2016-2017年浙江省台州市高一上学期期末数学试卷带答案
- 格式:pdf
- 大小:715.66 KB
- 文档页数:14
2016-2017学年浙江省台州市高二(上)期末数学试卷及答案2016-2017学年浙江省台州市高二(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.过点A(,1)与直线y=x-1平行的直线方程是()A。
x+y-1=0B。
x-y-1=0C。
x+y+1=0D。
x-y+1=02.若一个球的半径为1,则它的表面积是()A。
4πB。
2πC。
πD。
8π3.已知圆C:x^2+y^2+2x-4y=0,则圆C的圆心坐标为()A。
(1,-2)B。
(-1,2)C。
(1,2)D。
(-1,-2)4.在正方体ABCD-A1B1C1D1中,异面直线A1B与CC1所成角的大小为()A。
60°B。
30°C。
90°D。
45°5.设直线l的方向向量为(1,-1,1),平面α的一个法向量为(-1,1,-1),则直线l与平面α的位置关系是()A。
l⊂αB。
l∥αXXX⊥αD。
不确定6.已知直线l在平面α内,则“l⊥β”是“α⊥β”的()A。
充分不必要条件B。
必要不充分条件C。
充要条件D。
既不充分也不必要条件7.在平面直角坐标系中,方程x^2/9+y^2/4=1所表示的曲线是()A。
椭圆B。
三角形C。
菱形D。
两条平行线8.已知抛物线y^2=4x上一动点M(x,y),定点N(0,1),则x+|MN|的最小值是()A。
1B。
2C。
-1D。
-29.已知F1和F2分别是椭圆C:x^2/4+y^2=1的左焦点和右焦点,点P(x,y)是椭圆C上一点,满足∠F1PF2≥60°,则x的取值范围是()A。
[-1,1]B。
[-2,2]C。
[1,2]D。
[-2,-1]10.如图,在三棱柱ABC-A1B1C1中,E,F,E1,F1分别为棱AB,AC,AA1,CC1的中点,点G,H分别为四边形ABB1A1,BCC1B1对角线的交点,点I为△A1B1C1的外心,P,Q分别在直线EF,E1F1上运动,则在G,H,I,这三个点中,动直线PQ()A。
2016-2017学年浙江省台州市高一(上)期末数学试卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5},A={1,3},B={2,4},则∁U(A∪B)=()A.5 B.{5}C.∅D.{1,2,3,4}2.已知平面向量=(1,2),=(x,﹣2),若与共线,则x的值为()A.﹣4 B.4 C.﹣1 D.13.的值为()A.B.C.D.4.已知函数f(x)=|x﹣1|﹣1(x∈{0,1,2,3}),则其值域为()A.{0,1,2,3}B.{﹣1,0,1}C.{y|﹣1≤y≤1}D.{y|0≤y≤2} 5.若,,,则a,b,c的大小关系是()A.c>b>a B.c>a>b C.a>b>c D.b>a>c6.若x0是函数f(x)=﹣x3﹣3x+5的零点,则x0所在的一个区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)7.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则()A.ω=2,B.,C.ω=2,D.,8.已知函数f(x)=log a(x﹣+1)+2(a>0,a≠1)的图象经过定点P,且点P在幂函数g(x)的图象上,则g(x)的表达式为()A.g(x)=x2B. C.g(x)=x3D.9.已知函数f(x)=x2﹣2x在区间[﹣1,t]上的最大值为3,则实数t的取值范围是()A.(1,3]B.[1,3]C.[﹣1,3]D.(﹣1,3]10.若存在实数α∈R,,使得实数t同时满足,α≤t≤α﹣2cosβ,则t的取值范围是()A.B. C. D.[2,4]二、填空题:本大题共6小题,单空题每小题3分,多空题每小题3分,共20分.11.集合{1,2}的子集个数为.12.已知函数f(x)=的值为.13.已知函数f(x)=2cos(2x+),函数g(x)的图象由函数f(x)的图象向右平移个单位而得到,则当x∈[﹣,]时,g(x)的单调递增区间是.14.已知定义在R上的偶函数f(x)在[0,+∞)上是减函数,且f(2)=0,若f(lnx)>0,则x的取值范围是.15.已知函数y=sinx(x∈[m,n]),值域为,则n﹣m的最大值为,最小值为.16.在等腰△ABC中,AD是底边BC上的中线,若•=m,AD=λBC,则当m=2时,实数λ的值是,当λ∈(,)时,实数m的取值范围为.三、解答题:本大题共5小题,共50分.解答应写出文字说明,证明过程或演算步骤.17.已知函数.(Ⅰ)判断f(x)的奇偶性,并加以证明;(Ⅱ)求方程的实数解.18.已知=(cosα,sinα),=(cosβ,sinβ),<α<β<.(Ⅰ)若,求;(Ⅱ)设=(1,0),若,求α,β的值.19.已知集合A={x|x2﹣2x﹣3<0},B={x|2a﹣1<x<a+1},a∈R.(Ⅰ)若B⊆A,求实数a的取值范围;(Ⅱ)设函数,若实数x0满足f(x0)∈A,求实数x0取值的集合.20.已知A为锐角△ABC的内角,且sinA﹣2cosA=a(a∈R).(Ⅰ)若a=﹣1,求tanA的值;(Ⅱ)若a<0,且函数f(x)=(sinA)•x2﹣(2cosA)•x+1在区间[1,2]上是增函数,求sin2A﹣sinA•cosA的取值范围.21.已知函数f(x)=|x2﹣2x﹣3|,g(x)=x+a.(Ⅰ)求函数y=f(x)的单调递增区间;(只需写出结论即可)(Ⅱ)设函数h(x)=f(x)﹣g(x),若h(x)在区间(﹣1,3)上有两个不同的零点,求实数a的取值范围;(Ⅲ)若存在实数m∈[2,5],使得对于任意的x1∈[0,2],x2∈[﹣2,﹣1],都有f(x1)﹣m≥g(2)﹣5成立,求实数a的最大值.2016-2017学年浙江省台州市高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5},A={1,3},B={2,4},则∁U(A∪B)=()A.5 B.{5}C.∅D.{1,2,3,4}【考点】交、并、补集的混合运算.【分析】根据并集与补集的定义,写出运算结果即可.【解答】解:全集U={1,2,3,4,5},A={1,3},B={2,4},∴A∪B={1,2,3,4};∴∁U(A∪B)={5}.故选:B.2.已知平面向量=(1,2),=(x,﹣2),若与共线,则x的值为()A.﹣4 B.4 C.﹣1 D.1【考点】平行向量与共线向量.【分析】根据平面向量共线定理的坐标表示,列出方程求x的值.【解答】解:平面向量=(1,2),=(x,﹣2),若与共线,则2x﹣1×(﹣2)=0,解得x=﹣1.故选:C.3.的值为()A.B.C.D.【考点】三角函数的化简求值.【分析】利用诱导公式化简即可计算出答案.【解答】解:sin=sin(4)=sin(﹣)=﹣sin=.故选A4.已知函数f(x)=|x﹣1|﹣1(x∈{0,1,2,3}),则其值域为()A.{0,1,2,3}B.{﹣1,0,1}C.{y|﹣1≤y≤1}D.{y|0≤y≤2}【考点】函数的值域.【分析】根据题意依次求出函数值,可得函数的值域.【解答】解:∵函数f(x)=|x﹣1|﹣1(x∈{0,1,2,3}),∴f(x)分别是0、﹣1、0、1,则函数f(x)的值域是{﹣1,0,1},故选:B.5.若,,,则a,b,c的大小关系是()A.c>b>a B.c>a>b C.a>b>c D.b>a>c【考点】对数值大小的比较.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵0<<,<0,∴b>a>c.故选:D.6.若x0是函数f(x)=﹣x3﹣3x+5的零点,则x0所在的一个区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)【考点】函数零点的判定定理.【分析】判断函数的连续性,利用零点判定定理求解即可.【解答】解:函数f(x)=﹣x3﹣3x+5是连续函数,因为f(1)=1>0,f(2)=﹣8﹣6+5<0,可知f(1)f(2)<0,由零点判定定理可知,函数的零点x0所在的一个区间是(1,2).故选:B.7.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则()A.ω=2,B.,C.ω=2,D.,【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】根据三角函数图象确定函数的周期以及函数过定点坐标,代入进行求解即可.【解答】解:函数的周期T=﹣=π,即=π,则ω=2,当x=时,f()=sin(2×+φ)=,即sin(+φ)=,∵|φ|<,∴﹣<φ<,则﹣<+φ<,可得: +φ=,解得:φ=,故选:A.8.已知函数f(x)=log a(x﹣+1)+2(a>0,a≠1)的图象经过定点P,且点P在幂函数g(x)的图象上,则g(x)的表达式为()A.g(x)=x2B. C.g(x)=x3D.【考点】幂函数的概念、解析式、定义域、值域.【分析】由题意求得定点P的坐标,根据点P在幂函数f(x)的图象上,设g(x)=x n,求得n的值,可得g(x)的解析式即可.【解答】解:函数y=log a(x﹣+1)+2(a>0,a≠1)的图象过定点P(,2),∵点P在幂函数f(x)的图象上,设g(x)=x n,则2=n,∴n=3,g(x)=x3,故选:C.9.已知函数f(x)=x2﹣2x在区间[﹣1,t]上的最大值为3,则实数t的取值范围是()A.(1,3]B.[1,3]C.[﹣1,3]D.(﹣1,3]【考点】二次函数的性质.【分析】求出函数的对称轴,判断开口方向,然后通过函数值求解即可.【解答】解:函数f(x)=x2﹣2x的对称轴为:x=1,开口向上,而且f(﹣1)=3,函数f(x)=x2﹣2x在区间[﹣1,t]上的最大值为3,又f(3)=9﹣6=3,则实数t的取值范围是:(﹣1,3].故选:D.10.若存在实数α∈R,,使得实数t同时满足,α≤t≤α﹣2cosβ,则t的取值范围是()A.B. C. D.[2,4]【考点】三角函数的周期性及其求法.【分析】根据题意求出t≥,设f(t)=,求出f(t)的最小值;再根据题意求出t≤,设g(t)==2f(t),求出g(t)的最大值,从而求出实数t的取值范围.【解答】解:∵β∈[,π],∴﹣1≤cosβ≤0;∵α≤t,∴≥cos2β+cosβ,即t≥;令f(t)=,则f′(t)==;令f′(t)=0,解得sinβ=0或cosβ=0;当sinβ=0时,cosβ=﹣1,此时f(t)==,当cosβ=0时,f(t)=0为最小值;又t≤α﹣2cosβ,∴α≥t+2cosβ,∴t≤cos2β+•cosβ,即t≤;令g(t)==2f(t),则g′(t)=2f′(t)=2•;令g′(t)=0,解得sinβ=0或cosβ=0;当sinβ=0时,cosβ=﹣1,此时g(t)=2×=为最大值,当cosβ=0时,g(t)=0;综上,实数t的取值范围是[0,].故选:B.二、填空题:本大题共6小题,单空题每小题3分,多空题每小题3分,共20分.11.集合{1,2}的子集个数为4.【考点】子集与真子集.【分析】写出集合{1,2}的所有子集,从而得出该集合的子集个数.【解答】解:{1,2}的子集为:∅,{1},{2},{1,2},共四个.故答案为:4.12.已知函数f(x)=的值为.【考点】对数的运算性质.【分析】首先求出f()=﹣2,再求出f(﹣2)的值即可.【解答】解:∵>0∴f()=log3=﹣2∵﹣2<0∴f(﹣2)=2﹣2=故答案为.13.已知函数f(x)=2cos(2x+),函数g(x)的图象由函数f(x)的图象向右平移个单位而得到,则当x∈[﹣,]时,g(x)的单调递增区间是[﹣,] .【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用y=Asin(ωx+φ)的图象变换规律,余弦函数的单调性,得出结论.【解答】解:把函数f(x)=2cos(2x+)的图象向右平移个单位,得到g(x)=2cos[2(x﹣)+]=2cos(2x﹣)的图象,令2kπ﹣π≤2x﹣≤2kπ,求得kπ﹣≤x≤kπ+,可得函数g(x)的增区间为[kπ﹣,kπ+],k∈Z.结合x∈[﹣,]时,可得g(x)的增区间为[﹣,],故答案为:[﹣,].14.已知定义在R上的偶函数f(x)在[0,+∞)上是减函数,且f(2)=0,若f(lnx)>0,则x的取值范围是.【考点】奇偶性与单调性的综合.【分析】根据题意、偶函数的单调性等价转化不等式,由对数函数的单调性求出解集.【解答】解:∵f(2)=0,f(lnx)>0,∴f(lnx)>f(2),∵定义在R上的偶函数f(x)在[0,+∞)上是减函数,∴f(lnx)>f(2)等价于|lnx|<2,则﹣2<lnx<2,即lne﹣2<lnx<lne2,解得,∴不等式的解集是,故答案为:.15.已知函数y=sinx(x∈[m,n]),值域为,则n﹣m的最大值为,最小值为.【考点】三角函数的最值.【分析】根据题意,利用正弦函数的图象与性质,即可得出结论.【解答】解:∵函数y=sinx的定义域为[m,n],值域为,结合正弦函数y=sinx的图象与性质,不妨取m=﹣,n=,此时n﹣m取得最大值为.取m=﹣,n=,n﹣m取得最小值为,故答案为,.16.在等腰△ABC中,AD是底边BC上的中线,若•=m,AD=λBC,则当m=2时,实数λ的值是±,当λ∈(,)时,实数m的取值范围为(,2).【考点】平面向量数量积的运算.【分析】以D为原点,以BC边所在的直线为x轴,以中线AD所在的直线为y 轴,根据向量的数量积公式得到m=(4m﹣4)λ2,代值计算即可求出λ的值,再得到得m==1+,根据函数的单调性即可求出m的范围.【解答】解:以D为原点,以BC边所在的直线为x轴,以中线AD所在的直线为y轴建立直角坐标系,不妨设B(a,0),C(﹣a,0),a>0∵AD=λBC=2λa∴A(0,2λa),∴=(a,﹣2λa),=(0,﹣2λa),=(﹣a,﹣2λa),∴•=4λ2a2,=﹣a2+4λ2a2,∵•=m,∴4λ2a2=﹣ma2+4mλ2a2,即m=(4m﹣4)λ2,当m=2时,λ2=,解得λ=±,由m=(4m﹣4)λ2,得m==1+∵m=1+在(,)上递减,∴m∈(,2)故答案为:±.,(,2)三、解答题:本大题共5小题,共50分.解答应写出文字说明,证明过程或演算步骤.17.已知函数.(Ⅰ)判断f(x)的奇偶性,并加以证明;(Ⅱ)求方程的实数解.【考点】函数的零点与方程根的关系;函数奇偶性的判断.【分析】(Ⅰ)利用奇函数的定义,即可得出结论;(Ⅱ)由,得2x=3,x=log23,即可得出结论.【解答】解:(Ⅰ)因为函数f(x)的定义域为R,且,所以f(x)是定义在R上的奇函数;…(Ⅱ)∵,∴2x=3,x=log23.所以方程的实数解为x=log23.…18.已知=(cosα,sinα),=(cosβ,sinβ),<α<β<.(Ⅰ)若,求;(Ⅱ)设=(1,0),若,求α,β的值.【考点】平面向量数量积的运算;向量的模.【分析】(Ⅰ)根据便可得到,从而可求得,这样即可得出的值;(Ⅱ)根据即可得出,平方后即可求出cosα,cosβ的值,从而求出α,β的值.【解答】解:(Ⅰ)∵;∴;∴;∴,;(Ⅱ)∵;∴,即;解得,;∵;∴,.19.已知集合A={x|x2﹣2x﹣3<0},B={x|2a﹣1<x<a+1},a∈R.(Ⅰ)若B⊆A,求实数a的取值范围;(Ⅱ)设函数,若实数x0满足f(x0)∈A,求实数x0取值的集合.【考点】三角函数的最值;集合的包含关系判断及应用.【分析】(Ⅰ)若B⊆A,分类讨论,即可求实数a的取值范围;(Ⅱ)由题意,,即可求实数x0取值的集合.【解答】解:(Ⅰ)A={x|﹣1<x<3},若B=∅,则2a﹣1≥a+1,解得a≥2,满足B⊆A,若B≠∅,则a<2,要使B⊆A,只要解得0≤a<2,综上,实数a的取值范围是[0,+∞);…(Ⅱ)由题意,,即,∴,或,k∈Z,∴,或,k∈Z.则实数x0取值的集合是,或,k∈Z}.…20.已知A为锐角△ABC的内角,且sinA﹣2cosA=a(a∈R).(Ⅰ)若a=﹣1,求tanA的值;(Ⅱ)若a<0,且函数f(x)=(sinA)•x2﹣(2cosA)•x+1在区间[1,2]上是增函数,求sin2A﹣sinA•cosA的取值范围.【考点】正弦函数的单调性;三角形中的几何计算.【分析】(Ⅰ)利用同角三角函数的基本关系,求得sinA和cosA的值,可得tanA 的值.(2)由题意可得1≤tanA<2,化简要求式子为﹣,再利用函数的单调性求得它的范围.【解答】解:(Ⅰ)锐角△ABC中,a=﹣1,由题意可得,求得,或(舍去),∴.(Ⅱ)若a<0,由题意可得sinA﹣2cosA<0,得tanA<2,又,tanA≥1,∴1≤tanA<2,∴=,令t=tanA+1,2≤t<3,∴,∵y=在[2,3)上递增,∴,∴.即sin2A﹣sinA•cosA的取值范围为.21.已知函数f(x)=|x2﹣2x﹣3|,g(x)=x+a.(Ⅰ)求函数y=f(x)的单调递增区间;(只需写出结论即可)(Ⅱ)设函数h(x)=f(x)﹣g(x),若h(x)在区间(﹣1,3)上有两个不同的零点,求实数a的取值范围;(Ⅲ)若存在实数m∈[2,5],使得对于任意的x1∈[0,2],x2∈[﹣2,﹣1],都有f(x1)﹣m≥g(2)﹣5成立,求实数a的最大值.【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)根据二次函数的性质求出函数的递增区间即可;(Ⅱ)求出h(x)的解析式,根据函数的零点得到关于a的不等式组,解出即可;(Ⅲ)设函数F(x)=f(x)﹣m,G(x)=g(2x)﹣5,分别求出F(x)的最小值和G(x)的最大值,求出a的范围即可.【解答】解:(Ⅰ)函数y=f(x)的单调递增区间为[﹣1,1],[3,+∞);(不要求写出具体过程)…(Ⅱ)∵﹣1<x<3,∴h(x)=f(x)﹣g(x)=|x2﹣2x﹣3|﹣x﹣a=﹣x2+x+3﹣a,由题意知,即得;…(Ⅲ)设函数F(x)=f(x)﹣m,G(x)=g(2x)﹣5,由题意,F(x)在[0,2]上的最小值不小于G(x)在[﹣2,﹣1]上的最大值,F(x)=|x2﹣2x﹣3|﹣m=﹣x2+2x+3﹣m=﹣(x﹣1)2+4﹣m(0≤x≤2),当x=0,或x=2时,F(x)min=3﹣m,G(x)=g(2x)﹣5=2x+a﹣5在区间[﹣2,﹣1]单调递增,当x=﹣1时,,∴存在m∈[2,5],使得成立,即,∴.∴a的最大值为.…2017年3月17日。
