析】 【分析】(1)由共有3种等可能结果,其中摸到蓝球可能的结果有1种,根据概率公式求解可得; (2)画树状图列出所有等可能结果,再根据概率公式求解可得. 【详解】解:(1)∵袋中共有3个球,∴共有3种等可能结果,其中摸到蓝球可能的结果有1种. ∴P (摸到蓝球)=13, 故答案为:13; (2)将2个红球编号为红球1,红球2,用树状图表示出所有可能出现的结果,由树状图知,共有9种等可能结果,其中至少有一次摸到红球可能的结果有8种. ∴P (至少有1次摸到红球)=89. 【点睛】本题考查了列表法与树状图法求概率:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.24.(1)x =2;(2)x =25;(3)x 1=1+2,x 2=1﹣2. 【解析】 【分析】(1)先移项,然后化未知数系数为1;(2)先去分母,然后解一元一次方程;记住,要验根; (3)利用配方法解方程. 【详解】(1)由原方程移项,得 2x =4,化未知数系数为1,得 x =2;(2)去分母,并整理,得 5x ﹣2=0, 解得,x =25; 经检验,x =25是原方程的解; (3)由原方程,得 2(x ﹣1)2=1,∴x∴原方程的根是:x 1=1+2,x 2=1﹣2. 【点睛】此题考查了解一元二次方程、分式方程以及一元一次方程.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.25.(1)详见解析;(2)【解析】【分析】(1)连接DF,根据切线的性质得到DF⊥AC,根据平行线的性质得到∠EFD=∠ADF,∠FED=∠ADB,由等腰三角形的性质得到∠EFD=∠FED,求得∠ADF=∠ADB,根据全等三角形的性质得到∠ABD=∠AFD=90°,于是得到结论;(2)根据相似三角形的判定和性质定理得到25CE CF EFCD CA AD===,设CE=2x,于是得到CD=5x,DF=DE=3x,根据勾股定理得到CF=4x,于是得到AF=6x,在Rt△ADF中根据勾股定理即可得到结论.【详解】(1)证明:连接DF,∵AC与半圆D相切于点F,∴DF⊥AC,∴∠AFD=90°,∵EF∥AD,∴∠EFD=∠ADF,∠FED=∠ADB,又∵DF=DE,∴∠EFD=∠FED,∴∠ADF=∠ADB,在△ABD与△AFD中DB DFADB ADF AD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△AFD (SAS),∴∠ABD=∠AFD=90°,∴AB是半圆D的切线;(2)解:∵EF∥AD,∴△CFE∽△CAD,∴25 CE CF EFCD CA AD===,设CE=2x,∴CD=5x,DF=DE=3x,∴在Rt△DFC中,由勾股定理得CF=4x,∴AF=6x,在Rt△ADF中,(6x)2+(3x)2=52,解得x∴AB=AF=6x=【点睛】本题考查了切线的判定和性质,相似三角形的判定和性质,全等三角形的判定和性质,勾股定理,平行线的性质,熟练正确切线的判定定理是解题的关键.。
广西省贵港市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是( )A .13B .14C .15D .162.如图,已知直线AD 是⊙O 的切线,点A 为切点,OD 交⊙O 于点B ,点C 在⊙O 上,且∠ODA=36°,则∠ACB 的度数为( )A .54°B .36°C .30°D .27°3.下列运算结果是无理数的是( )A .32×2B .32⨯C .722÷D .22135- 4.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( )A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.5.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°6.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .15B .17C .19D .247.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC ,②∠ABC=90°,③AC=BD ,④AC ⊥BD 中选两个作为补充条件,使▱ABCD 为正方形(如图),现有下列四种选法,你认为其中错误的是( )A .①②B .②③C .①③D .②④8.已知e r 是一个单位向量,a r 、b r是非零向量,那么下列等式正确的是( ) A .a e a v v v = B .e b b =v v v C .1a e a =v v v D .11a b a b=v v v v 9.如图,在平行四边形ABCD 中,F 是边AD 上的一点,射线CF 和BA 的延长线交于点E ,如果12C EAF C CDF =V V ,那么S EAF S EBCV V 的值是( )A .12B .13C .14D .1910.下列计算正确的是A .a 2·a 2=2a 4B .(-a 2)3=-a 6C .3a 2-6a 2=3a 2D .(a -2)2=a 2-411.如图,钓鱼竿AC 长6m ,露在水面上的鱼线BC 长32m ,某钓者想看看鱼钓上的情况,把鱼竿AC 转动到AC'的位置,此时露在水面上的鱼线B′C′为33m ,则鱼竿转过的角度是( )A .60°B .45°C .15°D .90°12.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( ) A . B . C . D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.(2017四川省攀枝花市)若关于x 的分式方程7311mx x x +=--无解,则实数m=_______.14.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b ,然后把半圆沿直线b 进行无滑动滚动,使半圆的直径与直线b 重合为止,则圆心O 运动路径的长度等于_____.15.分解因式:4m 2﹣16n 2=_____.16.已知'''ABC A B C ∆∆:且''':1:2ABC A B C S S ∆∆=,则:''AB A B =__________.17.在函数y=的表达式中,自变量x 的取值范围是 .18.如图,四边形ABCD 内接于⊙O ,AD 、BC 的延长线相交于点E ,AB 、DC 的延长线相交于点F .若∠E +∠F =80°,则∠A =____°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题: (1)共有 名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.20.(6分)如图,已知A 是⊙O 上一点,半径OC 的延长线与过点A 的直线交于点B ,OC=BC ,AC=12OB .求证:AB 是⊙O 的切线;若∠ACD=45°,OC=2,求弦CD 的长.21.(6分)先化简,再求值:(x+1y)1﹣(1y+x)(1y ﹣x)﹣1x 1,其中x =3+1,y =3﹣1.22.(8分)在平面直角坐标系中,一次函数y ax b =+(a≠0)的图象与反比例函数(0)k y k x=≠的图象交于第二、第四象限内的A 、B 两点,与y 轴交于点C ,过点A 作AH ⊥y 轴,垂足为点H ,OH=3,tan ∠AOH=43,点B 的坐标为(m ,-2).求该反比例函数和一次函数的解析式;求△AHO 的周长.23.(8分)定义:如果把一条抛物线绕它的顶点旋转180°得到的抛物线我们称为原抛物线的“孪生抛物线”.(1)求抛物线y =x 2﹣2x 的“孪生抛物线”的表达式;(2)若抛物线y =x 2﹣2x+c 的顶点为D ,与y 轴交于点C ,其“孪生抛物线”与y 轴交于点C′,请判断△DCC’的形状,并说明理由:(3)已知抛物线y =x 2﹣2x ﹣3与y 轴交于点C ,与x 轴正半轴的交点为A ,那么是否在其“孪生抛物线”上存在点P ,在y 轴上存在点Q ,使以点A 、C 、P 、Q 为顶点的四边形为平行四边形?若存在,求出P 点的坐标;若不存在,说明理由.24.(10分)如图,在△ABC 中,CD ⊥AB 于点D ,tanA =2cos ∠BCD ,(1)求证:BC =2AD ;(2)若cosB =34,AB =10,求CD 的长.25.(10分)小明遇到这样一个问题:已知:1b c a -=. 求证:240b ac -≥. 经过思考,小明的证明过程如下:∵1b c a-=,∴b c a -=.∴0a b c -+=.接下来,小明想:若把1x =-带入一元二次方程20ax bx c ++=(a ≠0),恰好得到0a b c -+=.这说明一元二次方程20ax bx c ++=有根,且一个根是1x =-.所以,根据一元二次方程根的判别式的知识易证:240b ac -≥.