浙江省台州市2015-2016学年高一(上)期末数学试卷一、选择题:本大题共14小题,每小题3分,共42分,在每个小题给出的四个选项中,只有一个符合题目要求的.1.(3分)已知集合A={1,2,3},集合B={2,3,4},则A∩B等于()A.{2,3} B.{1,2} C.{3,4} D.{1,2,3,4}2.(3分)函数f(x)=2tan(2x+)的最小正周期为()A.B.C.πD.2π3.(3分)已知向量=(3,1),=(2,4),则向量=()A.(5,5)B.(6,4)C.(﹣1,3)D.(1,﹣3)4.(3分)为了得到函数y=sin(x+)的图象,只需把y=sin x图象上所有的点()A.向左平移个单位 B.向右平移个单位C.向左平移个单位D.向右平移个单位5.(3分)已知cosα=,则sin(+α)=()A.B.﹣C.﹣D.6.(3分)﹣=()A.lg B.1 C.﹣1 D.lg7.(3分)已知向量=(3,4),=(1,﹣2),若⊥(+t),则实数t的值为()A.﹣5 B.1 C.﹣1 D.58.(3分)已知tan(π﹣α)=﹣2,则=()A.﹣3 B.﹣C.D.39.(3分)已知0<a<1,f(x)=a x,g(x)=log a x,h(x)=,当x>1时,则有()A.f(x)<g(x)<h(x)B.g(x)<f(x)<h(x)C.g(x)<h(x)<f(x)D.h(x)<g(x)<f(x)10.(3分)已知函数f(x)=,则f(﹣)+f()=()A.3 B.5 C.D.11.(3分)函数f(x)=ln(﹣x)的图象大致为()A.B.C. D.12.(3分)已知向量,满足||=2,|+|=2,|﹣|=2,则向量与的夹角为()A.B. C. D.13.(3分)已知函数f(x)=|log0.5x|,若正实数m,n(m<n)满足f(m)=f(n),且f(x)在区间[m2,n]上的最大值为4,则n﹣m=()A.B.C.D.14.(3分)已知函数f(x)=a•()x+bx2+cx(α∈R,b≠0,c∈R),若{x|f(x)=0}={x|f (f(x))=0}≠∅,则实数c的取值范围为()A.(0,4)B.[0,4] C.(0,4] D.[0,4)二、填空题:本大题共6个小题,每小题3分.、共18分.15.(3分)已知幂函数f(x)的图象经过点(3,),则f(x)=.16.(3分)已知函数f(x)是奇函数,当x>0时,f(x)=x3+1,则f(﹣2)=.17.(3分)已知点O为△ABC内一点,满足++=,则△AOB与△ABC的面积之比是.18.(3分)函数f(x)=log3(x﹣1)+log3(3﹣x)的单调递增区间为.19.(3分)已知θ∈(,),若存在实数x,y同时满足=,+=,则tanθ的值为.20.(3分)已知函数f(x)=sin+e﹣|x﹣1|,有下列四个结论:①图象关于直线x=1对称;②f(x)的最大值是2;③f(x)的最大值是﹣1,;④f(x)在区间[﹣2015,2015]上有2015个零点.其中正确的结论是(写出所有正确的结论序号).三、解答题:本大题共5小题,共40分,解答应写出文字说明、证明过程或演算步骤. 21.(6分)已知函数f(x)=2x,x∈(0,2)的值域为A,函数g(x)=log 2(x﹣2a)+(a<1)的定义域为B.(Ⅰ)求集合A,B;(Ⅱ)若B⊆A,求实数a的取值范围.22.(8分)已知函数f(x)=cos(ωx+φ)(ω>0,﹣π<φ<0)的最小正周期为π,且它的图象过点(,).(Ⅰ)求ω,φ的值;(Ⅱ)求函数y=f(x)的单调增区间.23.(8分)已知函数f(x)=x2+4[sin(θ+)]x﹣2,θ∈[0,2π]].(Ⅰ)若函数f(x)为偶函数,求tanθ的值;(Ⅱ)若f(x)在[﹣,1]上是单调函数,求θ的取值范围.24.(8分)如图,在△OAB中,点P为线段AB上的一个动点(不包含端点),且满足=λ.(Ⅰ)若λ=,用向量,表示;(Ⅱ)若||=4,||=3,且∠AOB=60°,求•的取值范围.25.(10分)已知a>0,b∈R,函数f(x)=4ax2﹣2bx﹣a+b,x∈[0,1].(Ⅰ)当a=b=2时,求函数f(x)的最大值;(Ⅱ)证明:函数f(x)的最大值|2a﹣b|+a;(Ⅲ)证明:f(x)+|2a﹣b|+a≥0.参考答案一、选择题:本大题共14小题,每小题3分,共42分,在每个小题给出的四个选项中,只有一个符合题目要求的.1.A集合A、B的公共元素为2,3.则A∩B={2,3}.故选A.2.B【解析】函数的周期T=,故选:B.3.C【解析】向量=(3,1),=(2,4),则向量=﹣=(2,4)﹣(3,1)=(﹣1,3),故选:C.4.A【解析】∵由y=sin x到y=sin(x+),只是横坐标由x变为x+,∴要得到函数y=sin(x+)的图象,只需把函数y=sin x的图象上所有的点向左平行移动个单位长度.故选:A.5.A【解析】∵cosα=,则sin(+α)=cosα=,故选:A.6.C【解析】﹣=lg5﹣1﹣(1﹣lg2)=lg5+lg2﹣2=1﹣2=﹣1.故选:C.7.D【解析】∵=(3,4),=(1,﹣2),∴+t=(3+t,4﹣2t),∵⊥(+t),∴•(+t)=0,∴3(3+t)+4(4﹣2t)=0,∴t=5,故选:D.8.D【解析】∵tan(π﹣α)=﹣tanα=﹣2,可得:tanα=2,∴===3.故选:D.9.B【解析】∵0<a<1,∴f(x)=a x在R上单调递减,∴当x>1时,f(x)<f(1)=a<1,结合指数函数的值域可得f(x)∈(0,1);同理∵0<a<1,∴g(x)=log a x在(0,+∞)上单调递减,∴当x>1时,g(x)<g(1)=0,结合对数函数的值域可得g(x)∈(﹣∞,0);又∴h(x)=在[0,+∞)上单调递增,∴当x>1时,g(x)>h(1)=1,故g(x)<f(x)<h(x),故选:B.10.A【解析】∵函数f(x)=,∴f(﹣)=f()﹣1=﹣1=1,f()==2,∴f(﹣)+f()=1+2=3.故选:A.11.B【解析】∵﹣x>0,即<0,解得x<﹣1或0<x<1,设t=﹣x,则t′=﹣﹣1<0,∴t在(﹣∞,0),(0,1)上为减函数,∵y=ln x为增函数,∴f(x)在(﹣∞,0),(0,1)上为减函数,故选:B12.C【解析】设与的夹角为θ,∵||=2,|+|=2,|﹣|=2,∴|+|2=||2+||2+2•=4,|﹣|2=||2+||2﹣2•=20,∴•=﹣4,||=2∴cosθ===﹣,∵0≤θ≤π,∴θ=,故选:C.S13.B【解析】∵f(x)=|log0.5x|,正实数m,n(m<n)满足f(m)=f(n),∴0<m<1<n,且|log0.5m|=|log0.5n|,∴log0.5m=﹣log0.5n,∴log0.5m+log0.5n=0,解得mn=1,又∵f(x)在区间[m2,n]上的最大值为4,∴|log0.5m2|=4或|log0.5n|=4,即log0.5m2=4或log0.5n=﹣4,解得m=或n=16,当m=时,由mn=1可得n=4,此时n﹣m=;当n=16时,由mn=1可得m=,这与m<n矛盾,应舍去.故选:B.14.A【解析】设x1∈{x|f(x)=0}={x|f(f(x))=0},则f(x1)=0,且f(f(x1))=0,∴f(0)=0,即a()x=0∴a=0;故f(x)=bx2+cx;由f(x)=0得,x=0或x=﹣;f(f(x))=b(bx2+cx)2+c(bx2+cx)=0,整理得:(bx2+cx)(b2x2+bcx+c)=0,当c=0时,显然成立;当c≠0时,方程b2x2+bcx+c=0无根,故△=(bc)2﹣4b2c<0,解得,0<c<4.综上所述,0≤c<4,故答案选:A.二、填空题:本大题共6个小题,每小题3分.、共18分.15.x﹣1【解析】设幂函数y=f(x)=x a,其图象经过点(3,),∴3a=,解得a=﹣1;∴f(x)=x﹣1.故答案为:x﹣1.16.﹣9【解析】∵函数f(x)是定义在R上的奇函数,当x>0时f(x)=x3+1,∴f(﹣2)=﹣f(2)=﹣(23+1)=﹣9.故答案为:﹣9.17.【解析】如图,取AB中点D,则:;∴由得,;∴;∴D,O,C三点共线,且OD=;∴△AOB与△ABC的面积之比是.故答案为:.18.(1,2)【解析】∵f(x)=log3(x﹣1)+log3(3﹣x),∴函数的定义域是:(1,3),f(x)=的递减区间即函数y=﹣x2+4x﹣3在(1,3)上的递减区间,y′=﹣2x+4,令y′>0,解得:x<2,∴函数y=﹣x2+4x﹣3在(1,2)上的递增,∴函数f(x)在(1,2)递增,故答案为:(1,2).19.【解析】设==t,则sinθ=ty,cosθ=tx,所以+=可化为:+=①;又sin2θ+cos2θ=t2x2+t2y2=1,得t2=②;把②代入①,化简得+=③;又tanθ==,所以③式化为tan2θ+=,解得tan2θ=2或tan2θ=;所以tanθ=±或tanθ=±;又θ∈(,),所以tanθ>1,所以取tanθ=.故答案为:.20.①②④【解析】对于①,∵y=sin,关于x=1对称,y=e﹣|x﹣1|关于x=1对称,∴f(x)图象关于直线x=1对称,故①正确,对于②,∵﹣1≤sin≤1,0<e﹣|x﹣1|≤1,∴f(x)的最大值是2,故②正确,③不正确,对于④,∵y=sin的周期为T==4,由①知,关于x=1对称,每个周期内都有两个零点,故有2015个零点,故④正确.故答案为:①②④三、解答题:本大题共5小题,共40分,解答应写出文字说明、证明过程或演算步骤. 21.解(Ⅰ)已知函数f(x)=2x,x∈(0,2)的值域为A,∴A=(1,4),函数g(x)=log2(x﹣2a)+(a<1)的定义域为B.∴B=(2a,a+1),a<1,(Ⅱ)若B⊆A,则(2a,a+1)⊆(1,4),∴,解得:≤a<1.22.解(Ⅰ)∵函数f(x)=cos(ωx+φ)(ω>0,﹣π<φ<0)的最小正周期为π,∴=π,∴ω=2.∵它的图象过点(,),∴cos(+φ)=,∴+φ=﹣,∴φ=﹣.(Ⅱ)由以上可得,f(x)=cos(2x﹣),令2kπ﹣π≤2x﹣≤2kπ,求得kπ﹣≤x≤kπ+,∴函数y=f(x)的单调增区间为[kπ﹣,kπ+],k∈Z.23.解(Ⅰ)∵f(x)是偶函数,∴f(﹣x)=f(x),则x2+4[sin(θ+)]x﹣2=x2﹣4[sin(θ+)]x﹣2,则sin(θ+)=0,∵θ∈[0,2π],∴θ+=kπ,即θ=﹣+kπ,∴tanθ=tan(﹣+kπ)=﹣.(Ⅱ)∵f(x)=x2+4[sin(θ+)]x﹣2,θ∈[0,2π]].∴对称轴为x=﹣2sin(θ+),若f(x)在[﹣,1]上是单调函数,则﹣2sin(θ+)≥1或﹣2sin(θ+)≤,即sin(θ+)≥或sin(θ+)≤,即2kπ+≤θ+≤2kπ+,或2kπ+≤θ+≤2kπ+,k∈Z,即2kπ+≤θ≤2kπ+,或2kπ≤θ≤2kπ+,k∈Z,∵θ∈[0,2π],∴≤θ≤,或0≤θ≤.24.解(Ⅰ)∵λ=,则=,∴﹣=(﹣),∴=+,则=+,(Ⅱ)∵•=||•||cos60°=6,=λ,∴﹣=λ(﹣),(1+λ)=+λ,∴=+,∴=(+)(﹣)=﹣2+2+(﹣)•===3﹣∵λ>0,∴3﹣∈(﹣10,3),∴•的取值范围为(﹣10,3).25.解析(Ⅰ)当a=b=2时,f(x)=8x2﹣4x,x∈[0,1].对称轴为x=,f(0)=0,f(1)=4,可得f(x)的最大值为4;(Ⅱ)证明:f(x)的对称轴为x=,当>1时,区间[0,1]为减区间,可得f(x)的最大值为f(0)=b﹣a,由b>4a>2a,可得|2a﹣b|+a=b﹣2a+a=b﹣a,则f(0)=|2a﹣b|+a;当<0时,区间[0,1]为增区间,可得最大值为f(1)=3a﹣b,由b<0,可得|2a﹣b|+a=2a﹣b+a=3a﹣b=f(1);当0≤≤1时,区间[0,]为减区间,[,1]为增区间,若f(0)≤f(1),即b≤2a,可得最大值为f(1)=3a﹣b=|2a﹣b|+a;若f(0)>f(1),即2a<b≤4a,可得最大值为f(0)=b﹣a=|2a﹣b|+a.综上可得函数f(x)的最大值|2a﹣b|+a;(Ⅲ)证明:要证f(x)+|2a﹣b|+a≥0恒成立,只需证f(x)min+|2a﹣b|+a≥0,设f(x)的最小值为m,最大值为M,由(Ⅱ)得M=|2a﹣b|+a,由f(x)的对称轴为x=,当>1时,区间[0,1]为减区间,可得m=f(1)=3a﹣b,则M+m=b﹣2a+a+3a﹣b=2a>0;当<0时,区间[0,1]为增区间,可得m=f(0)=b﹣a,M=f(1)=3a﹣b,则M+m=2a>0;当0≤≤1时,区间[0,]为减区间,[,1]为增区间,可得m=f()=,若f(0)≤f(1),即b≤2a,可得M=f(1)=3a﹣b,M+m=≥=a>0;若f(0)>f(1),即2a<b≤4a,可得M=f(0)=b﹣a,M+m==,由于2a<b≤4a,可得M+m∈(a,2a],即为M+m>0.综上可得M+m>0恒成立,即有f(x)+|2a﹣b|+a≥0.。
2016-2017学年浙江省台州市高三(上)期末数学试卷一、选择题(共10小题,每小题4分,满分40分)1.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁P)∩Q=()UA.{1}B.{2,4}C.{2,4,6}D.{1,2,4,6}2.已知复数z=(a∈R)的虚部为1,则a=()A.1 B.﹣1 C.﹣2 D.23.已知随机变量ξ~B(3,),则E(ξ)=()A.3 B.2 C.D.4.已知cosα=1,则sin(α﹣)=()A.B.C.﹣ D.﹣5.已知实数x,y满足,则x+y的取值范围为()A.[2,5]B.[2,]C.[,5]D.[5,+∞)6.已知m,n∈R,则“mn<0”是“抛物线mx2+ny=0的焦点在y轴正半轴上”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7.已知函数f(x)=ax3+ax2+x(a∈R),下列选项中不可能是函数f(x)图象的是()A.B.C.D.8.袋子里装有编号分别为“1、2、2、3、4、5”的6个大小、质量相同的小球,某人从袋子中一次任取3个球,若每个球被取到的机会均等,则取出的3个球编号之和大于7的概率为()A.B.C.D.9.已知函数f(x)=|lnx|,g(x)=,则方程|f(x)﹣g(x)=2的实根个数为()A.1 B.2 C.3 D.410.如图,在矩形ABCD中,AB=4,BC=6,四边形AEFG为边长为2的正方形,现将矩形ABCD沿过点的动直线l翻折的点C在平面AEFG上的射影C1落在直线AB上,若点C在抓痕l上的射影为C2,则的最小值为()A.6﹣13 B.﹣2 C.D.二、填空题(共7小题,多空题每题6分,单空题每题4分,满分36分)11.已知函数f(x)=,则f(0)=,f(f(0))=.12.以坐标原点O为圆心,且与直线x+y+2=0相切的圆方程是,圆O与圆x2+y2﹣2y﹣3=0的位置关系是.13.已知公差不为0的等差数列{a n},若a2+a4=10,且a1、a2、a5成等比数列,则a1=,a n=.14.某空间几何体的三视图如图所示,其中正视图是长方形,侧视图是一个等腰梯形,则该几何体的体积是,表面积是.15.已知在△ABC中,内角A、B、C的对边分别为a,b,c,且b=a,cosB= cosA,c=+1,则△ABC的面积为.16.已知不共线的平面向量,满足||=3,||=2,若向量=λ+μ(λ,μ∈R).且λ+μ=1,=,则λ=.17.已知函数f(x)=|x+﹣ax﹣b|(a,b∈R),当x∈[,2]时,设f(x)的最大值为M(a,b),则M(a,b)的最小值为.三、解答题(共5小题,满分74分)18.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤)的最小正周期为π,且x=为f(x)图象的一条对称轴.(1)求ω和φ的值;(2)设函数g(x)=f(x)+f(x﹣),求g(x)的单调递减区间.19.如图,在边长为2的菱形ABCD中,∠BAD=60°,O为AC的中点,点P为平面ABCD外一点,且平面PAC⊥平面ABCD,PO=1,PA=2.(1)求证:PO⊥平面ABCD;(2)求直线PA与平面PBC所成角的正弦值.20.已知函数f(x)=x3+|x﹣a|(a∈R).(1)当a=1时,求f(x)在(0,f(0))处的切线方程;(2)当a∈(0,1)时,求f(x)在区间[﹣1,1]上的最小值(用a表示).21.已知椭圆C: +=1(a>b>0).(1)若椭圆的两个焦点与一个短轴顶点构成边长为2的正三角形,求椭圆的标准方程;(2)过右焦点(c,0)的直线l与椭圆C交于A、B两点,过点F作l的垂线,交直线x=于P点,若的最小值为,试求椭圆C率心率e的取值范围.=+a n(n∈N*).22.已知数列{a n}满足:a1=,a n+1(1)求证:a n>a n;+1(2)求证:a2017<1;(3)若a k>1,求正整数k的最小值.2016-2017学年浙江省台州市高三(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁P)∩Q=()UA.{1}B.{2,4}C.{2,4,6}D.{1,2,4,6}【考点】交、并、补集的混合运算.【分析】根据补集与交集的定义写出运算结果即可.【解答】解:全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则∁U P={2,4,6},所以(∁U P)∩Q={2,4}.故选:B.2.已知复数z=(a∈R)的虚部为1,则a=()A.1 B.﹣1 C.﹣2 D.2【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、虚部的定义即可得出.【解答】解:复数z===+i(a∈R)的虚部为1,∴=1,解得a=1.故选:A.3.已知随机变量ξ~B(3,),则E(ξ)=()A.3 B.2 C.D.【考点】离散型随机变量的期望与方差.【分析】利用二项分布列的性质即可得出.【解答】解:∵随机变量ξ~B (3,),则E (ξ)=3×=.故选:C .4.已知cosα=1,则sin (α﹣)=( )A .B .C .﹣D .﹣【考点】两角和与差的正弦函数.【分析】由已知利用同角三角函数基本关系式可求sinα,进而利用两角差的正弦函数公式,特殊角的三角函数值即可计算得解.【解答】解:∵cosα=1,可得:sinα=0,∴sin (α﹣)=sinαcos ﹣cosαsin =﹣1×=﹣.故选:C .5.已知实数x ,y 满足,则x +y 的取值范围为( )A .[2,5]B .[2,]C .[,5]D .[5,+∞)【考点】简单线性规划.【分析】先根据约束条件画出可行域,再利用几何意义求最值,只需求出直线z=x +y 过点A 或B 点时,z 的最值即可.【解答】解:先根据约束条件,画出可行域,由图知,当直线z=x +y 过点A (1,1)时,z 最小值为:2.当直线z=x +y 过点B (1,4)时,z 最大值为:5.则x +y 的取值范围为:[2,5].故选:A .6.已知m,n∈R,则“mn<0”是“抛物线mx2+ny=0的焦点在y轴正半轴上”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】抛物线mx2+ny=0的焦点在y轴正半轴上⇔>0,即可判断出结论.【解答】解:抛物线mx2+ny=0的焦点在y轴正半轴上⇔>0,即mn<0,∴“mn<0”是“抛物线mx2+ny=0的焦点在y轴正半轴上”的充要条件.故选:C.7.已知函数f(x)=ax3+ax2+x(a∈R),下列选项中不可能是函数f(x)图象的是()A.B.C.D.【考点】利用导数研究函数的单调性.【分析】求出函数f(x)的导数,通过讨论a的范围,判断函数的单调性,从而求出答案即可.【解答】解:f(x)=ax3+ax2+x(a∈R),f′(x)=ax2+ax+1,△=a2﹣4a,当0<a<4时,f′(x)无实数根,f′(x)>0,f(x)递增,故A可能,当a>4或a<0时,f′(x)有2个实数根,f(x)先递减再递增或f(x)先递增再递减,故B、C可能,故选:D.8.袋子里装有编号分别为“1、2、2、3、4、5”的6个大小、质量相同的小球,某人从袋子中一次任取3个球,若每个球被取到的机会均等,则取出的3个球编号之和大于7的概率为()A.B.C.D.【考点】古典概型及其概率计算公式.【分析】基本事件总数n==20,利用列举法求出取出的3个球编号之和不大于7的基本事件个数,由此能求出取出的3个球编号之和大于7的概率.【解答】解:袋子里装有编号分别为“1、2、3、4、5”的6个大小、质量相同的小球,某人从袋子中一次任取3个球,每个球被取到的机会均等,基本事件总数n==20,取出的3个球编号之和不大于7的基本事件有:122,123,123,124,124,223,共有6个,∴取出的3个球编号之和大于7的概率为:p=1﹣=.故选:B.9.已知函数f(x)=|lnx|,g(x)=,则方程|f(x)﹣g(x)=2的实根个数为()A.1 B.2 C.3 D.4【考点】根的存在性及根的个数判断.【分析】在同一个坐标系在画出两个函数的图象,观察有【解答】解:设F(x)=f(x)﹣2,F(x)与g(x)在同一个坐标系在的图象如图:观察得到两个函数图象交点个数是1个,所以f(x)﹣g(x)=2的实根个数为1;故选:A.10.如图,在矩形ABCD中,AB=4,BC=6,四边形AEFG为边长为2的正方形,现将矩形ABCD沿过点的动直线l翻折的点C在平面AEFG上的射影C1落在直线AB上,若点C在抓痕l上的射影为C2,则的最小值为()A.6﹣13 B.﹣2 C.D.【考点】点、线、面间的距离计算.【分析】由题意,以AB所在直线为x轴,AD所在直线为y轴,建立坐标系,表示出,利用基本不等式求最小值.【解答】解:由题意,以AB所在直线为x轴,AD所在直线为y轴,建立坐标系,则直线l的方程:y=kx﹣2k+2,CC2=.直线CC2的方程为y=﹣x++6,∴C1(4+6k,0),∴CC1=6,∴C1C2=CC2﹣CC1=6﹣.∴=﹣1.令|k﹣2|=t,∴k=t+2或2﹣t.①k=t+2,=3(t++4)﹣1≥6+11,t=时,取等号;②k=2﹣t,=3(t+﹣4)﹣1≥6﹣13,t=时,取等号;综上所述,的最小值为6﹣13,故选A.二、填空题(共7小题,多空题每题6分,单空题每题4分,满分36分)11.已知函数f(x)=,则f(0)=1,f(f(0))=0.【考点】函数的值.【分析】由0<1,得f(0)=20=1,从而f(f(0))=f(1),由此能求出结果.【解答】解:∵函数f(x)=,∴f(0)=20=1,f(f(0))=f(1)=log31=0.故答案为:1,0.12.以坐标原点O为圆心,且与直线x+y+2=0相切的圆方程是x2+y2=2,圆O 与圆x2+y2﹣2y﹣3=0的位置关系是相交.【考点】圆的切线方程.【分析】由坐标原点为所求圆的圆心,且所求圆与已知直线垂直,利用点到直线的距离公式求出原点到已知直线的距离d,根据直线与圆相切时圆心到直线的距离等于圆的半径,即可得到所求圆的半径r,根据圆心和半径写出所求圆的方程即可;由两圆的圆心距为1,介于半径差与和之间,可得两圆相交.【解答】解:∵原点为所求圆的圆心,且所求圆与直线x+y+2=0相切,∴所求圆的半径r=d==,则所求圆的方程为x2+y2=2.x2+y2﹣2y﹣3=0的圆心为(0,1),半径为2,两圆的圆心距为1,介于半径差与和之间,两圆相交.故答案为:x2+y2=2;相交.13.已知公差不为0的等差数列{a n},若a2+a4=10,且a1、a2、a5成等比数列,则a1=1,a n=2n﹣1.【考点】等差数列与等比数列的综合.【分析】设等差数列{a n}的公差为d≠0,由a2+a4=10,且a1、a2、a5成等比数列,可得a22=a1a5,即(a1+d)2=a1(a1+4d),解得a1,d即可得出.【解答】解:设等差数列{a n}的公差为d≠0,∵a2+a4=10,且a1、a2、a5成等比数列,则2a1+4d=10,a22=a1a5,即(a1+d)2=a1(a1+4d),解得a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.故答案为:1,a n=2n﹣1.14.某空间几何体的三视图如图所示,其中正视图是长方形,侧视图是一个等腰梯形,则该几何体的体积是6,表面积是15+4.【考点】由三视图求面积、体积.【分析】由题意,直观图是以侧视图为底面,高为4的直棱柱,即可求出几何体的体积、表面积.【解答】解:由题意,直观图是以侧视图为底面,高为4的直棱柱,∴该几何体的体积是=6,表面积是2×+(1+2+2×)×4=15+4,故答案为6,15+4.15.已知在△ABC中,内角A、B、C的对边分别为a,b,c,且b=a,cosB=cosA,c=+1,则△ABC的面积为.【考点】正弦定理;余弦定理.【分析】由已知可求sinB=sinA,cosB=cosA,利用同角三角函数基本关系式可求cosA,cosB,进而可求A,B,C的值,由余弦定理c2=a2+b2﹣2abcosC,可得a,进而利用三角形面积公式即可计算得解.【解答】解:∵由b=a,可得:sinB=sinA,由cosB=cosA,可得:cosB=cosA,∴(sinA)2+(cosA)2=1,解得:sin2A+cos2A=,∴结合sin2A+cos2A=1,可得:cosA=,cosB=,∴A=,B=,可得:C=π﹣A﹣B=,∴由余弦定理c2=a2+b2﹣2abcosC,可得:()2=a2+()2﹣2α×a×cos,∴解得:a=,=acsinB=()×=.∴S△ABC故答案为:.16.已知不共线的平面向量,满足||=3,||=2,若向量=λ+μ(λ,μ∈R).且λ+μ=1,=,则λ=.【考点】平面向量数量积的运算.【分析】根据题意,利用λ+μ=1得出=λ+μ=λ+(1﹣λ),再由=,代入化简,得出关于λ的方程组,从而求出λ的值.【解答】解:向量,满足||=3,||=2,∵λ+μ=1,∴=λ+μ=λ+(1﹣λ),又=,∴=,即=,∴=,即•+2﹣2λ=3λ+•,∴,解得λ=.故答案为:.17.已知函数f(x)=|x+﹣ax﹣b|(a,b∈R),当x∈[,2]时,设f(x)的最大值为M(a,b),则M(a,b)的最小值为.【考点】函数的最值及其几何意义.【分析】由题意可得a≤0,b≤0,f(x)可取得最大值,即有f(x)=x+﹣ax﹣b,x∈[,2],求出导数和极值点,计算端点处的函数值,比较可得最大值M(a,b),即可得到所求最小值.【解答】解:由题意可得a≤0,b≤0,f(x)可取得最大值,即有f(x)=x+﹣ax﹣b,x∈[,2],f′(x)=1﹣﹣a=,由f′(x)=0可得x=(负的舍去),且为极小值点,则f()=﹣a﹣b,f(2)=﹣2a﹣b,由f()﹣f(2)=a<0,即有f(2)取得最大值,即有M(a,b)=﹣2a﹣b,则a≤0,b≤0时,M(a,b)≥.可得最小值为.故答案为:.三、解答题(共5小题,满分74分)18.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤)的最小正周期为π,且x=为f(x)图象的一条对称轴.(1)求ω和φ的值;(2)设函数g(x)=f(x)+f(x﹣),求g(x)的单调递减区间.【考点】正弦函数的单调性;三角函数的周期性及其求法;正弦函数的图象.【分析】(1)根据函数f(x)的最小正周期求出ω的值,再根据f(x)图象的对称轴求出φ的值;(2)根据f(x)的解析式写出g(x),利用三角恒等变换化g(x)为正弦型函数,再求出它的单调递减区间.【解答】解:(1)函数f(x)=sin(ωx+φ)(ω>0,|φ|≤)的最小正周期为π,∴T==π,∴ω=2;又x=为f(x)图象的一条对称轴,∴2x+φ=kπ+,k∈Z,∴f(x)图象的对称轴是x=+﹣,k∈Z;由=+﹣,解得φ=kπ+,又|φ|≤,∴φ=;(2)∵f(x)=sin(2x+),∴g(x)=f(x)+f(x﹣)=sin(2x+)+sin2x=sin2x+cos2x+sin2x=sin(2x+),令+2kπ≤2x+≤+2kπ,k∈Z,解得+kπ≤x≤+kπ,k∈Z,∴g(x)的单调递减区间是[+kπ, +kπ],k∈Z.19.如图,在边长为2的菱形ABCD中,∠BAD=60°,O为AC的中点,点P为平面ABCD外一点,且平面PAC⊥平面ABCD,PO=1,PA=2.(1)求证:PO⊥平面ABCD;(2)求直线PA与平面PBC所成角的正弦值.【考点】直线与平面所成的角;直线与平面垂直的判定.【分析】(1)推导出AO⊥PO,由此能证明PO⊥平面ABCD.(2)以O为原点,OB,OC,OP分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线PA与平面PBC所成角的正弦值.【解答】证明:(1)在边长为2的菱形ABCD中,∠BAD=60°,AO=,又∵PO=1,PA=2,∴PO2+AO2=PA2,∴AO⊥PO,∵平面PAC⊥平面ABCD,平面PAC∩平面ABCD=AC,PO⊂平面PAC,∴PO⊥平面ABCD.解:(2)以O为原点,OB,OC,OP分别为x,y,z轴,建立空间直角坐标系,则A(0,﹣,0),B(1,0,0),C(0,,0),P(0,0,1),=(1,0,﹣1),=(﹣1,,0),=(0,,1),设平面PBC的法向量=(x,y,z),则,取x=,得=(),设直线PA与平面PBC所成角为θ,则sinθ===.∴直线PA与平面PBC所成角的正弦值为.20.已知函数f(x)=x3+|x﹣a|(a∈R).(1)当a=1时,求f(x)在(0,f(0))处的切线方程;(2)当a∈(0,1)时,求f(x)在区间[﹣1,1]上的最小值(用a表示).【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,计算f(0),f′(0)的值,求出切线方程即可;(2)求出f(x)的分段函数的形式,根据a的范围,求出函数的单调区间,从而求出f(x)的最小值即可.【解答】解:(1)a=1,x<1时,f(x)=x3+1﹣x,f′(x)=3x2﹣1,故f(0)=1,f′(0)=﹣1,故切线方程是y=﹣x+1;(2)a∈(0,1)时,由已知得f(x)=,a<x<1时,由f′(x)>0,得f(x)在(a,1)递增,﹣1<x<a时,由f′(x)=3x2﹣1,①a∈(,1)时,f(x)在(﹣1,﹣)递增,在(﹣,)递减,在(,1)递增,∴f(x)min=min{f(﹣1),f()}=min{a,a﹣}=a﹣,②a∈(0,]时,f(x)在(﹣1,﹣)递增,在(﹣,a)递减,在(a,1)递增,∴f(x)min=min{f(﹣1),f(a)}=min{a,a3}=a3;综上,f(x)min=.21.已知椭圆C: +=1(a>b>0).(1)若椭圆的两个焦点与一个短轴顶点构成边长为2的正三角形,求椭圆的标准方程;(2)过右焦点(c,0)的直线l与椭圆C交于A、B两点,过点F作l的垂线,交直线x=于P点,若的最小值为,试求椭圆C率心率e的取值范围.【考点】直线与椭圆的位置关系;椭圆的标准方程.【分析】(1)由已知可得:2c=2,2a=4,b2=a2﹣c2,解得a,b即可.(2)设直线l的方程,A,B,P坐标,|PF|=.联立,化为:(b2m2+a2)y2+2mcb2y﹣b4=0.|AB|==.=≥.即可求得椭圆C率心率e的取值范围【解答】解:(1)由已知可得:2c=2,2a=4,b2=a2﹣c2,解得a=2,c=1,b2=3.∴椭圆的标准方程为=1.(2)设直线l的方程为:x=my+c,A(x1,y1),B(x2,y2).P()|PF|=.联立,化为:(b2m2+a2)y2+2mcb2y﹣b4=0.∴y1+y2=﹣,y1•y2=,∴|AB|==.∴=≥.令,⇒b2t2﹣2cbt+c2≥0,上式在t≥1时恒成立,∴椭圆C率心率e的取值范围为(0,1)22.已知数列{a n}满足:a1=,a n=+a n(n∈N*).+1>a n;(1)求证:a n+1(2)求证:a2017<1;(3)若a k>1,求正整数k的最小值.【考点】数列递推式.﹣a n=≥0,可得a n+1≥a n.a1=,可得a n.可得a n+1【分析】(1)a n+1﹣a n=>0,即可证明.(II)由已知==,=﹣,利用累加求和可得:=++…+,当k=2017时,由(I)可得:=a1<a2<…<a2016.可得﹣=++…+<<1,即可证明.(III)由(II)可得:可得:=a1<a2<…<a2016<a2017<1.可得﹣=++…+>2017×>1,即可得出.【解答】(1)证明:a n﹣a n=≥0,可得a n+1≥a n.+1∵a1=,∴a n.∴a n﹣a n=>0,∴a n+1>a n.+1(II)证明:由已知==,∴=﹣,由=,=,…,=,累加求和可得:=++…+,当k=2017时,由(I)可得:=a1<a2<…<a2016.∴﹣=++…+<<1,∴a2017<1.(III)解:由(II)可得:可得:=a1<a2<…<a2016<a2017<1.∴﹣=++…+>2017×>1,∴a2017<1<a2018,>a n.∴k的最小值为2018.又∵a n+12017年3月24日。