根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目: 已知:42a c b+=-. 求证:24b ac ≥.请你参考上面的方法,写出小明所编题目的证明过程. 26.(12分)某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查了部分学生的数学成绩,并将抽样的数据进行了如下整理.(1)填空m =_______,n =_______,数学成绩的中位数所在的等级_________.(2)如果该校有1200名学生参加了本次模拟测,估计D 等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求A 级学生的数学成绩的平均分数.①如下分数段整理样本等级等级 分数段 各组总分 人数A110120X <≤ P 4 B 100110X <≤ 843n C 90100X <≤ 574m D 8090X <≤171 2 ②根据上表绘制扇形统计图27.(12分)如图,△ABC 三个顶点的坐标分别为A (1,1)、B (4,2)、C (3,4).(1)画出△ABC 关于y 轴的对称图形△A 1B 1C 1,并写出B 1点的坐标;(2)画出△ABC 绕原点O 旋转180°后得到的图形△A 2B 2C 2,并写出B 2点的坐标;(3)在x 轴上求作一点P ,使△PAB 的周长最小,并直接写出点P 的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【详解】解:如图所示,分别作直线AB 、CD 、EF 的延长线和反向延长线使它们交于点G 、H 、I .因为六边形ABCDEF 的六个角都是120°,所以六边形ABCDEF 的每一个外角的度数都是60°.所以AFI BGC DHE GHI V V V V 、、、都是等边三角形.所以31AI AF BG BC ====,.3317GI GH AI AB BG ∴==++=++=,7232DE HE HI EF FI ==--=--=,7124CD HG CG HD .=--=--= 所以六边形的周长为3+1+4+2+2+3=15;故选C .2.D【解析】解:∵AD 为圆O 的切线,∴AD ⊥OA ,即∠OAD=90°,∵∠ODA=36°,∴∠AOD=54°,∵∠AOD 与∠ACB 都对AB u u u r,∴∠ACB=12∠AOD=27°.故选D . 3.B【解析】【分析】根据二次根式的运算法则即可求出答案.【详解】A 选项:原式=3×2=6,故A 不是无理数;B ,故B 是无理数;C 6,故C 不是无理数;D =12,故D 不是无理数故选B .【点睛】考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.4.A【解析】【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可.【详解】由题意得:m ﹣1≠0,解得:m≠1,故选A .【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.5.D【解析】分析:依据AB ∥CD ,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.详解:如图,∵AB ∥CD ,∴∠3+∠5=180°,又∵∠5=∠4,∴∠3+∠4=180°,故选D.点睛:本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.6.D【解析】【分析】由图可知:第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,第④个图案有三角形1+3+4+4=12,…第n个图案有三角形4(n﹣1)个(n>1时),由此得出规律解决问题.【详解】解:解:∵第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,…∴第n个图案有三角形4(n﹣1)个(n>1时),则第⑦个图中三角形的个数是4×(7﹣1)=24个,故选D.【点睛】本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出a n=4(n﹣1)是解题的关键.7.B【解析】【详解】A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;B、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD 是正方形,故此选项错误,符合题意;C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.故选C.8.B【解析】【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解.【详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a的方向不是单位向量,故错误;D. 左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.故答案选B.【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.9.D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵12EAFCDFCCVV,=∴12 AFDF=,∴11123 AFBC==+,∵AF∥BC,∴△EAF∽△EBC,∴21139EAFEBCSS⎛⎫==⎪⎝⎭VV,故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.10.B【解析】【分析】根据同底数幂乘法、幂的乘方、合并同类项法则、完全平方公式逐项进行计算即可得.【详解】A. a 2·a 2=a 4 ,故A 选项错误; B. (-a 2)3=-a 6 ,正确;C. 3a 2-6a 2=-3a 2 ,故C 选项错误;D. (a -2)2=a 2-4a+4,故D 选项错误,故选B.【点睛】本题考查了同底数幂的乘法、幂的乘方、合并同类项、完全平方公式,熟练掌握各运算的运算法则是解题的关键.11.C【解析】试题解析:∵sin ∠CAB=62BC AC == ∴∠CAB=45°.∵B C sin C AB AC '''∠===' ∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,鱼竿转过的角度是15°.故选C .考点:解直角三角形的应用.12.A【解析】【分析】根据轴对称图形的概念判断即可.【详解】A 、是轴对称图形;B 、不是轴对称图形;C 、不是轴对称图形;D 、不是轴对称图形.故选:A .【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3或1.【解析】解:方程去分母得:1+3(x ﹣1)=mx ,整理得:(m ﹣3)x=2.①当整式方程无解时,m ﹣3=0,m=3; ②当整式方程的解为分式方程的增根时,x=1,∴m ﹣3=2,m=1.综上所述:∴m 的值为3或1.故答案为3或1.14.5π【解析】【分析】 根据题意得出球在无滑动旋转中通过的路程为12圆弧,根据弧长公式求出弧长即可. 【详解】解:由图形可知,圆心先向前走OO 1的长度,从O 到O 1的运动轨迹是一条直线,长度为14圆的周长, 然后沿着弧O 1O 2旋转14圆的周长, 则圆心O 运动路径的长度为:112544π⨯⨯+×2π×5=5π, 故答案为5π.【点睛】本题考查的是弧长的计算和旋转的知识,解题关键是确定半圆作无滑动翻转所经过的路线并求出长度. 15.4(m+2n )(m ﹣2n ).【解析】【分析】 原式提取4后,利用平方差公式分解即可.【详解】解:原式=4(224m n - )()()422m n m n =+-.故答案为()()422m n m n +-【点睛】本题考查提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.16.2【解析】分析:根据相似三角形的面积比等于相似比的平方求解即可.详解:∵△ABC∽△A′B′C′,∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,∴AB:A′B′=1:2.点睛:本题的关键是理解相似三角形的面积比等于相似比的平方.17.x≥1.【解析】【分析】根据被开方数大于等于0列式计算即可得解.【详解】根据题意得,x﹣1≥0,解得x≥1.故答案为x≥1.【点睛】本题考查函数自变量的取值范围,知识点为:二次根式的被开方数是非负数.18.50【解析】试题分析:连结EF,如图,根据圆内接四边形的性质得∠A+∠BCD=180°,根据对顶角相等得∠BCD=∠ECF,则∠A+∠ECF=180°,根据三角形内角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A,再利用三角形内角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,则∠A+80°+∠A=180°,然后解方程即可.试题解析:连结EF,如图,∵四边形ABCD内接于⊙O,∴∠A+∠BCD=180°,而∠BCD=∠ECF,∴∠A+∠ECF=180°,∵∠ECF+∠1+∠2=180°,∴∠1+∠2=∠A,∵∠A+∠AEF+∠AFE=180°,即∠A+∠AEB+∠1+∠2+∠AFD=180°,∴∠A+80°+∠A=180°,∴∠A=50°.考点:圆内接四边形的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)100;(2)补图见解析;(3)570人.【解析】【分析】(1)由读书1本的人数及其所占百分比可得总人数;(2)总人数乘以读4本的百分比求得其人数,减去男生人数即可得出女生人数,用读2本的人数除以总人数可得对应百分比;(3)总人数乘以样本中读2本人数所占比例.【详解】(1)参与问卷调查的学生人数为(8+2)÷10%=100人,故答案为:100;(2)读4本的女生人数为100×15%﹣10=5人,读2本人数所占百分比为×100%=38%,补全图形如下:(3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(1)见解析;(2)+【分析】(1)利用题中的边的关系可求出△OAC是正三角形,然后利用角边关系又可求出∠CAB=30°,从而求出∠OAB=90°,所以判断出直线AB与⊙O相切;(2)作AE⊥CD于点E,由已知条件得出AC=2,再求出AE=CE,根据直角三角形的性质就可以得到AD.【详解】(1)直线AB是⊙O的切线,理由如下:连接OA.∵OC=BC,AC=12 OB,∴OC=BC=AC=OA,∴△ACO是等边三角形,∴∠O=∠OCA=60°,又∵∠B=∠CAB,∴∠B=30°,∴∠OAB=90°.∴AB是⊙O的切线.(2)作AE⊥CD于点E.∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,2;∵∠D=30°,∴2.【点睛】本题考查了切线的判定、直角三角形斜边上的中线、等腰三角形的性质以及圆周角定理、等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.﹣2【分析】先利用完全平方公式、平方差公式进行展开,然后合并同类项,最后代入x、y的值进行计算即可得.【详解】原式=x1+2xy+2y1﹣(2y1﹣x1)﹣1x1=x1+2xy+2y1﹣2y1+x1﹣1x1=2xy,当,﹣1时,原式=2×)×1)=2×(3﹣2)=﹣2.【点睛】本题考查了整式的混合运算——化简求值,熟练掌握完全平方公式、平方差公式是解题的关键.22.(1)一次函数为112y x=-+,反比例函数为12yx=-;(2)△AHO的周长为12【解析】分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式.(2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.详解:(1)∵tan∠AOH=AH OH=43∴AH=43OH=4∴A(-4,3),代入kyx =,得k=-4×3=-12∴反比例函数为12 yx =-∴12 2m -=-∴m=6∴B(6,-2)∴43 62a ba b-+=⎧⎨+=-⎩∴a=12-,b=1∴一次函数为112y x=-+(2)5 OA===△AHO的周长为:3+4+5=12点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.23.(1)y=-(x-1)²=-x²+2x-2;(2)等腰Rt△,(3)P1(3,-8),P2(-3,-20).【解析】【分析】(1)当抛物线绕其顶点旋转180°后,抛物线的顶点坐标不变,只是开口方向相反,则可根据顶点式写出旋转后的抛物线解析式;(2)可分别求出原抛物线和其“孪生抛物线”与y轴的交点坐标C、C′,由点的坐标可知△DCC’是等腰直角三角形;(3)可求出A(3,0),C(0,-3),其“孪生抛物线”为y=-x2+2x-5,当AC为对角线时,由中点坐标可知点P不存在,当AC为边时,分两种情况可求得点P的坐标.【详解】(1)抛物线y=x2-2x化为顶点式为y=(x-1)2-1,顶点坐标为(1,-1),由于抛物线y=x2-2x绕其顶点旋转180°后抛物线的顶点坐标不变,只是开口方向相反,则所得抛物线解析式为y=-(x-1)2-1=-x2+2x-2;(2)△DCC'是等腰直角三角形,理由如下:∵抛物线y=x2-2x+c=(x-1)2+c-1,∴抛物线顶点为D的坐标为(1,c-1),与y轴的交点C的坐标为(0,c),∴其“孪生抛物线”的解析式为y=-(x-1)2+c-1,与y轴的交点C’的坐标为(0,c-2),∴CC'=c-(c-2)=2,∵点D的横坐标为1,∴∠CDC'=90°,由对称性质可知DC=DC’,∴△DCC'是等腰直角三角形;(3)∵抛物线y=x2-2x-3与y轴交于点C,与x轴正半轴的交点为A,令x=0,y=-3,令y=0时,y=x2-2x-3,解得x1=-1,x2=3,∴C(0,-3),A(3,0),∵y=x2-2x-3=(x-1)2-4,∴其“孪生抛物线”的解析式为y=-(x-1)2-4=-x2+2x-5,若A、C为平行四边形的对角线,∴其中点坐标为(32,−32),设P(a,-a2+2a-5),∵A、C、P、Q为顶点的四边形为平行四边形,∴Q(0,a-3),∴23252a a a--+-=−32,化简得,a2+3a+5=0,△<0,方程无实数解,∴此时满足条件的点P不存在,若AC为平行四边形的边,点P在y轴右侧,则AP∥CQ且AP=CQ,∵点C和点Q在y轴上,∴点P的横坐标为3,把x=3代入“孪生抛物线”的解析式y=-32+2×3-5=-9+6-5=-8,∴P1(3,-8),若AC为平行四边形的边,点P在y轴左侧,则AQ∥CP且AQ=CP,∴点P的横坐标为-3,把x=-3代入“孪生抛物线”的解析式y=-9-6-5=-20,∴P2(-3,-20)∴原抛物线的“孪生抛物线”上存在点P1(3,-8),P2(-3,-20),在y轴上存在点Q,使以点A、C、P、Q为顶点的四边形为平行四边形.【点睛】本题是二次函数综合题型,主此题主要考查了根据二次函数的图象的变换求抛物线的解析式,解题的关键是求出旋转后抛物线的顶点坐标以及确定出点P的位置,注意分情况讨论.24.(1)证明见解析;(2)CD=.【解析】【分析】(1)根据三角函数的概念可知tanA=CDAD,cos∠BCD=CDBC,根据tanA=2cos∠BCD即可得结论;(2)由∠B的余弦值和(1)的结论即可求得BD,利用勾股定理求得CD即可.【详解】(1)∵tanA=CDAD,cos∠BCD=CDBC,tanA=2cos∠BCD,∴CDAD=2·CDBC,∴BC=2AD.(2)∵cosB=BDBC=34,BC=2AD,∴BDAD=32.∵AB=10,∴AD=25×10=4,BD=10-4=6,∴BC =8,∴CD .【点睛】本题考查了直角三角形中的有关问题,主要考查了勾股定理,三角函数的有关计算.熟练掌握三角函数的概念是解题关键.25.证明见解析【解析】 解:∵42a c b+=-,∴42a c b +=-.∴420a b c ++=. ∴2x =是一元二次方程20ax bx c ++=的根.∴240b ac -≥,∴24b ac ≥.26.(1)6;8;B ;(2)120人;(3)113分.【解析】【分析】(1)根据表格中的数据和扇形统计图中的数据可以求得本次抽查的人数,从而可以得到m 、n 的值,从而可以得到数学成绩的中位数所在的等级;(2)根据表格中的数据可以求得D 等级的人数;(3)根据表格中的数据,可以计算出A 等级学生的数学成绩的平均分数.【详解】(1)本次抽查的学生有:72420360︒÷=︒(人), 2030%62043211m n =⨯==---=,,数学成绩的中位数所在的等级B ,故答案为:6,11,B ;(2)2120020⨯=120(人), 答:D 等级的约有120人;(3)由表可得,A 等级学生的数学成绩的平均分数:102208435741711134⨯---=(分), 即A 等级学生的数学成绩的平均分是113分.【点睛】本题考查了扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答.27.(1)画图见解析;(2)画图见解析;(3)画图见解析.【解析】【详解】试题分析:(1)、根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)、根据网格结构找出点A、B、C关于原点的对称点A2、B2、C2的位置,然后顺次连接即可;(3)、找出点A关于x轴的对称点A′,连接A′B与x轴相交于一点,根据轴对称确定最短路线问题,交点即为所求的点P的位置,然后连接AP、BP并根据图象写出点P的坐标即可.试题解析:(1)、△A1B1C1如图所示;B1点的坐标(-4,2)(2)、△A2B2C2如图所示;B2点的坐标:(-4,-2)(3)、△PAB如图所示,P(2,0).考点:(1)、作图-旋转变换;(2)、轴对称-最短路线问题;(3)、作图-平移变换.。