2015-2016学年浙江省台州市高一(上)期末数学试卷14342分,在每个小题给出的四个选项中,一、选择题:本大题共分,共小题,每小题.只有一个符合题目要求的1A={123}B={234}AB ∩),,.已知集合,,则,等于(,集合A{23} B{12} C{34} D{1234} ,.,,.,,..,2x+=2tan 2fx)()的最小正周期为()(.函数CB DA2ππ....= =32=314).已知向量,((,)),,则向量(A55 B64 C13 D13 ),,﹣))...((﹣,)(,.(x+y=sinxy=sin 4)(图象上所有的点()的图象,只需把.为了得到函数B A个单位.向左平移个单位.向右平移D C个单位.向左平移个单位.向右平移+=sin5cos =αα)).已知,则((BDAC..﹣..﹣= 6)﹣.(lg1 D lgB1CA...﹣.+t2t=34 =17⊥),,则实数)(,(,﹣的值为()),若.已知向量(A5 B1 C1 D5 ...﹣.﹣= tan=28απ)﹣.已知((﹣,则)3C A3 BD...﹣.﹣x 1gx=logxhx=xx09a1f=a),时,则有(()<,当,,()().已知<>a hx Dh fxh BgxxhxCgxxfxxAfg.())<.(()<)()<)<.(()<()<)((.xxxgf))<)<(((f=+fx10f=))(﹣).已知函数()(,则(5 C3 BDA....x x11f=ln))的图象大致为(﹣()(.函数.D BAC....||=2|=2||12+|=2)与,的夹角为(﹣,则向量.已知向量满足,,AC BD ....xmf=fn=|log13fxx|mnmnf)在区)(((<.已知函数)()满足),且,若正实数(,0.52 nm=[m4n)﹣间,则(,]上的最大值为DBAC ....2x x+cxRbf{x|f+bxx=0}={x|f0=a14fxcR≠?α)∈(,(.已知函数)(,))∈()(),若(=0}c ≠)?,则实数的取值范围为(4D4C04[04A0 B[0)]...(,.(,,),].1863.分个小题,每小题二、填空题:本大题共、共分fx=15fx3.,则().已知幂函数()的图象经过点(,)3+1f2x=x= 16fxx0f..已知函数(,则)是奇函数,当>(﹣时,())17OABC++=AOBABC△△△的面积之比,则与.已知点内一点,满足为.是18fx=logx1+log3x .(﹣)(﹣)的单调递增区间为)(.函数3319xy= θ,,),若存在实数同时满足.已知,∈(+=tan θ.的值为,则|x1|﹣﹣20fx+e=sin).已知函数(,有下列四个结论:x=1 ①对称;图象关于直线fx2 ②;()的最大值是fx1 ③;)的最大值是﹣,(fx[201520152015 ④个零点.)在区间]﹣上有(,.(写出所有正确的结论序号)其中正确的结论是.540分,解答应写出文字说明、证明过程或演算步骤小题,共三、解答题:本大题共x x02Agx=2=logx2a+ax21f(,(∈﹣,)的值域为(,函数()).已知函数()21B .<)的定义域为AB Ⅰ;()求集合,BAa Ⅱ的取值范围.,求实数?)若(.22fx=cosx+00ππφωωφ,且它的图象过).已知函数((<)>()的最小正周期为,﹣<.,点()φωⅠ的值;)求(,y=fx Ⅱ)的单调增区间.)求函数((2+x2[0x=x2+4[sin 23fπθθ.(∈,])]].已知函数﹣(,)fxtan θⅠ的值;()若函数)为偶函数,求(1[x fθⅡ的取值范围.(﹣)若,(上是单调函数,求)在]=24OABPABλ△.中,点.如图,在为线段,且满足上的一个动点(不包含端点)=λⅠ;(表示)若,用向量,AOB=60 |=4||=3|°?Ⅱ∠,求()若的取值范围.,且,22bxa+bx[01 fa250bRx=4ax.﹣﹣.已知>,,∈,,函数(])∈a=b=2fx Ⅰ)的最大值;)当((时,求函数fx|2ab|+a Ⅱ;()的最大值)证明:函数(﹣fx+|2ab|+a0 ≥Ⅲ.﹣(()证明:)2015-2016学年浙江省台州市高一(上)期末数学试卷参考答案与试题解析14342分,在每个小题给出的四个选项中,小题,每小题分,共一、选择题:本大题共.只有一个符合题目要求的1A={123}B={234}AB ∩),,则,,集合等于(,,.已知集合A{23} B{12} C{34} D{1234} ,..,,,.,,.交集及其运算.【考点】AB 的全部元素组成集合,即可得答案.、【分析】根据集合交集的定义,列举出集合A={123}B={234} ,,【解答】解:根据题意,,,,,AB23AB={23} ∩.的公共元素为.则集合,、,A .故选2x+=2tan 2fx).函数())的最小正周期为((B2 C DAππ....正切函数的图象.【考点】根据正切函数的周期公式进行求解即可.【分析】T= ,【解答】解:函数的周期B .故选:= =2=3143)(),(),则向量,(,.已知向量A55 B64 C13 D13 )..(﹣.((,),).(,﹣,)平面向量的坐标运算.【考点】根据向量的坐标加减的运算法则计算即可.【分析】=2431 =,,())【解答】,解:向量,(=2431==13 ,)﹣,(则向量(﹣,))﹣(,C .故选:x+y=sinx 4y=sin))的图象,只需把.为了得到函数(图象上所有的点(BA 个单位.向右平移.向左平移个单位D C个单位.向左平移个单位.向右平移y=Asinx+ φω)的图象变换.(函数【考点】直接利用函数图象的平移法则逐一核对四个选项得答案.【分析】x+ xx+y=siny=sinx∵,变为,只是横坐标由)(到由解:【解答】.y=sinxy=sinx+∴的图象上所有的点向左平行移动(要得到函数)的图象,只需把函数个单位长度.A .故选:+=sin5cos =αα)(,则.已知)(BDCA...﹣.﹣运用诱导公式化简求值.【考点】由条件利用诱导公式进行化简求值,可得结果.【分析】==cos=sin cos+αα∵α,(【解答】解:),则A.故选:=6)(.﹣lg1 D lgBA1 C..﹣..对数的运算性质.【考点】lg21 的符号化简.【分析】判断﹣=lg511lg2=lg5+lg22=12=1 .)【解答】﹣解:﹣﹣﹣﹣﹣(﹣C .故选:+tt=12 74=3⊥)(,﹣的值为()).已知向量,若(,则实数,),(A5 B1 C1 D5..﹣.﹣.平面向量数量积的运算.【考点】根据向量的坐标运算和向量的数量积计算即可.【分析】=12=34 ∵,((,)【解答】解:),,﹣+t=3+t42t ∴,﹣(),+t ⊥∵,()+t=0 ?∴,()33+t+442t=0 ∴,﹣(())t=5 ∴,D .故选:=2= tan8απ).已知,则(﹣)﹣(3A3 BCD..﹣.﹣.同角三角函数基本关系的运用;运用诱导公式化简求值.【考点】=2tan α,利用同角三角函数基本关系式化简所求后即可【分析】利用诱导公式及已知可得计算得解.tan=tan=2tan=2 αα∵απ,,可得:(﹣﹣﹣【解答】解:)==3= ∴.D .故选:x=xx1 gx=logxh90a1fx=a),(时,则有().已知,当<<,,(()>)a Afxgxhx Bgxfxhx Cgxhxfx Dh.(.)(.(()()<)<)<()<)<).((()<xgxfx )((()<)<对数函数的图象与性质;指数函数的图象与性质.【考点】由题意和三个函数的单调性可得函数的值域,比较可得.【分析】x R=a x0a1f∴∵上单调递减,<在,<(【解答】解:)x1fxf1=a1 ∴,时,)(>()<当<fx01 ;()结合指数函数的值域可得,(∈)0a1gx=logx0+ ∞∴∵)上单调递减,同理)在(<(<,,a x1gxg1=0 ∴,((时,当)<>)gx0 ∞;,())∈结合对数函数的值域可得(﹣=[0+ xh∞∴)上单调递增,)又在(,x1gxh1=1 ∴,)>当)>时,((gxfxhx ,)<故)()<((B .故选:=+f=f10fx )((﹣.已知函数)()(,则)A3 B5 CD ....函数的值.【考点】利用分段函数的性质求解.【分析】fx=∵,函数)(【解答】解:1=f=f1=1∴,)(﹣)﹣﹣(f=2=,()=1+2=3f+f∴.)(﹣()A.故选:x=lnxf11))的图象大致为(﹣()(.函数.CD B A....函数的图象.【考点】求出函数的定义域,求出函数的单调性即可判断.【分析】0x10x0x1 ∵,>或<﹣,即﹣<<【解答】解:,解得<t=x ,设﹣10= t′,<则﹣﹣t001 ∞∴)上为减函数,,),在(﹣(,y=lnx ∵为增函数,fx001 ∞∴)上为减函数,)(,)在(﹣(,,B 故选:||=2||12+|=2|=2),﹣与.已知向量的夹角为(,满足,,则向量A BD C....平面向量数量积的运算.【考点】根据向量的夹角公式,以及向量的垂直,向量模计算即可【分析】θ,与【解答】的夹角为解:设|=2|=2||=2 ||+∵,,,﹣||+∴222=4 +||+2|=|?,222=202|=|||| +|?,﹣﹣|=2=4|?∴,﹣=cos==θ∴,﹣0≤θ≤π∵,=θ∴,C .故选:13fx=|logx|mnmnfm=fnfx)在区().已知函数()),且,若正实数,((<()满足0.52n4nm=[m )间﹣,(]上的最大值为,则DCBA ....对数函数的图象与性质.【考点】.n=16m=mn=1m1n40,<或<可得,且【分析】由已知和对数的性质可得,<再由最大值为分别解另一个值验证可得.=fnmnfmfx=|logx|mn∵,【解答】解:<(()满足)(),正实数(,)0.5|log1n0m ∴,且<<<lognm|=|logn|logm=∴,,﹣0.50.50.50.5log∴n=0mn=1m+log,,解得0.50.52 nx[m4f∵,)在区间](上的最大值为又,|log∴22 n=4=4mlog|=4|logn|=4logm,,即或﹣或0.50.50.50.5nmn=1n=4m=n=16m=m=;解得可得﹣或时,由,当,此时mn=16mn=1nm=矛盾,应舍去.可得当<时,由,这与B.故选:2x xf+bxR+cxb0cR{x|fx14fx=a=0}={x|f≠?α)((∈)(,),若(((),)∈.已知函数)c=0}≠)的取值范围为(,则实数?B[04C04D[04A04)].,,],..((,).函数的零点与方程根的关系.【考点】2xff0{x|fxfx=0}={x|f=0}=0=bx)∈(()((,(,)))从而可推出从而化简x+cx设;【分析】12222 =0+bcx+cbxbx+cxb+cx=0x的根相同,从而解得.与从而可得(())=0}={x|fxfx=0}{x|f,)(()(∈)x解:设【解答】1 fx=0=0fxf,()则(()),且11a=00f∴),即(()x=0a=0∴;2 xf=bx+cx;)故(fx=0x=0x=;(或)﹣由得,222 =0bx+cx+cx+cbxffx=b,())))(((222 b=0x+bcx+cbx+cx,)整理得:()(c=0时,显然成立;当22 x+bcx+c=0c0b≠无根,当时,方程22 bc=c4b0△,故﹣(<)40c.<<解得,0c4≤,<综上所述,A.故答案选:.36.18分二、填空题:本大题共个小题,每小题、共分1﹣15fx=xf3x.().已知幂函数()的图象经过点(),,则幂函数的概念、解析式、定义域、值域.【考点】fx)的解析式.【分析】设出幂函数的解析式,用待定系数法求出(a xy=f=x,)(解:设幂函数【解答】.3,其图象经过点(,)3∴a a=1=;﹣,解得=xfx∴)(1﹣.1﹣x.故答案为:3 f2=916fxx0fx=x+1.(﹣﹣>时,,则().已知函数)()是奇函数,当函数奇偶性的性质.【考点】利用奇函数的性质即可求出.【分析】3 x=x+10fxRxf∵,函数((>)是定义在【解答】解:时上的奇函数,当)2==f2f2∴﹣(﹣))(﹣(3 9+1=.)﹣9.故答案为:﹣++=AOB17OABCABC△△△的面积之比是内一点,满足.已知点为,则与.向量的加法及其几何意义.【考点】DAB,从而有,从而有中点【分析】,这样即可得出可作图,取AOBABC DOC△△的面积之比.与三点共线,且得到,,这样便可得出,ABD,则:【解答】解:如图,取中点;∴;得,由∴;DOCOD=∴三点共线,且,;,AOBABC △△∴.的面积之比是与.故答案为:18fx=logx1+log3x12 .))的单调递增区间为.函数()((﹣)(﹣,33对数函数的图象与性质.【考点】先求出函数的定义域,根据复合函数的单调性判断即可.【分析】fx=logx1+log3x ∵,【解答】解:()(﹣))﹣(33.13∴,,()函数的定义域是:2 1x3+4xfx3=y=)上的递减区间,,在(的递减区间即函数﹣()﹣22x+4y0xy=′′,,解得:>﹣<,令xy=∴﹣函数2 2+4x31)上的递增,在(﹣,2fx1∴)递增,(,函数)在(21.,故答案为:()yx19=θ,.已知,若存在实数∈,(同时满足,)=+tanθ.的值为,则二维形式的柯西不等式.【考点】22=1sin+cos=t=cossinθθθθ,的值,求出设代人另一式化简,,再由、【分析】2=tan++===tanθθ,求出方程的解,再考得出方程;利用求出tan θθ的值.(,)虑,从而确定∈==t 【解答】,解:设sin=tycos=tx θθ,则,+= 可化为:所以+= ①;222222=1xysin+t+cos =tθθ,又2=t ②;得+= ③②①;代入把,化简得tan== θ,又2+tan= θ③式化为,所以22= tantan=2θθ;或解得.tan=tan=±±θθ;所以或θ,()∈,又tan1θ,所以>tan=θ.所以取.故答案为:1||x﹣﹣=sin+ex20f,有下列四个结论:.已知函数)(x=1①对称;图象关于直线x2f②;)的最大值是(x1f③;)的最大值是﹣(,2015x[20152015f④个零点.)在区间上有﹣(],①②④.其中正确的结论是(写出所有正确的结论序号)函数的图象.【考点】根据函数的性质一一判断即可.【分析】|x1|﹣﹣x=1fy=sinx=1y=ex∴∵①)图(,关于对称,关于【解答】解:对于对称,,x=1 ①正确,对称,故象关于直线|x1|﹣﹣1fx01sin 1e2②∴∵②≤≤③≤不正确,<,故对于(,﹣,)的最大值是正确,,y=sinT==4x=1①∵④对称,每个周期内都有两个对于,由,知,关于的周期为2015 ④正确.个零点,故零点,故有①②④故答案为:.405分,解答应写出文字说明、证明过程或演算步骤小题,共三、解答题:本大题共.x+2aax=log=2xx02Ag21fx(),﹣∈((),()的值域为).已知函数,函数(2 B1.)的定义域为<BAⅠ;(,)求集合aBAⅡ的取值范围.)若,求实数(?集合的包含关系判断及应用;集合的表示法;函数的定义域及其求法.【考点】Ⅰ)根据指数函数以及对数函数的性质解出即可;(【分析】2a的不等式组,解出即可.()根据集合的包含关系得到关于x 02fx=2AxⅠ,)已知函数,()的值域为)【解答】解:(∈(,A=14∴,(),a1=logx2aB+gx.(<﹣(()))的定义域为函数2 a1B=2aa+1∴,<)(,,14BA2aa+1Ⅱ,)若,??,则((,))(a1≤∴.,解得:<22fx=cosx+00ππωφφω,且它的图象过<)的最小正周期为)(.已知函数<(>),﹣(.,点()φⅠω的值;)求(,y=fx Ⅱ)的单调增区间.)求函数((余弦函数的图象.【考点】φⅠω的值.)由周期求出,由特殊点的坐标求出【分析】(y=fx Ⅱ)的单调增区间.)根据函数的解析式,再利用余弦函数的单调性,求出函数((fx=cosx+00 ππωφφωⅠ∵,(,﹣)(<函数><)(【解答】解:())的最小正周期为==2 ωπ∴∴.,==cos++=∵φ∴∴φφ∴它的图象过点(.(﹣﹣),),,,2x x=cosfⅡ﹣())由以上可得,),((k2k 2xxk+2kππππ≤≤π≤≤﹣,令,求得﹣﹣[k +kZkxy=fππ∴﹣(函数],,∈.)的单调增区间为2+x2+4[sin[02x23f=x πθθ.﹣.已知函数(,)],(∈]])fxtan θⅠ的值;()若函数)为偶函数,求(1 xf[θⅡ的取值范围.)在上是单调函数,求﹣,]()若(三角函数中的恒等变换应用;函数奇偶性的判断.