广西贵港港南区六校联考2019-2020学年中考数学模拟试卷一、选择题1.x=1是关于x的方程2x﹣a=0的解,则a的值是()A.﹣2 B.2 C.﹣1 D.12.若2m=3,2n=4,则23m﹣2n等于( )A.1B.98C.278D.27163.如图①,将某四边形纸片ABCD的AB沿BC方向折过去(其中AB<BC),使得点A落在BC上,展开后出现折线BD,如图②.将点B折向D,使得B,D两点重叠,如图③,展开后出现折线CE,如图④.根据图④,下列关系正确的是()A.AD∥BC B.AB∥CD C.∠ADB=∠BDC D.∠ADB>∠BDC4.如图1,一辆汽车从点M处进入路况良好的立交桥,图2反映了它在进入桥区行驶过程中速度(千米/时)与行驶路程(米)之间的关系.根据图2,这辆车的行车路线最有可能是()A. B.C. D.5.如图,点、、、在上,,点是的中点,则的度数是()A. B. C. D.6.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.7.某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出cos∠AOB的值是()A.34B.710C.45D.358.如图,点E、F分别为正方形ABCD的边BC、CD上一点,AC、BD交于点O,且∠EAF=45°,AE,AF 分别交对角线BD于点M,N,则有以下结论:①△AOM∽△ADF;②EF=BE+DF;③∠AEB=∠AEF=∠ANM;④S△AEF=2S△AMN,以上结论中,正确的个数有()个.A.1 B.2 C.3 D.49.小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费()A.(3a+4b)元B.(4a+3b)元C.4(a+b)元D.3(a+b)元10.下列立体图形中,主视图是三角形的是()A.B.C.D.11.在下列各组条件中,不能说明△ABC≌△DEF的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DF,BC=EF,∠A=∠DC.AB=DE,∠A=∠D,∠B=∠E D.AB=DE,BC=EF,AC=DF12.下列计算正确的是()A.a3+a2=a5B.a8÷a4=a2C.(2a3)2﹣a•a5=3a6D.(a﹣2)(a+3)=a2﹣6二、填空题13.如图,直线y=﹣34x+6与x轴、y轴分别交于A、B两点,点P是以C(﹣1,0)为圆心,1为半径的圆上一点,连接PA,PB,则△PAB面积的最大值为_____.14.若把一次函数y kx b=+的图像先绕着原点旋转180︒,再向左平移2个单位长度后,恰好经过点40A-(,)和点02B(,),则原一次函数的表达式是____.15.已知函数y=2x+1,当x>3时,y的取值范围是_____.16.如图,某人从点A出发,前进5m后向右转60°,再前进5m后又向右转60°,这样一直走下去,当他第一次回到出发点A时,共走了_____m.17.如图,已知第一象限内的点A在反比例函数上,第二象限的点B在反比例函数上,且OA⊥OB,,则k的值为________________ .18的平方根为_____.三、解答题19.请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形,要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得x=分割线,拼出如图③所示的新正方形.请你参考小东同学的做法,解决如下问题:现有10个边长为1的正方形,排列形式如图④,请把它们分割后拼接成一个新的正方形,要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.(说明:直接画出图形,不要求写分析过程.)20.先化简,再求值:(26342x x x ---+)÷2x x -,其中x =20190+(﹣13)﹣1tan30° 21.某公司推出一款产品,经市场调查发现,该产品的日销售量y (个)与销售单价x (元)之间满足一次函数关系,关于销售单价,日销售量,日销售利润的几组对应值如表:(1)求y 与x 的函数关系式;(2)当销售单价x 为多少元时,日销售利润w 最大?最大利润是多少元?(3)当销售单价x 为多少元时,日销售利润w 在1500元以上?(请直接写出x 的范围) 22.已知二次函数y =x 2﹣(k+1)x+14k 2+1与x 轴有交点. (1)求k 的取值范围; (2)方程x 2﹣(k+1)x+14k 2+1=0有两个实数根,分别为x 1,x 2,且方程x 12+x 22+15=6x 1x 2,求k 的值,并写出y =x 2﹣(k+1)x+14k 2+1的代数解析式. 23.如图,已知抛物线y =﹣x 2+bx+c 与x 轴的一个交点为A (3,0).与y 轴的交点为B (0,3),其顶点为C .(1)求抛物线的解析式;(2)将△AOB 沿x 轴向右平移m 个长度单位(0<m <3)后得到另一个△FPE ,点A 、O 、B 的像分别为点F 、P 、E .①如图①,当点E 在直线AC 上时,求m 的值.②设所得的三角形△FPE 与△ABC 重叠部分的面积为S ,求S 关于m 的函数表达式.24.我市楚水商城销售一种进价为10元/件的饰品,经调查发现,该饰品每天的销售量y (件)与销售单价x (元)满足函数y =﹣2x+100,设销售这种饰品每天的利润为W (元). (1)求W 与x 之间的函数关系式;(2)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,应将销售单价定为多少元?25.如图是小明同学的一款琴谱架,他由谱板、立杆和三角支架组成(立杆垂直于地面,三角支架的三条腿长相等),谱板的长为47.5cm ,宽为30cm ,在谱板长的中间,宽的下端13处可调节谱板的倾斜度.如图是这款琴谱架的一种截面图.已知立杆AB =80cm ,三角支架CD =30cm ,CD 与地面夹角∠CDE 为35°,BC 的长度为9cm .根据小明的身高,当谱板与水平面的夹角∠FAH 调整为65°时,视谱效果最好,求此时谱板的上边沿到地面的距离FM的长.(结果精确到1cm.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin65°≈0.91,cos65°≈0.42,tan65°≈2.15)【参考答案】***一、选择题13.1014.112y x=-15.y>7 .16.3017.18.±2三、解答题19.见解析.【解析】【分析】,由此可知新正方形的边长等于三个小正方形组成的矩形对角线的长.于是,画出分割线,拼出新正方形即可.【详解】解:所画图形如图所示.【点睛】此题主要考查对正方形与三角形之间关系的灵活掌握. 20.22x -+,-2. 【解析】 【分析】先将除法转化为乘法,再利用分配律进行计算,最后将x 的值化简,代入即可. 【详解】解:原式=()()632222x x x x x x ⎡⎤---⎢⎥+-+⎢⎥⎣⎦, ()()()6322x x x x ---=+,()6362x x x x --+=+,22x =-+,∴当x =20190+11()3--1﹣1时, 原式=212--+=﹣2. 【点睛】本题主要考查分式的化简求值、实数的混合运算、零指数幂、负整数指数幂、特殊角的三角函数值等知识的综合,解决此题的关键是先根据分式的运算性质,将其化简,再将未知数的代入求值. 21.(1)y =﹣5x+600;(2)当销售单价x 为100元时,日销售利润w 最大,最大利润是2000元;(3)当销售单价x 在90元和110元之间时,日销售利润w 在1500元以上. 【解析】 【分析】(1)根据题意和表格中的数据可以求得y 关于x 的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w 的最大值; (3)根据题意列不等式即可得到结论. 【详解】解:(1)设y 关于x 的函数解析式为y =kx+b ,8517595125k b k b +=⎧⎨+=⎩,得k 5b 600=-⎧⎨=⎩,即y 关于x 的函数解析式是y =﹣5x+600, (2)设成本价为a 元/个当x=85时,875=175⨯(85-a ),得a=80,根据题意得,w =(﹣5x+600)(x ﹣80)=﹣5x 2+1000x ﹣48000=﹣5(x ﹣100)2+2000, ∴当x =100时,w 取得最大值,此时w =2000,答:当销售单价x 为100元时,日销售利润w 最大,最大利润是2000元; (3)根据题意得,﹣5(x ﹣100)2+2000>1500, 解得90<x <110,答:当销售单价x 在90元和110元之间时,日销售利润w 在1500元以上. 【点睛】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答. 22.(1)32k ≥;(2)k 的值是4,y =x 2﹣5x+5. 【解析】 【分析】(1)根据题意可以得到关于k 的不等式,从而可以得到k 的取值范围;(2)根据题意和根据系数的关系,可以求得k 的值,进而可以写出y =x 2﹣(k+1)x+14k 2+1的代数解析式. 【详解】解:(1)∵二次函数y =x 2﹣(k+1)x+14k 2+1与x 轴有交点, ∴△=221[(k 1)]41k 14⎛⎫-+-⨯⨯+ ⎪⎝⎭≥0, 解得32k ≥, 所以,k 的取值范围是32k ≥; (2)∵方程x 2﹣(k+1)x+14k 2+1=0有两个实数根,分别为x 1,x 2, ∴x 1+x 2=k+1,x 1x 2=14k 2+1, ∵x 12+x 22+15=6x 1x 2,∴(x 1+x 2)2﹣2x 1x 2+15=6x 1x 2, ∴(k+1)2﹣2(14k 2+1)+15=6×(14k 2+1), 解得,k =4或k =﹣2(舍去), ∴y =x 2﹣5x+5,所以,k 的值是4,y =x 2﹣(k+1)x+14k 2+1的代数解析式是y =x 2﹣5x+5. 【点睛】本题考查二次函数图象与系数的关系、根的判别式、抛物线与x 轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答. 23.(1)y =﹣x 2+2x+3;(2)①m =32;②当0<m≤32时,S =﹣32m 2+3m ;当32<m <3时,S =12m 2﹣3m+92. 【解析】 【分析】(1)根据待定系数法可得抛物线的解析式为y=-x 2+2x+3. (2)把点E 的坐标代入直线AC 的解析式来解答;(3)平移后的三角形记为△PEF .根据待定系数法可得直线AB 的解析式为y=-x+3.易得AB 平移m 个单位所得直线EF 的解析式为y=-x+3+m .连结BE ,直线BE 交AC 于G ,则G (32,3).在△AOB 沿x 轴向右平移的过程中.根据图象,易知重叠部分面积有两种情况:①当0<m≤32时;②当32<m<3时;讨论可得用m的代数式表示S.【详解】(1)由题意可知,抛物线y=﹣x2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),则9303b cc++=⎧⎨=⎩,解得23bc=⎧⎨=⎩.故抛物线的解析式为y=﹣x2+2x+3.(2)由题意知,E(m,3).由(1)得:y=﹣x2+2x+3=﹣(x﹣1)2+4,故C(1,4).设直线AC的解析式为y=kx+t(k≠0).把A(3,0),C(1,4)代入,得304k tk t+=⎧⎨+=⎩.解得k2 t6=-⎧⎨=⎩.故直线AC的解析式为:y=﹣2x+6.把E(m,3)代入知,﹣2m+6=3解得m=32;(3)平移后的三角形记为△PEF.设直线AB的解析式为y=k′x+d,则303k dd'+=⎧⎨=⎩,解得k1 d3=-'⎧⎨=⎩.则直线AB的解析式为y=﹣x+3.△AOB沿x轴向右平移m个单位长度(0<m<3)得到△PEF,易得直线EF的解析式为y=﹣x+3+m.由(2)知,直线AC的解析式为y=﹣2x+6.连结BE,直线BE交AC于G,则G(32,3).在△AOB沿x轴向右平移的过程中.①当0<m≤32时,如图1所示.设PE交AB于K,EF交AC于M.则BE=EK=m,PK=PA=3﹣m,联立263y xy x m=-+⎧⎨=-++⎩,解得32x my m=-⎧⎨=⎩,即点M(3﹣m,2m).故S=S△PEF﹣S△PAK﹣S△AFM=12PE2﹣12PK2﹣12F•h=92﹣12(3﹣m)2﹣12m•2m=﹣32m2+3m.②当32<m<3时,如图2所示.设PE交AB于K,交AC于H.因为BE=m,所以PK=PA=3﹣m,又因为直线AC的解析式为y=﹣2x+6,所以当x=m时,得y=6﹣2m,所以点H(m,6﹣2m).故S=S△PAH﹣S△PAK=12PA•PH﹣12PA2=﹣12(3﹣m)•(6﹣2m)﹣12(3﹣m)2=12m2﹣3m+92.综上所述,当0<m≤32时,S=﹣32m2+3m;当32<m<3时,S=12m2﹣3m+92.【点睛】考查了二次函数综合题,涉及的知识点有:抛物线的对称轴,待定系数法求抛物线的解析式,待定系数法求直线的解析式,分类思想的应用,方程思想的应用,综合性较强,有一定的难度.24.(1) W=﹣2x2+120x﹣1000;(2)应将销售单价定为25元.【解析】【分析】本题是通过构建函数模型解答销售利润的问题.(1)根据销售利润=销售量×(售价﹣进价),依据题意易得出W与 x之间的函数关系式,(2)令W=750,求解即可,因为要确保顾客得到优惠,故最后x应取最小值【详解】(1)根据题意,得:W=(﹣2x+100)(x﹣10)整理得W=﹣2x2+120x﹣1000∴W与 x之间的函数关系式为:W=﹣2x2+120x﹣1000(2)∵每天销售利润W为750元,∴W=﹣2x2+120x﹣1000=750解得x1=35,x2=25又∵要确保顾客得到优惠,∴x=25答:应将销售单价定为25元【点睛】本题考查了二次函数的性质在实际生活中的应用.我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.再根据销售利润=销售量×(售价﹣进价),建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.25.谱板的上边沿到地面的距离FM的长为106cm.【解析】【分析】延长AB交DE于N,过B作BG⊥FM于G,则AH=BG,HG=AB=80,MG=BN,解直角三角形即可得到结论.【详解】延长AB交DE于N,过B作BG⊥FM于G,则AH=BG,HG=AB=80,MG=BN,在Rt△AFH中,AF=30×23=20,∠FAH=65°,∴FH=AF•sin65°=20×0.91≈18.2,在Rt△CDN中,CD=30,∠CDE=35°,∴CN=CD•sin35°=30×0.57≈17.1,∴GM=BN=17.1﹣9=8.1,∴FM=FH+HG+GM=18.2+80+8.1≈106cm,答:谱板的上边沿到地面的距离FM的长为106cm.【点睛】本题考查了解直角三角形的应用,作辅助线构造直角三角形以及正确应用锐角三角函数关系是解题的关键.。
广西贵港市港南区中考数学二模试卷一、选择题(每题3分,共36分)1.﹣2017的倒数是()A.2017 B.C.﹣D.02.若点A(a﹣2,3)和点B(﹣1,b+5)关于y轴对称,则点C(a,b)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知,则的值是()A.B.C.D.4.若等腰三角形的两条边的长分别为5cm和8cm,则它的周长是()A.13cm B.18cm C.21cm D.18cm或21cm5.下列命题中,真命题的个数是()①同位角相等②经过一点有且只有一条直线与这条直线平行③长度相等的弧是等弧④顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个6.在同一直角坐标系中,若直线y=k1x与双曲线y=没有公共点,则()A.k1k2<0 B.k1k2>0 C.k1+k2<0 D.k1+k2>07.若一元二次方程ax2﹣c=0(ac>0)的两个根分别是n+1与2n﹣4,则=()A.﹣2 B.1 C.2 D.48.已知不等式组仅有2个整数解,那么a的取值范围是()A.a≥2 B.a<4 C.2≤a<4 D.2<a≤49.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是()A.B.C.D.10.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于()A.12.5°B.15° C.20° D.22.5°11.如图,正方形ABCD边长为4,点P从点A运动到点B,速度为1,点Q沿B﹣C﹣D运动,速度为2,点P、Q同时出发,则△BPQ的面积y与运动时间t(t≤4)的函数图象是()A.B.C.D.12.如图,将一个等腰Rt△ABC对折,使∠A与∠B重合,展开后得折痕CD,再将∠A折叠,使C落在AB 上的点F处,展开后,折痕AE交CD于点P,连接PF、EF,下列结论:①tan∠CAE=﹣1;②图中共有4对全等三角形;③若将△PEF沿PF翻折,则点E一定落在AB上;④PC=EC;⑤S四边形DFEP=S△APF.正确的个数是()A.1个B.2个C.3个D.4个二、填空题(每题3分,共18分)13.36的算术平方根是.14.已知a2﹣b2=5,a+b=﹣2,那么代数式a﹣b的值.15.二次函数y=(a﹣1)x2﹣x+a2﹣1 的图象经过原点,则a的值为.16.如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B= .17.如图,在Rt△ABC中,∠CAB=30°,∠C=90°.AD=AC,AB=8,E是AB上任意一点,F是AC上任意一点,则折线DEFB的最短长度为.18.