【考点】Ⅰ)根据函数奇偶性的定义建立方程关系进行求解即可.(【分析】Ⅱ)利用一元二次函数的单调性的性质进行判断即可.(.fxfx=fx ∴Ⅰ∵,(【解答】解:()(﹣)())是偶函数,22+x2x+2=x x4[sin+4[sinθθ,﹣﹣)﹣则)]]((=0sin+ θ,则)([02 πθ∵,∈],+=k π∴θ,+k =πθ,即﹣=tantan= +kθπ∴(﹣)﹣.2+2+4[sinfx[02 =xxθⅡπ∵θ((.﹣,]]∈(,))])+2sin x=θ∴,对称轴为(﹣)1[ fx上是单调函数,,(﹣)在若]12sin2sin++≤≥θθ,或﹣())则﹣(+ sinsin+≤θ≥θ)或,即()(++2k+ +k2k+Z+2k2kπ≤θπ≤θ≤π≤π,或∈,,即+kZ+2k2k+ 2k2kπππ≤θ≤π≤θ≤,,,或即∈[02 π∵θ,,]∈0≤θ≤≤θ≤∴.,或AB=OAB24Pλ△.为线段.如图,在,且满足中,点上的一个动点(不包含端点)=λⅠ;)若,用向量,表示AOB=60|=3||=4| °?∠Ⅱ,求的取值范围.,,且()若平面向量数量积的运算;平面向量的基本定理及其意义.【考点】Ⅰ)根据向量的加减的几何意义,即可求出;(【分析】=3?Ⅱ的取值范围.)根据向量的加减的几何意义,得到,即可求出﹣(=λ∵Ⅰ,)(解:【解答】.= ,则=∴,﹣﹣()=+∴,=+,则= =|| ||cos60=6∵λ?°Ⅱ?),,(+=1+ =λ∴λλ),((﹣﹣,)+= ∴,==+∴﹣)﹣(()22++﹣)(=3 ==?﹣0 λ∵,>1033 ∴,,﹣∈(﹣)103 ?∴.的取值范围为(﹣),22bxa+bx=4ax[01 25a0bRfx.∈.已知﹣>],∈﹣,函数,(,)a=b=2fx Ⅰ)的最大值;时,求函数(()当fx|2ab|+a Ⅱ;()的最大值)证明:函数﹣(fx+|2ab|+a0 ≥Ⅲ.)﹣)证明:((函数的最值及其几何意义;二次函数的性质.【考点】a=b=2fxⅠ)的解析式,求出对称轴,求得端点的函数值,可得时,【分析】(()求出当fx )的最大值;(Ⅱ)求出对称轴,讨论区间和对称轴的关系,结合单调性,可得最大值;(fx+|2ab|+a0fx+|2ab|+a0fx≥Ⅲ≥)的最小值,设恒成立,只需证﹣﹣(()要证)(()min mMM=|2ab|+a[01Ⅱ]﹣为,,最大值为,由(,求出对称轴,讨论对称轴和区间)得的关M+m0 .系,可得最值,即可证明>24xx[0=8x1 a=b=2fxⅠ.,﹣【解答】解:(,)当时,](∈)x=f0=0f1=4 ,,对称轴为)),((fx4 ;可得)的最大值为(x=x fⅡ,)的对称轴为(()证明:1[01为减区间,时,区间,当>]fxf0=ba ,()可得﹣()的最大值为b4a2a|2ab|+a=b2a+a=ba ,﹣,可得﹣﹣由>>f0=|2ab|+a ;﹣)(则.0[01 为增区间,,当<]时,区间f1=3ab ,可得最大值为)(﹣b0|2ab|+a=2ab+a=3ab=f1 ;﹣(由﹣<),可得﹣[1 0[01≤≤为增区间,,]为减区间,时,区间当,]f0f1b2af1=3ab=|2ab|+a ≤≤;),即)((若﹣(),可得最大值为﹣f0f12ab4af0=ba=|2ab|+a ≤.)﹣,可得最大值为若<(﹣)>((,即)fx|2ab|+a ;)的最大值(综上可得函数﹣fx+|2ab|+a0 ≥Ⅲ恒成立,)证明:要证)((﹣fx+|2ab|+a0 ≥,只需证)(﹣min fxmMM=|2ab|+a Ⅱ,)的最小值为)得(,最大值为﹣设,由(x=x f,(由)的对称轴为1[01m=f1=3ab ,]当为减区间,可得)>(时,区间﹣,M+m=b2a+a+3ab=2a0 ;则﹣﹣>0[01m=f0=ba ,(为增区间,可得当<时,区间﹣,)]M=f1=3abM+m=2a0 ;﹣>(,则)[101[0 ≤≤为增区间,]时,区间为减区间,,,当]= m=f,(可得)f0f1b2aM=f1=3ab ≤≤,(,可得))(若(),即﹣=a0M+m= ≥;>f0f12ab4aM=f0=ba ≤,),可得,即<若(﹣)>(()= M+m=,2ab4aM+ma2aM+m0 ≤.<],即为,可得由于∈(,>M+m0 恒成立,>综上可得fx+|2ab|+a0 ≥.﹣(即有)772016日月年.。
2015-2016学年浙江省台州市高一(上)期末数学试卷一、选择题:本大题共14小题,每小题3分,共42分,在每个小题给出的四个选项中,只有一个符合题目要求的.1.已知集合A={1,2,3},集合B={2,3,4},则A∩B等于()A.{2,3} B.{1,2} C.{3,4} D.{1,2,3,4}2.函数f(x)=2tan(2x+)的最小正周期为()A.B.C.π D.2π3.已知向量=(3,1),=(2,4),则向量=()A.(5,5)B.(6,4)C.(﹣1,3)D.(1,﹣3)4.为了得到函数y=sin(x+)的图象,只需把y=sinx图象上所有的点()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位5.已知cosα=,则sin(+α)=()A.B.﹣C.﹣D.6.﹣=()A.lg B.1 C.﹣1 D.lg7.已知向量=(3,4),=(1,﹣2),若⊥(+t),则实数t的值为()A.﹣5 B.1 C.﹣1 D.58.已知tan(π﹣α)=﹣2,则=()A.﹣3 B.﹣C.D.39.已知0<a<1,f(x)=a x,g(x)=log a x,h(x)=,当x>1时,则有()A.f(x)<g(x)<h(x)B.g(x)<f(x)<h(x)C.g(x)<h(x)<f(x)D.h (x)<g(x)<f(x)10.已知函数f(x)=,则f(﹣)+f()=()A.3 B.5 C.D.11.函数f(x)=ln(﹣x)的图象大致为()A.B.C.D.12.已知向量,满足||=2,|+|=2,|﹣|=2,则向量与的夹角为()A.B.C.D.13.已知函数f(x)=|log0.5x|,若正实数m,n(m<n)满足f(m)=f(n),且f(x)在区间[m2,n]上的最大值为4,则n﹣m=()A.B.C.D.14.已知函数f(x)=a•()x+bx2+cx(α∈R,b≠0,c∈R),若{x|f(x)=0}={x|f(f(x))=0}≠∅,则实数c的取值范围为()A.(0,4)B.[0,4]C.(0,4]D.[0,4)二、填空题:本大题共6个小题,每小题3分.、共18分.15.已知幂函数f(x)的图象经过点(3,),则f(x)=.16.已知函数f(x)是奇函数,当x>0时,f(x)=x3+1,则f(﹣2)=.17.已知点O为△ABC内一点,满足++=,则△AOB与△ABC的面积之比是.18.函数f(x)=log3(x﹣1)+log3(3﹣x)的单调递增区间为.19.已知θ∈(,),若存在实数x,y同时满足=,+=,则tanθ的值为.20.已知函数f(x)=sin+e﹣|x﹣1|,有下列四个结论:①图象关于直线x=1对称;②f(x)的最大值是2;③f(x)的最大值是﹣1,;④f(x)在区间[﹣2015,2015]上有2015个零点.其中正确的结论是(写出所有正确的结论序号).三、解答题:本大题共5小题,共40分,解答应写出文字说明、证明过程或演算步骤. 21.已知函数f(x)=2x,x∈(0,2)的值域为A,函数g(x)=log2(x﹣2a)+(a <1)的定义域为B.(Ⅰ)求集合A,B;(Ⅱ)若B⊆A,求实数a的取值范围.22.已知函数f(x)=cos(ωx+φ)(ω>0,﹣π<φ<0)的最小正周期为π,且它的图象过点(,).(Ⅰ)求ω,φ的值;(Ⅱ)求函数y=f(x)的单调增区间.23.已知函数f(x)=x2+4[sin(θ+)]x﹣2,θ∈[0,2π]].(Ⅰ)若函数f(x)为偶函数,求tanθ的值;(Ⅱ)若f(x)在[﹣,1]上是单调函数,求θ的取值范围.24.如图,在△OAB中,点P为线段AB上的一个动点(不包含端点),且满足=λ.(Ⅰ)若λ=,用向量,表示;(Ⅱ)若||=4,||=3,且∠AOB=60°,求•的取值范围.25.已知a>0,b∈R,函数f(x)=4ax2﹣2bx﹣a+b,x∈[0,1].(Ⅰ)当a=b=2时,求函数f(x)的最大值;(Ⅱ)证明:函数f(x)的最大值|2a﹣b|+a;(Ⅲ)证明:f(x)+|2a﹣b|+a≥0.2015-2016学年浙江省台州市高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14小题,每小题3分,共42分,在每个小题给出的四个选项中,只有一个符合题目要求的.1.已知集合A={1,2,3},集合B={2,3,4},则A∩B等于()A.{2,3} B.{1,2} C.{3,4} D.{1,2,3,4}【考点】交集及其运算.【分析】根据集合交集的定义,列举出集合A、B的全部元素组成集合,即可得答案.【解答】解:根据题意,A={1,2,3},B={2,3,4},集合A、B的公共元素为2,3.则A∩B={2,3}.故选A.2.函数f(x)=2tan(2x+)的最小正周期为()A.B.C.π D.2π【考点】正切函数的图象.【分析】根据正切函数的周期公式进行求解即可.【解答】解:函数的周期T=,故选:B.3.已知向量=(3,1),=(2,4),则向量=()A.(5,5)B.(6,4)C.(﹣1,3)D.(1,﹣3)【考点】平面向量的坐标运算.【分析】根据向量的坐标加减的运算法则计算即可.【解答】解:向量=(3,1),=(2,4),则向量=﹣=(2,4)﹣(3,1)=(﹣1,3),故选:C.4.为了得到函数y=sin(x+)的图象,只需把y=sinx图象上所有的点()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位【考点】函数y=Asin(ωx+φ)的图象变换.【分析】直接利用函数图象的平移法则逐一核对四个选项得答案.【解答】解:∵由y=sinx到y=sin(x+),只是横坐标由x变为x+,∴要得到函数y=sin(x+)的图象,只需把函数y=sinx的图象上所有的点向左平行移动个单位长度.故选:A.5.已知cosα=,则sin(+α)=()A.B.﹣C.﹣D.【考点】运用诱导公式化简求值.【分析】由条件利用诱导公式进行化简求值,可得结果.【解答】解:∵cosα=,则sin(+α)=cosα=,故选:A.6.﹣=()A.lg B.1 C.﹣1 D.lg【考点】对数的运算性质.【分析】判断lg2﹣1的符号化简.【解答】解:﹣=lg5﹣1﹣(1﹣lg2)=lg5+lg2﹣2=1﹣2=﹣1.故选:C.7.已知向量=(3,4),=(1,﹣2),若⊥(+t),则实数t的值为()A.﹣5 B.1 C.﹣1 D.5【考点】平面向量数量积的运算.【分析】根据向量的坐标运算和向量的数量积计算即可.【解答】解:∵=(3,4),=(1,﹣2),∴+t=(3+t,4﹣2t),∵⊥(+t),∴•(+t)=0,∴3(3+t)+4(4﹣2t)=0,∴t=5,故选:D.8.已知tan(π﹣α)=﹣2,则=()A.﹣3 B.﹣C.D.3【考点】同角三角函数基本关系的运用;运用诱导公式化简求值.【分析】利用诱导公式及已知可得tanα=2,利用同角三角函数基本关系式化简所求后即可计算得解.【解答】解:∵tan(π﹣α)=﹣tanα=﹣2,可得:tanα=2,∴===3.故选:D.9.已知0<a<1,f(x)=a x,g(x)=log a x,h(x)=,当x>1时,则有()A.f(x)<g(x)<h(x)B.g(x)<f(x)<h(x)C.g(x)<h(x)<f(x)D.h (x)<g(x)<f(x)【考点】对数函数的图象与性质;指数函数的图象与性质.【分析】由题意和三个函数的单调性可得函数的值域,比较可得.【解答】解:∵0<a<1,∴f(x)=a x在R上单调递减,∴当x>1时,f(x)<f(1)=a<1,结合指数函数的值域可得f(x)∈(0,1);同理∵0<a<1,∴g(x)=log a x在(0,+∞)上单调递减,∴当x>1时,g(x)<g(1)=0,结合对数函数的值域可得g(x)∈(﹣∞,0);又∴h(x)=在[0,+∞)上单调递增,∴当x>1时,g(x)>h(1)=1,故g(x)<f(x)<h(x),故选:B.10.已知函数f(x)=,则f(﹣)+f()=()A.3 B.5 C.D.【考点】函数的值.【分析】利用分段函数的性质求解.【解答】解:∵函数f(x)=,∴f(﹣)=f()﹣1=﹣1=1,f()==2,∴f(﹣)+f()=1+2=3.故选:A.11.函数f(x)=ln(﹣x)的图象大致为()A.B.C.D.【考点】函数的图象.【分析】求出函数的定义域,求出函数的单调性即可判断.【解答】解:∵﹣x>0,即<0,解得x<﹣1或0<x<1,设t=﹣x,则t′=﹣﹣1<0,∴t在(﹣∞,0),(0,1)上为减函数,∵y=lnx为增函数,∴f(x)在(﹣∞,0),(0,1)上为减函数,故选:B12.已知向量,满足||=2,|+|=2,|﹣|=2,则向量与的夹角为()A.B.C.D.【考点】平面向量数量积的运算.【分析】根据向量的夹角公式,以及向量的垂直,向量模计算即可【解答】解:设与的夹角为θ,∵||=2,|+|=2,|﹣|=2,∴|+|2=||2+||2+2•=4,|﹣|2=||2+||2﹣2•=20,∴•=﹣4,||=2∴cosθ===﹣,∵0≤θ≤π,∴θ=,故选:C.13.已知函数f(x)=|log0.5x|,若正实数m,n(m<n)满足f(m)=f(n),且f(x)在区间[m2,n]上的最大值为4,则n﹣m=()A.B.C.D.【考点】对数函数的图象与性质.【分析】由已知和对数的性质可得0<m<1<n,且mn=1,再由最大值为4可得m=或n=16,分别解另一个值验证可得.【解答】解:∵f(x)=|log0.5x|,正实数m,n(m<n)满足f(m)=f(n),∴0<m<1<n,且|log0.5m|=|log0.5n|,∴log0.5m=﹣log0.5n,∴log0.5m+log0.5n=0,解得mn=1,又∵f(x)在区间[m2,n]上的最大值为4,∴|log0.5m2|=4或|log0.5n|=4,即log0.5m2=4或log0.5n=﹣4,解得m=或n=16,当m=时,由mn=1可得n=4,此时n﹣m=;当n=16时,由mn=1可得m=,这与m<n矛盾,应舍去.故选:B.14.已知函数f(x)=a•()x+bx2+cx(α∈R,b≠0,c∈R),若{x|f(x)=0}={x|f(f(x))=0}≠∅,则实数c的取值范围为()A.(0,4)B.[0,4]C.(0,4]D.[0,4)【考点】函数的零点与方程根的关系.【分析】设x1∈{x|f(x)=0}={x|f(f(x))=0},从而可推出f(0)=0,从而化简f(x)=bx2+cx;从而可得(bx2+cx)(b2x2+bcx+c)=0与bx2+cx=0的根相同,从而解得.【解答】解:设x1∈{x|f(x)=0}={x|f(f(x))=0},则f(x1)=0,且f(f(x1))=0,∴f(0)=0,即a()x=0∴a=0;故f(x)=bx2+cx;由f(x)=0得,x=0或x=﹣;f(f(x))=b(bx2+cx)2+c(bx2+cx)=0,整理得:(bx2+cx)(b2x2+bcx+c)=0,当c=0时,显然成立;当c≠0时,方程b2x2+bcx+c=0无根,故△=(bc)2﹣4b2c<0,解得,0<c<4.综上所述,0≤c<4,故答案选:A.二、填空题:本大题共6个小题,每小题3分.、共18分.15.已知幂函数f(x)的图象经过点(3,),则f(x)=x﹣1.【考点】幂函数的概念、解析式、定义域、值域.【分析】设出幂函数的解析式,用待定系数法求出f(x)的解析式.【解答】解:设幂函数y=f(x)=x a,其图象经过点(3,),∴3a=,解得a=﹣1;∴f(x)=x﹣1.故答案为:x﹣1.16.已知函数f(x)是奇函数,当x>0时,f(x)=x3+1,则f(﹣2)=﹣9.【考点】函数奇偶性的性质.【分析】利用奇函数的性质即可求出.【解答】解:∵函数f(x)是定义在R上的奇函数,当x>0时f(x)=x3+1,∴f(﹣2)=﹣f(2)=﹣(23+1)=﹣9.故答案为:﹣9.17.已知点O为△ABC内一点,满足++=,则△AOB与△ABC的面积之比是.【考点】向量的加法及其几何意义.【分析】可作图,取AB中点D,从而有,这样即可得出,从而有D,O,C三点共线,且得到,这样便可得出△AOB与△ABC的面积之比.【解答】解:如图,取AB中点D,则:;∴由得,;∴;∴D,O,C三点共线,且OD=;∴△AOB与△ABC的面积之比是.故答案为:.18.函数f(x)=log3(x﹣1)+log3(3﹣x)的单调递增区间为(1,2).【考点】对数函数的图象与性质.【分析】先求出函数的定义域,根据复合函数的单调性判断即可.【解答】解:∵f(x)=log3(x﹣1)+log3(3﹣x),∴函数的定义域是:(1,3),f(x)=的递减区间即函数y=﹣x2+4x﹣3在(1,3)上的递减区间,y′=﹣2x+4,令y′>0,解得:x<2,∴函数y=﹣x2+4x﹣3在(1,2)上的递增,∴函数f(x)在(1,2)递增,故答案为:(1,2).19.