如图,在平面直角坐标系中,直线l:y=x+1交x轴于点A,交y轴于点B,点A1、A2、A3,…在x 轴的正半轴上,点B1、B2、B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A6B7A7的周长是.三、解答题(本大题共8小题,满分66分)19.(1)(π﹣2017)0+|2﹣|﹣4cos30°+(2)先化简,再求值:﹣÷,其中a=.20.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4)、B(3,﹣2)、C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.(3)直接写出C2的坐标.21.如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数(k≠0)的图象上.(1)求a的值;(2)直接写出点P′的坐标;(3)求反比例函数的解析式.22.2016年3月,我校举办了以“读城记”为主题的校读书节暨文化艺术节,为了解初中学生更喜欢下列A、B、C、D哪个比赛,从初中学生随机抽取了部分学生进行调查,每个参与调查的学生只选择最喜欢的一个项目,并把调查结果绘制了两幅不完整的统计图,请回答下列问题:A.“寻找星主播”校园主持人大赛B.“育才音超”校园歌手大赛C.阅读之星评选D.“超级演说家”演讲比赛(1)这次被调查的学生共有人.请你将统计图补充完整.(2)在此调查汇总,抽到了七年级(1)班3人.其中2人喜欢“育才音超”校园歌手大赛、1人喜欢阅读之星评选.抽到八年级(5)班2人,其中1人喜欢“超级演说家”演讲比赛、1人喜欢阅读之星评选.从这5人中随机选两人.用列表或用树状图求出两人都喜欢阅读之星评选的概率.23.小明所在的学校加强学生的体育锻炼,准备从某体育用品商店一次购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据实际情况,需从该商店一次性购买篮球和足球功60个,要求购买篮球和足球的总费用不超过4000元,那么最多可以购买多少个篮球?24.已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为3,∠EAC=60°,求AD的长.25.如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B(3,0).(1)求b、c的值;(2)如图1直线y=kx+1(k>0)与抛物线第一象限的部分交于D点,交y轴于F点,交线段BC于E点.求的最大值;(3)如图2,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.问在直线BC下方的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.26.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.广西贵港市港南区中考数学二模试卷参考答案与试题解析一、选择题(每题3分,共36分)1.﹣2017的倒数是()A.2017 B.C.﹣D.0【考点】17:倒数.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:﹣2017的倒数是﹣.故选:C.2.若点A(a﹣2,3)和点B(﹣1,b+5)关于y轴对称,则点C(a,b)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】P5:关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点的横坐标互为相反数,纵坐标相等,可得答案.【解答】解:点A(a﹣2,3)和点B(﹣1,b+5)关于y轴对称,得a﹣2=1,b+5=3.解得a=3,b=﹣2.则点C(a,b)在第四象限,故选:D.3.已知,则的值是()A.B.C.D.【考点】S1:比例的性质.【分析】根据等式的性质,可用b表示a,根据分式的性质,可得答案.【解答】解:由,得a=b,==﹣,故选:D.4.若等腰三角形的两条边的长分别为5cm和8cm,则它的周长是()A.13cm B.18cm C.21cm D.18cm或21cm【考点】KH:等腰三角形的性质;K6:三角形三边关系.【分析】等腰三角形两边的长为5cm和8cm,具体哪条是底边,哪条是腰没有明确说明,因此要分两种情况讨论.【解答】解:①当腰是5cm,底边是8cm时,能构成三角形,则其周长=5+5+8=18cm;②当底边是5cm,腰长是8cm时,能构成三角形,则其周长=5+8+8=21cm.故选D.5.下列命题中,真命题的个数是()①同位角相等②经过一点有且只有一条直线与这条直线平行③长度相等的弧是等弧④顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个【考点】O1:命题与定理.【分析】根据平行线的性质对①进行判断;根据平行公理对②进行判断;根据等弧的定义对③进行判断;根据中点四边的判定方法可判断顺次连接菱形各边中点得到的四边形为平行四边形,加上菱形的对角线垂直可判断中点四边形为矩形.【解答】解:两直线平行,同位角相等,所以①错误;经过直线外一点有且只有一条直线与这条直线平行,所以②错误;在同圆或等圆中,长度相等的弧是等弧,所以③选项错误;顺次连接菱形各边中点得到的四边形是矩形,所以④正确.故选A.6.在同一直角坐标系中,若直线y=k1x与双曲线y=没有公共点,则()A.k1k2<0 B.k1k2>0 C.k1+k2<0 D.k1+k2>0【考点】G8:反比例函数与一次函数的交点问题.【分析】因为直线y=k1x(k1≠0)和双曲线y=(k2≠0)在同一坐标系内的图象无交点,那么方程k1x=无解,据此可得结果.【解答】解:依题意可得,方程k1x=无解,∴x2=<0,也就是k1和k2异号,即k1k2<0.故选A.7.若一元二次方程ax2﹣c=0(ac>0)的两个根分别是n+1与2n﹣4,则=()A.﹣2 B.1 C.2 D.4【考点】AB:根与系数的关系.【分析】根据题意得到n+1与2n﹣4互为相反数,求出n的值,确定出所求式子的值即可.【解答】解:∵一元二次方程ax2﹣c=0(ac>0)的两个根分别是n+1与2n﹣4,∴n+1与2n﹣4互为相反数,即n+1+2n﹣4=0,解得:n=1,∴方程的两根为2和﹣2,则=4,故选D8.已知不等式组仅有2个整数解,那么a的取值范围是()A.a≥2 B.a<4 C.2≤a<4 D.2<a≤4【考点】CC:一元一次不等式组的整数解.【分析】首先解不等式组确定不等式组的解集,然后根据不等式组仅有2个整数解即可得到关于a的不等式组,求得a的值.【解答】解:,解①得:x>3﹣a,解②得:x<4,则不等式组的解集是:3﹣a<x<4.不等式组仅有2个整数解,则是2,3.则1≤3﹣<2.解得:2<a≤4.故选D.9.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是()A.B.C.D.【考点】MO:扇形面积的计算;L5:平行四边形的性质.【分析】根据题意可以得到平行四边形底边AB上的高,由图可知图中阴影部分的面积是平行四边形的面积减去扇形的面积和△EBC的面积.【解答】解:作DF⊥AB于点F,∵AD=2,∠A=30°,∠DFA=90°,∴DF=1,∵AD=AE=2,AB=4,∴BE=2,∴阴影部分的面积是:4×1﹣=3﹣,故选A.10.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于()A.12.5°B.15° C.20° D.22.5°【考点】M5:圆周角定理;KM:等边三角形的判定与性质;L5:平行四边形的性质.【分析】根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.【解答】解:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圆周角定理得∠BAF=∠BOF=15°,故选:B.11.如图,正方形ABCD边长为4,点P从点A运动到点B,速度为1,点Q沿B﹣C﹣D运动,速度为2,点P、Q同时出发,则△BPQ的面积y与运动时间t(t≤4)的函数图象是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】本题应分两段进行解答,①点P在AB上运动,点Q在BC上运动,②点P在AB上运动,点Q在CD 上运动,依次得出y与t的关系式即可得出函数图象.【解答】解:①点P在AB上运动,点Q在BC上运动,即0≤t≤2,此时AP=t,BP=4﹣t,QB=2t,故可得y=PB•QB=(4﹣t)•2t=﹣t2+4t,函数图象为开口向下的抛物线;②点P在AB上运动,点Q在CD上运动,即2<t≤4此时AP=t,BP=4﹣t,△BPQ底边PB上的高保持不变,为正方形的边长4,故可得y=BP×4=﹣2t+8,函数图象为直线.