已知θ∈(,),若存在实数x,y同时满足=,+=,则tanθ的值为.【考点】二维形式的柯西不等式.【分析】设==t,求出sinθ、cosθ的值,代人另一式化简,再由sin2θ+cos2θ=1,求出+=;利用tanθ==得出方程tan2θ+=,求出方程的解,再考虑θ∈(,),从而确定tanθ的值.【解答】解:设==t,则sinθ=ty,cosθ=tx,所以+=可化为:+=①;又sin2θ+cos2θ=t2x2+t2y2=1,得t2=②;把②代入①,化简得+=③;又tanθ==,所以③式化为tan2θ+=,解得tan2θ=2或tan2θ=;所以tanθ=±或tanθ=±;又θ∈(,),所以tanθ>1,所以取tanθ=.故答案为:.20.已知函数f(x)=sin+e﹣|x﹣1|,有下列四个结论:①图象关于直线x=1对称;②f(x)的最大值是2;③f(x)的最大值是﹣1,;④f(x)在区间[﹣2015,2015]上有2015个零点.其中正确的结论是①②④(写出所有正确的结论序号).【考点】函数的图象.【分析】根据函数的性质一一判断即可.【解答】解:对于①,∵y=sin,关于x=1对称,y=e﹣|x﹣1|关于x=1对称,∴f(x)图象关于直线x=1对称,故①正确,对于②,∵﹣1≤sin≤1,0<e﹣|x﹣1|≤1,∴f(x)的最大值是2,故②正确,③不正确,对于④,∵y=sin的周期为T==4,由①知,关于x=1对称,每个周期内都有两个零点,故有2015个零点,故④正确.故答案为:①②④三、解答题:本大题共5小题,共40分,解答应写出文字说明、证明过程或演算步骤.21.已知函数f(x)=2x,x∈(0,2)的值域为A,函数g(x)=log2(x﹣2a)+(a <1)的定义域为B.(Ⅰ)求集合A,B;(Ⅱ)若B⊆A,求实数a的取值范围.【考点】集合的包含关系判断及应用;集合的表示法;函数的定义域及其求法.【分析】(Ⅰ)根据指数函数以及对数函数的性质解出即可;(2)根据集合的包含关系得到关于a的不等式组,解出即可.【解答】解:(Ⅰ)已知函数f(x)=2x,x∈(0,2)的值域为A,∴A=(1,4),函数g(x)=log2(x﹣2a)+(a<1)的定义域为B.∴B=(2a,a+1),a<1,(Ⅱ)若B⊆A,则(2a,a+1)⊆(1,4),∴,解得:≤a<1.22.已知函数f(x)=cos(ωx+φ)(ω>0,﹣π<φ<0)的最小正周期为π,且它的图象过点(,).(Ⅰ)求ω,φ的值;(Ⅱ)求函数y=f(x)的单调增区间.【考点】余弦函数的图象.【分析】(Ⅰ)由周期求出ω,由特殊点的坐标求出φ的值.(Ⅱ)根据函数的解析式,再利用余弦函数的单调性,求出函数y=f(x)的单调增区间.【解答】解:(Ⅰ)∵函数f(x)=cos(ωx+φ)(ω>0,﹣π<φ<0)的最小正周期为π,∴=π,∴ω=2.∵它的图象过点(,),∴cos(+φ)=,∴+φ=﹣,∴φ=﹣.(Ⅱ)由以上可得,f(x)=cos(2x﹣),令2kπ﹣π≤2x﹣≤2kπ,求得kπ﹣≤x≤kπ+,∴函数y=f(x)的单调增区间为[kπ﹣,kπ+],k∈Z.23.已知函数f(x)=x2+4[sin(θ+)]x﹣2,θ∈[0,2π]].(Ⅰ)若函数f(x)为偶函数,求tanθ的值;(Ⅱ)若f(x)在[﹣,1]上是单调函数,求θ的取值范围.【考点】三角函数中的恒等变换应用;函数奇偶性的判断.【分析】(Ⅰ)根据函数奇偶性的定义建立方程关系进行求解即可.(Ⅱ)利用一元二次函数的单调性的性质进行判断即可.【解答】解:(Ⅰ)∵f(x)是偶函数,∴f(﹣x)=f(x),则x2+4[sin(θ+)]x﹣2=x2﹣4[sin(θ+)]x﹣2,则sin(θ+)=0,∵θ∈[0,2π],∴θ+=kπ,即θ=﹣+kπ,∴tanθ=tan(﹣+kπ)=﹣.(Ⅱ)∵f(x)=x2+4[sin(θ+)]x﹣2,θ∈[0,2π]].∴对称轴为x=﹣2sin(θ+),若f(x)在[﹣,1]上是单调函数,则﹣2sin(θ+)≥1或﹣2sin(θ+)≤,即sin(θ+)≥或sin(θ+)≤,即2kπ+≤θ+≤2kπ+,或2kπ+≤θ+≤2kπ+,k∈Z,即2kπ+≤θ≤2kπ+,或2kπ≤θ≤2kπ+,k∈Z,∵θ∈[0,2π],∴≤θ≤,或0≤θ≤.24.如图,在△OAB中,点P为线段AB上的一个动点(不包含端点),且满足=λ.(Ⅰ)若λ=,用向量,表示;(Ⅱ)若||=4,||=3,且∠AOB=60°,求•的取值范围.【考点】平面向量数量积的运算;平面向量的基本定理及其意义.【分析】(Ⅰ)根据向量的加减的几何意义,即可求出;(Ⅱ)根据向量的加减的几何意义,得到=3﹣,即可求出•的取值范围.【解答】解:(Ⅰ)∵λ=,则=,∴﹣=(﹣),∴=+,则=+,(Ⅱ)∵•=||•||cos60°=6,=λ,∴﹣=λ(﹣),(1+λ)=+λ,∴=+,∴=(+)(﹣)=﹣2+2+(﹣)•===3﹣∵λ>0,∴3﹣∈(﹣10,3),∴•的取值范围为(﹣10,3).25.已知a>0,b∈R,函数f(x)=4ax2﹣2bx﹣a+b,x∈[0,1].(Ⅰ)当a=b=2时,求函数f(x)的最大值;(Ⅱ)证明:函数f(x)的最大值|2a﹣b|+a;(Ⅲ)证明:f(x)+|2a﹣b|+a≥0.【考点】函数的最值及其几何意义;二次函数的性质.【分析】(Ⅰ)求出当a=b=2时,f(x)的解析式,求出对称轴,求得端点的函数值,可得f(x)的最大值;(Ⅱ)求出对称轴,讨论区间和对称轴的关系,结合单调性,可得最大值;(Ⅲ)要证f(x)+|2a﹣b|+a≥0恒成立,只需证f(x)min+|2a﹣b|+a≥0,设f(x)的最小值为m,最大值为M,由(Ⅱ)得M=|2a﹣b|+a,求出对称轴,讨论对称轴和区间[0,1]的关系,可得最值,即可证明M+m>0.【解答】解:(Ⅰ)当a=b=2时,f(x)=8x2﹣4x,x∈[0,1].对称轴为x=,f(0)=0,f(1)=4,可得f(x)的最大值为4;(Ⅱ)证明:f(x)的对称轴为x=,当>1时,区间[0,1]为减区间,可得f(x)的最大值为f(0)=b﹣a,由b>4a>2a,可得|2a﹣b|+a=b﹣2a+a=b﹣a,则f(0)=|2a﹣b|+a;当<0时,区间[0,1]为增区间,可得最大值为f(1)=3a﹣b,由b<0,可得|2a﹣b|+a=2a﹣b+a=3a﹣b=f(1);当0≤≤1时,区间[0,]为减区间,[,1]为增区间,若f(0)≤f(1),即b≤2a,可得最大值为f(1)=3a﹣b=|2a﹣b|+a;若f(0)>f(1),即2a<b≤4a,可得最大值为f(0)=b﹣a=|2a﹣b|+a.综上可得函数f(x)的最大值|2a﹣b|+a;(Ⅲ)证明:要证f(x)+|2a﹣b|+a≥0恒成立,只需证f(x)min+|2a﹣b|+a≥0,设f(x)的最小值为m,最大值为M,由(Ⅱ)得M=|2a﹣b|+a,由f(x)的对称轴为x=,当>1时,区间[0,1]为减区间,可得m=f(1)=3a﹣b,则M+m=b﹣2a+a+3a﹣b=2a>0;当<0时,区间[0,1]为增区间,可得m=f(0)=b﹣a,M=f(1)=3a﹣b,则M+m=2a>0;当0≤≤1时,区间[0,]为减区间,[,1]为增区间,可得m=f()=,若f(0)≤f(1),即b≤2a,可得M=f(1)=3a﹣b,M+m=≥=a>0;若f(0)>f(1),即2a<b≤4a,可得M=f(0)=b﹣a,M+m==,由于2a<b≤4a,可得M+m∈(a,2a],即为M+m>0.综上可得M+m>0恒成立,即有f(x)+|2a﹣b|+a≥0.。
2016-2017学年浙江省台州市高二(上)期末数学试卷(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2016-2017学年浙江省台州市高二(上)期末数学试卷(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2016-2017学年浙江省台州市高二(上)期末数学试卷(word版可编辑修改)的全部内容。
2016-2017学年浙江省台州市高二(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)过点A(0,1)与直线y=x﹣1平行的直线方程是()A.x+y﹣1=0 B.x﹣y﹣1=0 C.x+y+1=0 D.x﹣y+1=02.(3分)若一个球的半径为1,则它的表面积是( )A.4πB.2πC.π D.3.(3分)已知圆C:x2+y2+2x﹣4y=0,则圆C的圆心坐标为()A.(1,﹣2) B.(﹣1,2)C.(1,2)D.(﹣1,﹣2)4.(3分)在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CC1所成角的大小为()A.60°B.30°C.90°D.45°5.(3分)设直线l的方向向量为(1,﹣1,1),平面α的一个法向量为(﹣1,1,﹣1),则直线l与平面α的位置关系是( )A.l⊂α B.l∥α C.l⊥α D.不确定6.(3分)已知直线l在平面α内,则“l⊥β”是“α⊥β”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.(3分)在平面直角坐标系中,方程+=1所表示的曲线是( )A.椭圆B.三角形C.菱形D.两条平行线8.(3分)已知抛物线y2=4x上一动点M(x,y),定点N(0,1),则x+|MN|的最小值是()A. B. C.﹣1 D.﹣19.(3分)已知F1和F2分别是椭圆C:+y2=1的左焦点和右焦点,点P(x0,y0)是椭圆C上一点,切满足∠F1PF2≥60°,则x0的取值范围是()A.[﹣1,1] B.[﹣,] C.[1,] D.[,]10.(3分)如图,在三棱柱ABC﹣A1B1C1中,E,F,E1,F1分别为棱AB,AC,AA1,CC1的中点,点G,H分别为四边形ABB1A1,BCC1B1对角线的交点,点I为△A1B1C1的外心,P,Q分别在直线EF,E1F1上运动,则在G,H,I,这三个点中,动直线PQ()A.只可能经过点I B.只可能经过点G,HC.可能经过点G,H,I D.不可能经过点G,H,I二、填空题(本大题共有6小题,多空题每小题4分,单空题每小题4分,共20分) 11.(4分)直线x﹣y﹣3=0的斜率为,倾斜角为.12.(4分)在空间直角坐标系中,点A(2,1,2)到原点O的距离为,点A 关于原点O对称的点的坐标为.13.(3分)如图,某三棱锥的三视图,则该三棱锥的体积为.14.(3分)已知双曲线﹣=1的一条渐近线方程为y=x,则双曲线的离心率为.15.(3分)在直线l1:ax﹣y﹣a+2=0(a∈R),过原点O的直线l2与l1垂直,垂足为M,则|OM|的最大值为.16.(3分)已知A(2,2),B(a,b),对于圆x2+y2=4,上的任意一点P都有=,则点B的坐标为.三、解答题(本大题共有5小题,共50分)17.(8分)设p:“方程x2+y2=4﹣a表示圆”,q:“方程﹣=1表示焦点在x 轴上的双曲线",如果p和q都正确,求实数a的取值范围.18.(10分)如图,在正方体ABCD﹣A1B1C1D1中,点E,F分别为BB1,B1C1的中点.(Ⅰ)求证:直线EF∥面ACD1;(Ⅱ)求二面角D1﹣AC﹣D的平面角的余弦值.19.(10分)已知抛物线C顶点在原点,关于x轴对称,且经过P(1,2).(Ⅰ)求抛物线C的标准方程及准线方程;(Ⅱ)已知不过点P且斜率为1的直线l与抛物线C交于A,B两点,若AB为直径的圆经过点P,试求直线l的方程.20.(10分)已知三棱柱ABC﹣A1B1C1的底面是边长为4的正三角形,侧棱AA1垂直于底面ABC,AA 1=2,D为BC中点.(Ⅰ)若E为棱CC1的中点,求证:A1C⊥DE;(Ⅱ)若点E在棱CC1上,直线CE与平面ADE所成角为α,当si nα=时,求CE 的长.21.(12分)已知椭圆C:+=1(a>b>0)的右焦点为(1,0),且右焦点到上顶点的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)过点P(2,2)的动直线交椭圆C于A,B两点,(i)若|PA||PB|=,求直线AB的斜率;(ii)点Q在线段AB上,且满足+=,求点Q的轨迹方程.2016-2017学年浙江省台州市高二(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)过点A(0,1)与直线y=x﹣1平行的直线方程是( )A.x+y﹣1=0 B.x﹣y﹣1=0 C.x+y+1=0 D.x﹣y+1=0【分析】设过点A(0,1)与直线y=x﹣1平行的直线方程是x﹣y+c=0,把点(0,1)代入,能得到所求直线方程.【解答】解:过点A(0,1)与直线y=x﹣1平行的直线方程是x﹣y+c=0,把点(0,1)代入,得0﹣1+c=0,解得c=1.∴所求直线方程为:x﹣y+1=0.故选:D.【点评】本题考查直线的一般式方程与直线的平行关系的应用,是基础题.解题时要认真审题,仔细解答2.(3分)若一个球的半径为1,则它的表面积是()A.4πB.2πC.π D.【分析】直接利用球的表面积公式,即可得出结论.【解答】解:由题意,半径为1的球的表面积是4π•12=4π.故选:A.【点评】本题考查球的表面积公式,考查学生的计算能力,比较基础.3.(3分)已知圆C:x2+y2+2x﹣4y=0,则圆C的圆心坐标为( )A.(1,﹣2)B.(﹣1,2) C.(1,2)D.(﹣1,﹣2)【分析】把圆的一般方程化为标准方程,求出圆心和半径.【解答】解:圆x2+y2+2x﹣4y=0 即(x+1)2+(y﹣2)2=5,故圆心为(﹣1,2),故选:B.【点评】本题主要考查把圆的一般方程化为标准方程的方法,根据圆的标准方程求圆心,属于基础题.4.(3分)在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CC1所成角的大小为( )A.60°B.30°C.90°D.45°【分析】将CC1平移到B1B,从而∠A1BB1为直线BA1与CC1所成角,在三角形A1BB1中求出此角即可.【解答】解:∵CC1∥B1B,∴∠A1BB1为直线BA1与CC1所成角,因为是在正方体ABCD﹣A1B1C1D1中,所以∠A1BB1=45°.故选:D.【点评】本题主要考查了异面直线及其所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.5.(3分)设直线l的方向向量为(1,﹣1,1),平面α的一个法向量为(﹣1,1,﹣1),则直线l与平面α的位置关系是()A.l⊂α B.l∥α C.l⊥α D.不确定【分析】观察到的直线l的方向向量与平面α的法向量共线,得到位置关系是垂直.【解答】解:因为直线l的方向向量为(1,﹣1,1),平面α的一个法向量为(﹣1,1,﹣1),显然它们共线,所以直线l与平面α的位置关系是垂直即l⊥α;故选:C.【点评】本题考查了利用直线的方向向量和平面的法向量的关系,判定线面关系;体现了向量的工具性;属于基础题.6.(3分)已知直线l在平面α内,则“l⊥β”是“α⊥β”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【分析】根据线面垂直和面面垂直的定义和性质,结合充分条件和必要条件的定义即可的结论.【解答】解:根据面面垂直的判定定理可得,若l⊂α,l⊥β,则α⊥β成立,即充分性成立,若α⊥β,则l⊥β不一定成立,即必要性不成立.故“l⊥β”是“α⊥β”充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判定,利用线面垂直和面面垂直的关系是解决本题的关键.7.(3分)在平面直角坐标系中,方程+=1所表示的曲线是( )A.椭圆B.三角形C.菱形D.两条平行线【分析】去掉绝对值,可得方程+=1的曲线围成的封闭图形.【解答】解:x≥0,y≥0方程为+=1;x≥0,y≤0方程为﹣=1;x≤0,y≥0方程为﹣+=1;x≤0,y≤0方程为﹣﹣=1,∴方程+=1的曲线围成的封闭图形是一个以(0,4),(2,0),(0,﹣4),(﹣2,0)为顶点的菱形,故选:C.【点评】本题考查的知识点是曲线与方程,分析出几何体的形状是解答的关键,难度中档.8.(3分)已知抛物线y2=4x上一动点M(x,y),定点N(0,1),则x+|MN|的最小值是()A. B. C.﹣1 D.﹣1【分析】抛物线的焦点坐标为(1,0),M到准线的距离为d,则x+|MN|=d+|MN|﹣1=|MF|+|MN|﹣1≥|NF|﹣1=﹣1,即可得出结论.【解答】解:抛物线的焦点坐标为(1,0),M到准线的距离为d,则x+|MN|=d+|MN|﹣1=|MF|+|MN|﹣1≥|NF|﹣1=﹣1,∴x+|MN|的最小值是﹣1.故选:D.【点评】本题考查抛物线的方程与性质,考查抛物线定义的运用,属于中档题.9.(3分)已知F1和F2分别是椭圆C:+y2=1的左焦点和右焦点,点P(x0,y0)是椭圆C上一点,切满足∠F1PF2≥60°,则x0的取值范围是()A.