综上可得全过程的函数图象,先是开口向下的抛物线,然后是直线;故选:B.12.如图,将一个等腰Rt△ABC对折,使∠A与∠B重合,展开后得折痕CD,再将∠A折叠,使C落在AB 上的点F处,展开后,折痕AE交CD于点P,连接PF、EF,下列结论:①tan∠CAE=﹣1;②图中共有4对全等三角形;③若将△PEF沿PF翻折,则点E一定落在AB上;④PC=EC;⑤S四边形DFEP=S△APF.正确的个数是()A.1个B.2个C.3个D.4个【考点】KD:全等三角形的判定与性质;PB:翻折变换(折叠问题).【分析】①正确.作EM∥AB交AC于M.设CM=CE=a,则ME=AM=a,根据tan∠CAE=即可判断.②正确.根据△CDA≌△CDB,△AEC≌△AEF,△APC≌△APF,△PEC≌△PEF即可判断.③正确.由△PEC≌△PEF得到∠PFA=∠PFE=45°,由此即可判断.④正确.只要证明∠CPE=∠CEP=67.5°,⑤错误.假设结论成立,推出矛盾即可.【解答】解:①正确.作EM∥AB交AC于M.∵CA=CB,∠ACB=90°,∴∠CAB=∠CBA=45°,∵∠CAE=∠BAE=∠CAB=22.5°,∴∠MEA=∠EAB=22.5°,∴∠CME=45°=∠CEM,设CM=CE=a,则ME=AM=a,∴tan∠CAE===﹣1,故①正确,②正确.△CDA≌△CDB,△AEC≌△AEF,△APC≌△APF,△PEC≌△PEF,故②正确,③正确.∵△PEC≌△PEF,∴∠PCE=∠PFE=45°,∵∠EFA=∠ACE=90°,∴∠PFA=∠PFE=45°,∴若将△PEF沿PF翻折,则点E一定落在AB上,故③正确.④正确.∵∠CPE=∠CAE+∠ACP=67.5°,∠CEP=90°﹣∠CAE=67.5°,∴∠CPE=∠CEP,∴CP=CE,故④正确,⑤错误.∵△APC≌△APF,∴S△APC=S△APF,假设S△APF=S四边形DFPE,则S△APC=S四边形DFPE,∴S△ACD=S△AEF,∵S△ACD=S△ABC,S△AEF=S△AEC≠S△ABC,∴矛盾,假设不成立.故⑤错误.二、填空题(每题3分,共18分)13.36的算术平方根是 6 .【考点】22:算术平方根.【分析】根据算术平方根的定义,即可解答.【解答】解:36的算术平方根是6.故答案为:6.14.已知a2﹣b2=5,a+b=﹣2,那么代数式a﹣b的值﹣2.5 .【考点】54:因式分解﹣运用公式法.【分析】利用平方差公式可得a﹣b=(a2﹣b2)÷(a+b),然后把已知条件代入求值即可.【解答】解:∵a2﹣b2=5,a+b=﹣2,∴a﹣b=(a2﹣b2)÷(a+b)=5÷(﹣2)=﹣2.5.故答案为:﹣2.5.15.二次函数y=(a﹣1)x2﹣x+a2﹣1 的图象经过原点,则a的值为﹣1 .【考点】H5:二次函数图象上点的坐标特征.【分析】将(0,0)代入y=(a﹣1)x2﹣x+a2﹣1 即可得出a的值.【解答】解:∵二次函数y=(a﹣1)x2﹣x+a2﹣1 的图象经过原点,∴a2﹣1=0,∴a=±1,∵a﹣1≠0,∴a≠1,∴a的值为﹣1.故答案为:﹣1.16.如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B= 36°.【考点】JA:平行线的性质.【分析】根据角平分线的定义可得∠BCD=2∠DCE,然后根据两直线平行,内错角相等可得∠B=∠BCD.【解答】解:∵CE平分∠BCD,∴∠BCD=2∠DCE=2×18=36°,∵AB∥CD,∴∠B=∠BCD=36°.故答案为:36°.17.如图,在Rt△ABC中,∠CAB=30°,∠C=90°.AD=AC,AB=8,E是AB上任意一点,F是AC上任意一点,则折线DEFB的最短长度为.【考点】PA:轴对称﹣最短路线问题.【分析】利用轴对称求最短路径的方法,重新构造直角三角形,进而利用勾股定理求出即可.【解答】解:作D点关于AB的对称点D′,B点关于AC的对称点B′,连接D′B′分别交AB于点E,AC 于点F,作B′R⊥AB,过点D′作D′W⊥B′R于点W,∵∠CAB=30°,∠C=90°.AD=AC,AB=8,∴BC=4,AC=4,则AD=,BB′=8,B′R=4,∴DT=AD=,AT==,BR=4,∴RW=,D′W=8﹣﹣4=,∴B′W=,B′D′===.故答案为:.18.如图,在平面直角坐标系中,直线l:y=x+1交x轴于点A,交y轴于点B,点A1、A2、A3,…在x 轴的正半轴上,点B1、B2、B3,…在直线l上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A6B7A7的周长是192.【考点】F8:一次函数图象上点的坐标特征;D2:规律型:点的坐标.【分析】先根据直线的解析式求出直线l与两坐标轴的交点坐标,即得出OA=,OB=1,并求出∠OAB=30°,再由等边三角形和外角定理依次求出∠OB1A=∠AB2A1=∠AB3A2=30°,根据等角对等边得:A1A2=A1B2=AA1=2OA1=2,从而发现了规律得出等边△A6B7A7的边长为64,从而求得周长.【解答】解:当x=0时,y=1,则B(0,1),当y=0时,x=﹣,则A(﹣,0),∴OA=,OB=1,∵tan∠OAB===,∴∠OAB=30°,∵△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,∴∠A1OB1=∠A2A1B2=∠A3A2B3=60°,∴∠OB1A=∠AB2A1=∠AB3A2=30°,∴OB1=OA=,A1B2=AA1,A2B3=AA2,则OA1=OB1=,A1B2=AA1=2,∴A1A2=A1B2=AA1=2OA1=2,同理:A2A3=A2B3=2A1A2=4,A3A4=2A2A3=8,A4A5=2A3A4=16,A5A6=2A4A5=32∴A6A7=2A5A6=64,∴△A6B7A7的周长是:3×64=192,故答案为:192.三、解答题(本大题共8小题,满分66分)19.(1)(π﹣2017)0+|2﹣|﹣4cos30°+(2)先化简,再求值:﹣÷,其中a=.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】(1)根据零指数幂、绝对值、特殊角的三角函数值可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:(1)(π﹣2017)0+|2﹣|﹣4cos30°+=1+﹣4×+4=1+2﹣+4=7﹣3;(2)﹣÷===,当a=时,原式=.20.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4)、B(3,﹣2)、C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.(3)直接写出C2的坐标.【考点】SD:作图﹣位似变换;P7:作图﹣轴对称变换.【分析】(1)作出A、B、C关于x轴的对称点A1,B1,C1,△A1B1C1即为所求;(2)延长OA1到A2使得OA2=2OA1,同法作出B2,C2,△A2B2C2即为所求;(3)观察图象即可解决问题;【解答】解:(1)△ABC关于x轴对称的△A1B1C1如图所示;(2)△A1B1C1的位似图形△A2B2C2如图所示,(3)由图象可知C2(11,4).21.如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数(k≠0)的图象上.(1)求a的值;(2)直接写出点P′的坐标;(3)求反比例函数的解析式.【考点】G7:待定系数法求反比例函数解析式;F8:一次函数图象上点的坐标特征;P5:关于x轴、y轴对称的点的坐标.【分析】(1)把(﹣2,a)代入y=﹣2x中即可求a;(2)坐标系中任一点关于y轴对称的点的坐标,其中横坐标等于原来点横坐标的相反数,纵坐标不变;(3)把P′代入y=中,求出k,即可得出反比例函数的解析式.【解答】解:(1)把(﹣2,a)代入y=﹣2x中,得a=﹣2×(﹣2)=4,∴a=4;(2)∵P点的坐标是(﹣2,4),∴点P关于y轴的对称点P′的坐标是(2,4);(3)把P′(2,4)代入函数式y=,得4=,∴k=8,∴反比例函数的解析式是y=.22.2016年3月,我校举办了以“读城记”为主题的校读书节暨文化艺术节,为了解初中学生更喜欢下列A、B、C、D哪个比赛,从初中学生随机抽取了部分学生进行调查,每个参与调查的学生只选择最喜欢的一个项目,并把调查结果绘制了两幅不完整的统计图,请回答下列问题:A.“寻找星主播”校园主持人大赛B.“育才音超”校园歌手大赛C.阅读之星评选D.“超级演说家”演讲比赛(1)这次被调查的学生共有200 人.请你将统计图补充完整.(2)在此调查汇总,抽到了七年级(1)班3人.其中2人喜欢“育才音超”校园歌手大赛、1人喜欢阅读之星评选.抽到八年级(5)班2人,其中1人喜欢“超级演说家”演讲比赛、1人喜欢阅读之星评选.从这5人中随机选两人.用列表或用树状图求出两人都喜欢阅读之星评选的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1))根据A的人数为20人,所以占10%,可得总人数=20÷10%=200人,由此即可解决问题;(2)利用列表法,求出共有20种可能,其中所选两人都喜欢阅读之星有2种,再根据概率公式计算即可;【解答】解:(1)∵A的人数为20人,所以占10%,∴总人数=20÷10%=200人,∴B的人数为200×40%=80人,C的人数=200﹣80﹣20﹣40=60人,条形图如图所示,故答案为200.(2)设绿1,绿2表示喜欢阅读之星的学生,红1,红2,红3表示喜欢其他的学生,列表如下:由表格可知,共有20种可能,其中所选两人都喜欢阅读之星有2种,所以两人都喜欢阅读之星评选的概率==.23.小明所在的学校加强学生的体育锻炼,准备从某体育用品商店一次购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据实际情况,需从该商店一次性购买篮球和足球功60个,要求购买篮球和足球的总费用不超过4000元,那么最多可以购买多少个篮球?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)设每个篮球x元,每个足球y元,根据买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元,列出方程组,求解即可;(2)设买m个篮球,则购买(60﹣m)个足球,根据总价钱不超过4000元,列不等式求出x的最大整数解即可.【解答】解:(1)设每个篮球x元,每个足球y元,由题意得,,解得:,答:每个篮球80元,每个足球50元;(2)设买m个篮球,则购买(60﹣m)个足球,由题意得,80,m+50(60﹣m)≤4000,解得:m≤33,∵m为整数,∴m最大取33,答:最多可以买33个篮球.24.已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为3,∠EAC=60°,求AD的长.【考点】MD:切线的判定.【分析】(1)连接FO,由F为BC的中点,AO=CO,得到OF∥AB,由于AC是⊙O的直径,得出CE⊥AE,根据OF∥AB,得出OF⊥CE,于是得到OF所在直线垂直平分CE,推出FC=FE,OE=OC,再由∠ACB=90°,即可得到结论.(2)证出△AOE是等边三角形,得到∠EOA=60°,再由直角三角形的性质即可得到结果.【解答】证明:(1)如图1,连接FO,∵F为BC的中点,AO=CO,∴OF∥AB,∵AC是⊙O的直径,∴CE⊥AE,∵OF∥AB,∴OF⊥CE,∴OF所在直线垂直平分CE,∴FC=FE,OE=OC,∴∠FEC=∠FCE,∠0EC=∠0CE,∵∠ACB=90°,即:∠0CE+∠FCE=90°,∴∠0EC+∠FEC=90°,即:∠FEO=90°,∴FE为⊙O的切线;(2)如图2,∵⊙O的半径为3,∴AO=CO=EO=3,∵∠EAC=60°,OA=OE,∴∠EOA=60°,∴∠COD=∠EOA=60°,∵在Rt△OCD中,∠COD=60°,OC=3,∴CD=,∵在Rt△ACD中,∠ACD=90°,CD=,AC=6,∴AD=.25.如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B(3,0).(1)求b、c的值;(2)如图1直线y=kx+1(k>0)与抛物线第一象限的部分交于D点,交y轴于F点,交线段BC于E点.求的最大值;(3)如图2,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.问在直线BC下方的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)将点A、B的坐标带入到抛物线解析式中,得出关于b、c的二元一次方程组,解方程组即可得出结论;(2)作DN∥CF交CB于N,由DN∥CF可得出△DEN∽△FEC,根据相似三角形的性质得出,由(1)可得出抛物线的解析式,令抛物线解析式中x=0则可得出点C的坐标,由点B、C的坐标可得出直线BC的解析式,设出点D的坐标,则可得出点N的坐标,由直线DF的解析式可得出点F的坐标,从而得出DN、CF 的长度,由DN的长度结合二次函数的性质即可得出结论;(3)假设存在符合题意的点Q.设PM与x轴交于点G,过点G作作直线BC的平行线.由抛物线的解析式可得出顶点P的坐标,由此得出对称轴的解析式,结合直线BC的解析式可得出点M的坐标,结合点G的坐标可知PM=GM,由此得出满足题意的点Q为“过点G与直线BC平行的直线和抛物线的交点”,由G点的坐标结合直线BC的解析式即可得出过点G与BC平行的直线的解析式,联立直线与抛物线解析式得出关于x、y的二元二次方程组,解方程即可得出结论.【解答】解:(1)将点A(﹣1,0)、B(3,0)带入到抛物线解析式中得:,解得:.(2)作DN∥CF交CB于N,如图1所示.∵DN∥CF,∴△DEN∽△FEC,∴.∵抛物线的解析式为y=﹣x2+2x+3,∴点C的坐标为(0,3).∴直线BC的解析式为y=﹣x+3.令直线y=kx+1中x=0,则y=1,即点F的坐标为(0,1).设点D的坐标为(m,﹣m2+2m+3),则点N的坐标为(m,﹣m+3),∴DN=﹣m2+3m,CF=3﹣1=2,∴=,∵DN=﹣m2+3m=﹣+的最大值为,∴的最大值为.(3)假设存在符合题意的点Q.∵抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴P点的坐标为(1,4),PM的解析式为x=1,∵直线BC的解析式为y=﹣x+3,∴M的坐标为(1,2),∵点G的坐标为(1,0),∴PM=GM=2.设PM与x轴交于点G,过点G作作直线BC的平行线,如图2所示.∴过点G与BC平行的直线为y=﹣x+1.联立直线与抛物线解析式得:,解得:或.∴点Q的坐标为(,﹣)或(,﹣).∵平行线间距离处处相等,且点M为线段PG的中点,∴点Q到直线BC的距离与点P到直线的距离相等.故在直线BC下方的抛物线上存在点Q,使得△QMB与△PMB的面积相等,点Q的坐标为(,﹣)或(,﹣).26.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:垂直.②BC,CD,CF之间的数量关系为:BC=CD+CF ;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.【考点】LO:四边形综合题.【分析】(1)①根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质即可得到结论;②由正方形ADEF的性质可推出△DAB≌△FAC,根据全等三角形的性质得到CF=BD,∠ACF=∠ABD,根据余角的性质即可得到结论;(2)根据正方形的性质得到∠BAC=∠DAF=90°,推出△DAB≌△FAC,根据全等三角形的性质以及等腰直角三角形的角的性质可得到结论.(3)根据等腰直角三角形的性质得到BC=AB=4,AH=BC=2,求得DH=3,根据正方形的性质得到AD=DE,∠ADE=90°,根据矩形的性质得到NE=CM,EM=CN,由角的性质得到∠ADH=∠DEM,根据全等三角形的性质得到EM=DH=3,DM=AH=2,等量代换得到CN=EM=3,EN=CM=3,根据等腰直角三角形的性质得到CG=BC=4,根据勾股定理即可得到结论.【解答】解:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠B=∠ACF,∴∠ACB+∠ACF=90°,即BC⊥CF;故答案为:垂直;②△DAB≌△FAC,∴CF=BD,∵BC=BD+CD,∴BC=CF+CD;故答案为:BC=CF+CD;(2)CF⊥BC成立;BC=CD+CF不成立,CD=CF+BC.∵正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,在△DAB与△FAC中,,∴△DAB≌△FAC,∴∠ABD=∠ACF,∵∠BAC=90°,AB=AC,∴∠ACB=∠ABC=45°.∴∠ABD=180°﹣45°=135°,∴∠BCF=∠ACF﹣∠ACB=135°﹣45°=90°,∴CF⊥BC.∵CD=DB+BC,DB=CF,∴CD=CF+BC.(3)解:过A作AH⊥BC于H,过E作EM⊥BD于M,EN⊥CF于N,∵∠BAC=90°,AB=AC,∴BC=AB=4,AH=BC=2,... ∴CD=BC=1,CH=BC=2,∴DH=3,由(2)证得BC⊥CF,CF=BD=5,∵四边形ADEF是正方形,∴AD=DE,∠ADE=90°,∵BC⊥CF,EM⊥BD,EN⊥CF,∴四边形CMEN是矩形,∴NE=CM,EM=CN,∵∠AHD=∠ADE=∠EMD=90°,∴∠ADH+∠EDM=∠EDM+∠D EM=90°,∴∠ADH=∠DEM,在△ADH与△DEM中,,∴△ADH≌△DEM,∴EM=DH=3,DM=AH=2,∴CN=EM=3,EN=CM=3,∵∠ABC=45°,∴∠BGC=45°,∴△BCG是等腰直角三角形,∴CG=BC=4,∴GN=1,∴EG==.。