[﹣1,1] B.[﹣,] C.[1,] D.[,]【分析】设当点P在第一象限时,求出∠F1PF2=60°时,PF2的大小,由焦半径公式的PF2=a﹣ex0解得x0,根据对称性,则x0的取值范围【解答】解:∵a=,b=1,∴c=1.设当点P在第一象限时,|PF1|=t1,|PF2|=t2,则由椭圆的定义可得:t1+t2=2…①在△F1PF2中,当∠F1PF2=60°,所以t12+t22﹣2t1t2•cos60°=4…②,由①﹣②得t2=,由焦半径公式的a﹣ex0=,解得x0=,当点P向y轴靠近时,∠F1PF2增大,根据对称性,则x0的取值范围是:[﹣,]故选:B.【点评】本题考查了椭圆的性质及焦点三角形的特征,属于中档题.10.(3分)如图,在三棱柱ABC﹣A1B1C1中,E,F,E1,F1分别为棱AB,AC,AA1,CC1的中点,点G,H分别为四边形ABB1A1,BCC1B1对角线的交点,点I为△A1B1C1的外心,P,Q分别在直线EF,E1F1上运动,则在G,H,I,这三个点中,动直线PQ()A.只可能经过点I B.只可能经过点G,HC.可能经过点G,H,I D.不可能经过点G,H,I【分析】根据题意,得出PQ与GH是异面直线,PQ不过点G,且不过点H;当A1B1⊥B1C1时,外接圆的圆心I为斜边A1C1的中点,P与F重合,Q是E1F1的中点,PQ过点I.【解答】解:如图所示;三棱柱ABC﹣A1B1C1中,连接GH,则GH∥E1F1,∴G、H、F1、E1四点共面与平面GHF1E1;又点P∉平面GHF1E1,Q∈E1F1,∴Q∈平面GHF1E1,且Q∉GH,∴PQ与GH是异面直线,即PQ不过点G,且不过点H;又点I为△A1B1C1的外心,当A1B1⊥B1C1时,I为A1C1的中点,若P与F重合,Q是E1F1的中点,此时PQ过点I.故选:A.【点评】本题考查了空间中的两条直线位置关系,也考查了直线过某一点的应用问题,是综合性题目.二、填空题(本大题共有6小题,多空题每小题4分,单空题每小题4分,共20分)11.(4分)直线x﹣y﹣3=0的斜率为 1 ,倾斜角为45°.【分析】直接化直线方程为斜截式得答案.【解答】解:由x﹣y﹣3=0,得y=x﹣3,∴直线x﹣y=﹣30的斜率是1,倾斜角为45°.故答案为1,45°.【点评】本题考查直线的斜率,考查直线方程的斜截式,是基础的计算题.12.(4分)在空间直角坐标系中,点A(2,1,2)到原点O的距离为 3 ,点A关于原点O对称的点的坐标为(﹣2,﹣1,﹣2) .【分析】利用两点间矩离公式、对称的性质直接求解.【解答】解:点A(2,1,2)到原点O的距离d==3,点A(2,1,2)关于原点O对称的点的坐标为(﹣2,﹣1,﹣2).故答案为:3,(﹣2,﹣1,﹣2).【点评】本题考查点的坐标的求法,是基础题,解题时要认真审题,注意两点间距离公式、对称性质的合理运用.13.(3分)如图,某三棱锥的三视图,则该三棱锥的体积为 2 .【分析】由三视图可知该三棱锥的底面为等腰直角三角形,高为3.从而解得.【解答】解:该三棱锥的底面为等腰直角三角形,高为3.则其体积V==2,故答案为2.【点评】本题考查了学生的空间想象力,属于基础题.14.(3分)已知双曲线﹣=1的一条渐近线方程为y=x,则双曲线的离心率为2 .【分析】利用双曲线的渐近线方程,推出a,b的关系,然后求解双曲线的离心率即可.【解答】解:双曲线﹣=1的一条渐近线方程为y=x,可得=,即,解得e=2.故答案为:2.【点评】本题考查双曲线的简单性质的应用,考查计算能力.15.(3分)在直线l1:ax﹣y﹣a+2=0(a∈R),过原点O的直线l2与l1垂直,垂足为M,则|OM|的最大值为.【分析】分a=0或a≠0两种情况讨论,设y=,根据判别式求出y的范围,即可得到|OM|的最大值【解答】解:直线l1:ax﹣y﹣a+2=0(a∈R),化为y=ax﹣a+2,则直线l1的斜率为a,当a=0时,11:y=2,∵过原点O的直线l2与l1垂直,∴直线l2的方程为x=0,∴M(0.2),∴|OM|=2,当a≠0时,则直线l2的斜率为﹣,则直线l2的方程为y=﹣x,由,解得x=,y=,∴M(,),则|OM|==,设y=,则(1﹣y)a2﹣4a+4﹣y=0,∴△=16﹣4(1﹣y)(4﹣y)≥0,解得0≤y≤5,∴|OM|的最大值为,综上所述:|OM|的最大值为,故答案为:【点评】本题考查了直线方程的垂直的关系和直线与直线的交点和函数的最值得问题,属于中档题16.(3分)已知A(2,2),B(a,b),对于圆x2+y2=4,上的任意一点P都有=,则点B的坐标为(1,1).【分析】设P(x,y),则(x﹣2)2+(y﹣2)2=2(x﹣a)2+2(y﹣b)2,化简可得(2﹣2a)x+(2﹣2b)y+a2+b2﹣2=0,由此可求点B的坐标.【解答】解:设P(x,y),则(x﹣2)2+(y﹣2)2=2(x﹣a)2+2(y﹣b)2,化简可得(2﹣2a)x+(2﹣2b)y+a2+b2﹣2=0,a=1,b=1时,方程恒成立,∴点B的坐标为(1,1),故答案为(1,1).【点评】本题考查点与圆的位置关系,考查恒成立问题,正确转化是关键.三、解答题(本大题共有5小题,共50分)17.(8分)设p:“方程x2+y2=4﹣a表示圆”,q:“方程﹣=1表示焦点在x 轴上的双曲线”,如果p和q都正确,求实数a的取值范围.【分析】先求出命题p真、命题q真时a的范围,由 p和q都正确,得⇒实数a的取值范围.【解答】解:若命题p真:方程x2+y2=4﹣a表示圆,4﹣a>0,即a<4,若命题q真:则a+1>0,得a>﹣1,∵p和q都正确,所以⇒﹣1<a<4,实数a的取值范围:(﹣1,4)【点评】本题考查了复合命题的判断,考查圆和双曲线的性质,是一道基础题18.(10分)如图,在正方体ABCD﹣A1B1C1D1中,点E,F分别为BB1,B1C1的中点.(Ⅰ)求证:直线EF∥面ACD1;(Ⅱ)求二面角D1﹣AC﹣D的平面角的余弦值.【分析】(Ⅰ)连结BC1,则EF∥BC1,从而EF∥AD1,由此能证明直线EF∥面ACD1.(Ⅱ)连结BD,交AC于点O,连结OD1,则OD⊥AC,OD⊥AC,∠DOD1是二面角D1﹣AC﹣D的平面角,由此能求出二面角D1﹣AC﹣D的平面角的余弦值.【解答】证明:(Ⅰ)连结BC1,则EF∥BC1,∵BC1∥AD1,∴EF∥AD1,∵EF⊄面ACD1,AD1⊂面ACD1,∴直线EF∥面ACD1.解:(Ⅱ)连结BD,交AC于点O,连结OD1,则OD⊥AC,OD⊥AC,∴∠DOD1是二面角D1﹣AC﹣D的平面角,设正方体棱长为2,在Rt△D 1DO中,OD=,OD1=,∴cos∠DOD1===,∴二面角D1﹣AC﹣D的平面角的余弦值为.【点评】本题考查线面垂直的判定与性质,考查利用二面角的余弦值的求法;考查逻辑推理与空间想象能力,运算求解能力;考查数形结合、化归转化思想.19.(10分)已知抛物线C顶点在原点,关于x轴对称,且经过P(1,2).(Ⅰ)求抛物线C的标准方程及准线方程;(Ⅱ)已知不过点P且斜率为1的直线l与抛物线C交于A,B两点,若AB为直径的圆经过点P,试求直线l的方程.【分析】(I)由题意可设抛物线的标准方程为:y2=2px(p>0),把点P(1,2)代入解得p.可得抛物线C的标准方程及其准线方程.(II)时直线l的方程为:y=x+b,代入抛物线方程可得:y2﹣4y+4b=0,设A(x1,y1),B(x2,y2).由题意可得:=0,可得(x1﹣1)(x2﹣1)+(y1﹣2)(y2﹣2)=x1•x2﹣(x1+x2)+1+y1•y2﹣2(y1+y2+4=0,把根与系数的关系代入即可得出.【解答】解:(I)由题意可设抛物线的标准方程为:y2=2px(p>0),把点P(1,2)代入可得:22=2p×1,解得p=2.∴抛物线C的标准方程为:y2=4x,准线方程为x=﹣1.(II)时直线l的方程为:y=x+b,代入抛物线方程可得:y2﹣4y+4b=0,△=16﹣16b >0,解得b<1.设A(x1,y1),B(x2,y2),∴y1+y2=4,y1•y2=4b,∴x1+x2=y1+y2﹣2b,x1x2==b2.由题意可得:=0,∴(x1﹣1)(x2﹣1)+(y1﹣2)(y2﹣2)=x1•x2﹣(x1+x2)+1+y1•y2﹣2(y1+y2+4=0,∴b2﹣(4﹣2b)+1+4b﹣8+4=0,即b2+6b﹣7=0,解得b=﹣7,或b=1(舍去).∴直线l的方程为:x﹣y﹣7=0.【点评】本题考查了抛物线的标准方程及其性质、直线与抛物线相交问题、圆的性质、一元二次方程的根与系数的关系、数量积运算性质,考查了推理能力与计算能力,属于难题.20.(10分)已知三棱柱ABC﹣A1B1C1的底面是边长为4的正三角形,侧棱AA1垂直于底面ABC,AA1=2,D为BC中点.(Ⅰ)若E为棱CC1的中点,求证:A1C⊥DE;(Ⅱ)若点E在棱CC1上,直线CE与平面ADE所成角为α,当sinα=时,求CE 的长.【分析】(Ⅰ)建立空间直角坐标系,利用向量法能证明DE⊥A1C.(Ⅱ)求出平面ADE的法向量,由CE与平面ADE所成角α满足sinα=,利用向量法能求出CE.【解答】(Ⅰ)证明:建立如图所示空间直角坐标系,A 1(2,0,2),D(0,0,0),E(0,﹣2,),C(0,﹣2,0),=(0,﹣2,),=(﹣2,﹣2,﹣2),∴•=0+4﹣4=0,∴DE⊥A1C;(Ⅱ)解:CE=a(0),则E(0,﹣2,a),A(2,0,0),=(2,0,0),=(0,﹣2,a)设平面ADE的法向量=(x,y,z),则,取=(0,a,2),设CE与平面ADE所成角为α,满足sinα==,∴a=1,即CE=1.【点评】本题考查线线垂直的证明,考查满足条件的线段长的求法,是中档题,解题时要认真审题,注意向量法的合理运用.21.(12分)已知椭圆C:+=1(a>b>0)的右焦点为(1,0),且右焦点到上顶点的距离为.(Ⅰ)求椭圆C的方程;(Ⅱ)过点P(2,2)的动直线交椭圆C于A,B两点,(i)若|PA||PB|=,求直线AB的斜率;(ii)点Q在线段AB上,且满足+=,求点Q的轨迹方程.【分析】(Ⅰ)根据题意求出a,c的值,从而求出b的值,求出椭圆的方程即可;(Ⅱ)(i)设出直线方程,和椭圆联立方程组,根据根与系数的关系求出直线斜率k 的值即可;(ii)设出Q的坐标,根据+=,得+=,求出k的值,带入直线方程,整理即可.【解答】解:(Ⅰ)由题意得:c=1,a=,∴b2=a2﹣c2=1,∴+y2=1;(Ⅱ)(i)设直线AB:y=k(x﹣2)+2,点A(x1,y1),B(x2,y2),由,得:(1+2k2)x2+4k(2﹣2k)x+2(2﹣2k)2﹣2=0(*),∴x1+x2=﹣,x1x2=,|PA||PB|=|2﹣x1|•|2﹣x2|=(1+k2)[4﹣2(x1+x2)+x1x2]==,解得:k2=1,即k=1或﹣1,经检验,k=1;(ii)设点Q(x0,y0),由点Q在直线AB上,得y0=k(x0﹣2)+2,(**),又+=,得+=,∵+=,∴2﹣x0=2×=2×(2+)=,∴k=,把它带入(**)式,得y0=k(x0﹣2)+2=(x0﹣2)+2=﹣x0+,即点Q的轨迹方程是:x+2y﹣1=0,(<x<).【点评】本题考查了直线和椭圆的位置关系,考查考查椭圆的性质以及直线的斜率问题,是一道综合题.。
台州市2017学年第一学期高一年级期末质量评估试卷数学参考答案及评分标准一、选择题:本大题共10小题,每题3分,共30分。
在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
二、填空题:本大题共6小题,多空题每题4分,单空题每题3分,共20分。
11.π3-,四 12.4,1213.{}1x x >- 14.1 15.c b a << 16.5π0,12⎛⎫⎪⎝⎭三、解答题:本大题共5小题,共50分。
解许诺写出文字说明,证明进程或演算步骤。
17.(本小题总分值10分) (Ⅰ)解:由1a =,得12M x x ⎧⎫=>⎨⎬⎩⎭,∴R12M x x ⎧⎫=≤⎨⎬⎩⎭.………………………4分 (Ⅱ)解:{}202a M x x a x x ⎧⎫=->=>⎨⎬⎩⎭,……………………………………………6分 {}{}223031N x x x x x =+-≤=-≤≤.…………………………………………8分由N M ⊆,得32a<-,即6a <-. ………………………………………………10分 18.(本小题总分值10分)(Ⅰ)解:sin 3cos αα=,tan 3∴=α,………………………………………………2分πtan 131tan()241tan 13ααα++∴+===---. ……………………………………5分(Ⅱ)解:sin 3cos αα=,∴()223cos cos 1αα+=,∴21cos 10α=. …………………………………………………………………7分角α是第一象限的角,∴cos α=∴sin α=. ………………………………………………………………10分19.(本小题总分值10分) (Ⅰ)解:(),11xf x x x =≠+, ∴()()22211x xf x f x x x ---+-=+-+-+2211x xx x -=+=--. ……………………………………4分 (Ⅱ)证明:设12,x x 是区间()1,-+∞上任意两个实数,且12x x <,那么()()12121211x xf x f x x x -=-++ ()()()()1221121111x x x x x x +-+=++()()121211x x x x -=++. ……………………………………………6分由121x x -<<,得120x x -<,()()12110x x ++>, 于是()()120f x f x -<,即()()12f x f x <.因此函数()1xf x x =+在()1,-+∞上是增函数.………………………………8分 因此,函数()()2log g x f x =在()1,+∞上的单调递增. ……………………10分20.(本小题总分值10分) (Ⅰ)解:()ππsin 2cos 22cos 263f x x x x ⎛⎫⎛⎫=++-- ⎪ ⎪⎝⎭⎝⎭112cos 2cos 222cos 22222x x x x x =+++-2cos2x x =- π2sin 26x ⎛⎫=-⎪⎝⎭.…………………………………………………………3分 ∴函数()f x 的最小正周期为π.……………………………………………………4分由πππ2π22π262k x k -+≤-≤+()k Z ∈,得ππππ63k x k -≤≤+. ∴函数()f x 的单调递增区间为()πππ,π63k k k Z ⎡⎤-+∈⎢⎥⎣⎦.………………………6分(Ⅱ)解:由题意,得()()π2sin 26g x x m ⎛⎫=+-⎪⎝⎭π2sin 226x m ⎛⎫=+- ⎪⎝⎭.……………………………………7分函数()g x 为偶函数,∴()ππ2π62m k k Z -=+∈, 即()ππ23k m k Z =+∈,∴实数m 的最小值为π3.…………………………………10分 21.(本小题总分值10分)(Ⅰ)解:由1a =,得22245,1,()4|1|143,1,x x x f x x x x x x ⎧-+≥⎪=--+=⎨+-<⎪⎩当1x ≥时,2451x x -+≥, 当1x <时,2437x x +-≥-,∴函数()f x 的值域是[)7,-+∞. ………………………………………………3分(Ⅱ)解:22245,,()4||43,.x x a x a f x x x a a x x a x a ⎧-+≥⎪=--+=⎨+-<⎪⎩当2a ≥时,函数()f x 在(]1,4上单调递增;当12a <<时,函数在(]1,a ,(]2,4上单调递增,在(],2a 上单调递减; 当01a ≤≤时,函数在(]1,2上单调递减,在(]2,4上单调递增;∴02a ≤<.………………………………………………………………………6分(III )解:22245,,()4||43,,x x a x a f x x x a a x x a x a ⎧-+≥⎪=--+=⎨+-<⎪⎩记()2145f x x x a =-+,()2243f x x x a =+-.当()1254t f a ≥=-时,方程245x x a t -+=的根别离为1222αα==当()2234t f a ≥-=--时,方程243x x a t +-=的根别离为1222ββ=-=-12x a x ≤<,∴54t a ≥-.(1)当02a ≤<时, ①当()2t f a a a >=+时,121222x x αβ+=+===≤.…7分②当254a t a a -≤≤+时,121122x x αβ+≤+==≤224a a =-++=. ……………………………………8分(2)当2a ≥时,12220x x +=+=<.…9分综上所述,12x x +的最大值为4. ………………………………………………10分。
浙江省台州市2016-2017学年高一(下)期末数学试卷一、选择题:每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.(3分)直线x﹣y=0的倾斜角为()A.1 B.C.﹣1 D.2.(3分)若a,b,c为实数,且a>b,则下列不等式一定成立的是()A.ac>bc B.a﹣b>b﹣c C.a+c>b+c D.a+c>b3.(3分)sin15°+cos15°=()A.B.C.D.4.(3分)若关于x的不等式x2+mx<0的解集为{x|0<x<2},则实数m的值为()A.﹣2 B.﹣1 C.0 D.25.(3分)已知数列{a n}的各项均为正数,且满足a1=1,﹣=1(n≥2,n∈N*),则a1024=()A.B.C.D.6.(3分)已知点(x,y)满足不等式组,则z=x﹣y的取值范围是()A.[﹣2,﹣1] B.[﹣2,1] C.[﹣1,2] D.[1,2]7.(3分)在△ABC中,三个内角A,B,C依次成等差数列,若sin2B=sin A sin C,则△ABC 形状是()A.锐角三角形B.等边三角形C.直角三角形D.等腰直角三角形8.(3分)已知数列{a n}为等比数列,其前n项和为S n,若a6=8a3,则的值为()A.18 B.9 C.8 D.49.(3分)若不等式|x+1|+|﹣1|≤a有解,则实数a的取值范围是()A.a≥2B.a<2 C.a≥1D.a<110.(3分)在△ABC中,AB=2,AC=BC,则当△ABC面积最大值时其周长为()A.2+2 B.+3 C.2+4 D.+4二、填空题:单空题每小题4分,多空题每小题4分,共20分.11.(4分)已知α,β为锐角,若sinα=,cosβ=,则sin2α=,cos(α+β)=.12.(4分)已知直线l1:x+2y﹣4=0,l2:2x+my﹣m=0(m∈R),且l1与l2平行,则m=,l1与l2之间的距离为.13.(3分)如图,在直角梯形ABCD中,AB∥CD,E为下底CD上的一点,若AB=CE=2,DE=3,AD=5,则tan∠EBC=.14.(3分)在数列{a n}中,已知a1=2,a n a n﹣1=2a n﹣1(a≥2,n∈N*),记数列{a n}的前n项之积为T n,若T n=2017,则n的值为.15.(3分)已知矩形ABCD(AB>AD)的周长为12,若将它关于对角线AC折起后,使边AB与CD交于点P(如图所示),则△ADP面积的最大值为.16.(3分)已知x,y为正实数,且满足(xy﹣1)2=(3y+2)(y﹣2),则x+的最大值为.三、解答题:共50分.解答应写出文字说明,证明过程或演算步骤.17.(8分)在△ABC中,已知M为线段AB的中点,顶点A,B的坐标分别为(4,﹣1),(2,5).(Ⅰ)求线段AB的垂直平分线方程;(Ⅱ)若顶点C的坐标为(6,2),求△ABC重心的坐标.18.(10分)在△ABC中,内角A,B,C的对边分别为a,b,c,已知sin A=2sin B,c=b.(Ⅰ)求sin A的值;(Ⅱ)若△ABC的面积为3,求b的值.19.(10分)已知函数f(x)=|2x﹣3|+ax﹣6(a是常数,a∈R).(Ⅰ)当a=1时,求不等式f(x)≥0的解集;(Ⅱ)当x∈[﹣1,1]时,不等式f(x)<0恒成立,求实数a的取值范围.20.(10分)已知函数f(x)=4sin x cos(x+)+m(x∈R,m为常数),其最大值为2.(Ⅰ)求实数m的值;(Ⅱ)若f(α)=﹣(﹣<α<0),求cos2α的值.21.(12分)已知数列{a n}的前n项和为S n,且满足a1=3,S n+1=3(S n+1)(n∈N*).(Ⅰ)求数列{a n}的通项公式;(Ⅱ)在数列{b n}中,b1=9,b n+1﹣b n=2(a n+1﹣a n)(n∈N*),若不等式λb n>a n+36(n﹣4)+3λ对一切n∈N*恒成立,求实数λ的取值范围;(Ⅲ)令T n=+++…+(n∈N*),证明:对于任意的n∈N*,T n<.【参考答案】一、选择题:每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.B【解析】根据题意,设直线x﹣y=0的倾斜角为θ,(0≤θ<π)直线的方程为x﹣y=0,即y=x,该直线的斜率k=1,则有tanθ=1,且0≤θ<π,故θ=;故选B.2.C【解析】对于A,c=0时,不成立,对于B,令a=1,b=0,c=﹣5,显然不成立,对于C,根据不等式出性质,成立,对于D,若c<0,不一定成立,故选C.3.A【解析】sin15°+cos15°=(sin15°+cos15°)=sin(15°+45°)=sin60°=,故选A.4.A【解析】关于x的不等式x2+mx<0的解集为{x|0<x<2},∴不等式x2+mx=0的实数根为0和2,由根与系数的关系得m=﹣(0+2)=﹣2.故选A.5.D【解析】∵数列{a n}的各项均为正数,且满足a1=1,﹣=1(n≥2,n∈N*),∴数列是等差数列,公差为1,首项为1.∴=1+(n﹣1)=n,解得a n=.则a1024==.故选D.6.C【解析】作作出不等式组对应的平面区域如图:由z=x﹣y,得y=x﹣z表示,斜率为1纵截距为﹣z的一组平行直线,平移直线y=x﹣z,当直线y=x﹣z经过点C(2,0)时,直线y=x﹣z的截距最小,此时z最大,当直线经过点A(0,1)时,此时直线y=x﹣z截距最大,z最小.此时z max=2.z min=0﹣1=﹣1.∴﹣1≤z≤2,故选C.7.B【解析】∵在△ABC中,sin2B=sin A sin C,∴由正弦定理可得b2=ac,又∵A+B+C=180°,且角A、B、C依次成等差数列,∴A+C=180°﹣B=2B,解得B=60°.根据余弦定理得:cos B==,即,化简得(a﹣c)2=0,可得a=c.结合b2=ac,得a=b=c,∴△ABC是等边三角形.故选B.【解析】设等比数列{a n}的公比为q,∵a6=8a3,∴q3=8,解得q=2.则==23+1=9.故选B.9.A【解析】令f(x)=|x+1|+|﹣1|,①x≥1时,f(x)=x+2﹣,f′(x)=1+>0,f(x)在[1,+∞)递增,故f(x)min=f(1)=2,②0<x<1时,f(x)=x+,f′(x)=<0,故f(x)在(0,1)递减,f(x)>f(1)=2,③﹣1<x<0时,f(x)=x+2﹣,f′(x)=1+>0,f(x)在(﹣1,0)递增,f(x)>f(﹣1)=2,④x≤﹣1时,f(x)=﹣x﹣,f′(x)=﹣1+<0,f(x)在(﹣∞,﹣1]递减,f(x)>f(﹣1)=2,综上,f(x)的最小值是2,若不等式|x+1|+|﹣1|≤a有解,即a≥f(x)min,故a≥2,故选A.【解析】以AB中点为原点,AB垂直平分线为y轴建立直角坐标系,如图,A(1,0),B(﹣1,0),设C(x,y),∵AC=BC,∴=,整理,得(x+2)2+y2=3,∴C在以D(﹣2,0)为圆心,以为半径的圆上,∴当△ABC面积取最大值时,C到x轴即AB线段取最大距离为,∴C(﹣2,),∴BC=2,AC=2,∴当△ABC面积最大值时其周长为:2+2+2=2.故选C.二、填空题:单空题每小题4分,多空题每小题4分,共20分.11.﹣【解析】∵已知α,β为锐角,若sinα=,cosβ=,∴则cosα==,sinβ==,∴sin2α=2sinαcosα=2•=,cos(α+β)=cosα•cosβ﹣sinαsinβ=﹣=﹣,故答案为:;﹣.12.4;【解析】直线l1:x+2y﹣4=0,l2:2x+my﹣m=0(m∈R),且l1与l2平行,当m=0,两直线显然不平行;可得=≠,解得m=4,即有直线l1:x+2y﹣4=0,l2:2x+4y﹣4=0,即x+2y﹣2=0,可得l1与l2之间的距离d==.故答案为:4,.13.【解析】如图,过B作BF⊥DC,垂足为F,则EF=DE﹣DF=DE﹣AB=1.∴CF=CE+EF=3.∴tan∠CBF=,tan∠EBF=.则tan∠EBC=tan(∠CBF﹣∠EBF)==.故答案为:.14.2016【解析】由a n a n﹣1=2a n﹣1(a≥2,n∈N*),得,∵a1=2,∴,…,.数列{a n}的前n项之积为T n==n+1,∴当T n=2017时,则n的值为2016,故答案为:2016.15.27﹣18【解析】∵设AB=x,则AD=6﹣x,又DP=PB′,AP=AB′﹣PB′=AB﹣DP,即AP=x﹣DP,∴(6﹣x)2+PD2=(x﹣PD)2,得PD=6﹣,∵AB>AD,∴3<x<6,∴△ADP的面积S=AD•DP=(6﹣x)(6﹣)=27﹣3(x+)≤27﹣3×2=27﹣18,当且仅当x=3时取等号,∴△ADP面积的最大值为27﹣18,故答案为:27﹣1816.2﹣1【解析】∵(xy﹣1)2=(3y+2)(y﹣2)=3y2﹣4y﹣4,∴(xy﹣1)2+(y2+4y+4)=4y2,∴(xy﹣1)2+(y+2)2=4y2,∴4=(x﹣)2+(1+)2≥(x﹣+1+)2,当且仅当x﹣=1+时取等号,∴(x++1)2≤8∴x++1≤2,∴x+≤2﹣1,故答案为:2﹣1三、解答题:共50分.解答应写出文字说明,证明过程或演算步骤.17.解:(Ⅰ)∵AB的中点是M(3,2),直线AB的斜率是﹣3,线段AB中垂线的斜率是,故线段AB的垂直平分线方程是y﹣2=(x﹣3),即x﹣3y+3=0;(Ⅱ)设△ABC的重心为G(x,y),由重心坐标公式可得,故重心坐标是G(4,2).18.解:(Ⅰ)∵在△ABC中,内角A,B,C的对边分别为a,b,c,sin A=2sin B,c=b.∴a=2b,∴cos A====﹣,∴sin A==.(Ⅱ)∵S=,即=3,解得bc=24,又c=,∴,解得b=4.19.解:(Ⅰ)a=1时,f(x)=|2x﹣3|+x﹣6=,故原不等式等价于或,解得:x≥3或x≤﹣3,故原不等式的解集是{x|x≥3或x≤﹣3};(Ⅱ)x∈[﹣1,1]时,不等式f(x)<0恒成立,即3﹣2x+ax﹣6<0恒成立,即(a﹣2)x﹣3<0,x∈[﹣1,1],由,解得:﹣1<a<5,故a的范围是(﹣1,5).20.解:(Ⅰ)函数f(x)=4sin x cos(x+)+m(x∈R,m为常数),化简可得:f(x)=4sin x cos x cos﹣4sin2x sin+m=sin2x﹣2sin2x+m=sin2x+cos2x﹣+m=2sin(2x+)﹣+m∵最大值为2.即2﹣+m=2,可得m=.(Ⅱ)由f(α)=﹣(﹣<α<0),即2sin(2α+)=.∴sin(2α+)=∵﹣<α<0∴<2α+<.∴cos(2α+)=;那么cos2α=cos[(2α)]=cos(2α+)cos+sin(2α+)sin=.21.(Ⅰ)解:∵S n+1=3(S n+1)(n∈N*).当n≥2时,S n=3(S n﹣1+1)(n∈N*).两式相减得a n+1=3a n∴数列{a n}是首项为3,公比为3的等比数列,当n≥2时,.当n=1时,a1=3也符合,∴.(Ⅱ)解:将,代入b n+1﹣b n=2(a n+1﹣a n)(n∈N*),得,∴b n=(b n﹣b n﹣1)+(b n﹣1﹣b n)+…+(b2﹣b1)+b1=4(3n﹣1+3n﹣2+…+3)+9+9=2•3n+3,(n∈N+)∴不等式λb n>a n+36(n﹣4)+3λ对一切n∈N*恒成立⇔λ>令f(n)=+,则f(n+1)=,∴当n≤4时,f(n)单调递增,当n≥5时,f(n)单调递减,故a1<a2<a3<a4<a5>a6>a7…∴,故∴实数λ的取值范围为(,+∞).(Ⅲ)证明:当n=1时,T1=当n≥2时,(2n﹣1)a n﹣1=(2n﹣1)•3n>2•3n∴∴==故对于任意的n∈N*,T n<.。
2016-2017学年浙江省台州市高一(上)期末数学试卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5.00分)已知全集U={1,2,3,4,5},A={1,3},B={2,4},则∁U(A∪B)=()A.5 B.{5}C.∅D.{1,2,3,4}2.(5.00分)已知平面向量=(1,2),=(x,﹣2),若与共线,则x的值为()A.﹣4 B.4 C.﹣1 D.13.(5.00分)的值为()A.B.C.D.4.(5.00分)已知函数f(x)=|x﹣1|﹣1(x∈{0,1,2,3}),则其值域为()A.{0,1,2,3}B.{﹣1,0,1}C.{y|﹣1≤y≤1}D.{y|0≤y≤2} 5.(5.00分)若,,,则a,b,c的大小关系是()A.c>b>a B.c>a>b C.a>b>c D.b>a>c6.(5.00分)若x0是函数f(x)=﹣x3﹣3x+5的零点,则x0所在的一个区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)7.(5.00分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则()A.ω=2,B.,C.ω=2,D.,8.(5.00分)已知函数f(x)=log a(x﹣+1)+2(a>0,a≠1)的图象经过定点P,且点P在幂函数g(x)的图象上,则g(x)的表达式为()A.g(x)=x2B. C.g(x)=x3D.9.(5.00分)已知函数f(x)=x2﹣2x在区间[﹣1,t]上的最大值为3,则实数t 的取值范围是()A.(1,3]B.[1,3]C.[﹣1,3]D.(﹣1,3]10.(5.00分)若存在实数α∈R,,使得实数t同时满足,α≤t≤α﹣2cosβ,则t的取值范围是()A.B. C. D.[2,4]二、填空题:本大题共6小题,单空题每小题3分,多空题每小题3分,共20分.11.(3.00分)集合{1,2}的子集个数为.12.(3.00分)已知函数f(x)=的值为.13.(3.00分)已知函数f(x)=2cos(2x+),函数g(x)的图象由函数f(x)的图象向右平移个单位而得到,则当x∈[﹣,]时,g(x)的单调递增区间是.14.(3.00分)已知定义在R上的偶函数f(x)在[0,+∞)上是减函数,且f(2)=0,若f(lnx)>0,则x的取值范围是.15.(4.00分)已知函数y=sinx(x∈[m,n]),值域为,则n﹣m的最大值为,最小值为.16.(4.00分)在等腰△ABC中,AD是底边BC上的中线,若•=m,AD=λBC,则当m=2时,实数λ的值是,当λ∈(,)时,实数m 的取值范围为.三、解答题:本大题共5小题,共50分.解答应写出文字说明,证明过程或演算步骤.17.(8.00分)已知函数.(Ⅰ)判断f(x)的奇偶性,并加以证明;(Ⅱ)求方程的实数解.18.(10.00分)已知=(cosα,sinα),=(cosβ,sinβ),<α<β<.(Ⅰ)若,求;(Ⅱ)设=(1,0),若,求α,β的值.19.(10.00分)已知集合A={x|x2﹣2x﹣3<0},B={x|2a﹣1<x<a+1},a∈R.(Ⅰ)若B⊆A,求实数a的取值范围;(Ⅱ)设函数,若实数x0满足f(x0)∈A,求实数x0取值的集合.20.(10.00分)已知A为锐角△ABC的内角,且sinA﹣2cosA=a(a∈R).(Ⅰ)若a=﹣1,求tanA的值;(Ⅱ)若a<0,且函数f(x)=(sinA)•x2﹣(2cosA)•x+1在区间[1,2]上是增函数,求sin2A﹣sinA•cosA的取值范围.21.(12.00分)已知函数f(x)=|x2﹣2x﹣3|,g(x)=x+a.(Ⅰ)求函数y=f(x)的单调递增区间;(只需写出结论即可)(Ⅱ)设函数h(x)=f(x)﹣g(x),若h(x)在区间(﹣1,3)上有两个不同的零点,求实数a的取值范围;(Ⅲ)若存在实数m∈[2,5],使得对于任意的x1∈[0,2],x2∈[﹣2,﹣1],都有f(x1)﹣m≥g(2)﹣5成立,求实数a的最大值.2016-2017学年浙江省台州市高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5.00分)已知全集U={1,2,3,4,5},A={1,3},B={2,4},则∁U(A∪B)=()A.5 B.{5}C.∅D.{1,2,3,4}【解答】解:全集U={1,2,3,4,5},A={1,3},B={2,4},∴A∪B={1,2,3,4};∴∁U(A∪B)={5}.故选:B.2.(5.00分)已知平面向量=(1,2),=(x,﹣2),若与共线,则x的值为()A.﹣4 B.4 C.﹣1 D.1【解答】解:平面向量=(1,2),=(x,﹣2),若与共线,则2x﹣1×(﹣2)=0,解得x=﹣1.故选:C.3.(5.00分)的值为()A.B.C.D.【解答】解:sin=sin(4)=sin(﹣)=﹣sin=.故选:A.4.(5.00分)已知函数f(x)=|x﹣1|﹣1(x∈{0,1,2,3}),则其值域为()A.{0,1,2,3}B.{﹣1,0,1}C.{y|﹣1≤y≤1}D.{y|0≤y≤2}【解答】解:∵函数f(x)=|x﹣1|﹣1(x∈{0,1,2,3}),∴f(x)分别是0、﹣1、0、1,则函数f(x)的值域是{﹣1,0,1},故选:B.5.(5.00分)若,,,则a,b,c的大小关系是()A.c>b>a B.c>a>b C.a>b>c D.b>a>c【解答】解:∵0<<,<0,∴b>a>c.故选:D.6.(5.00分)若x0是函数f(x)=﹣x3﹣3x+5的零点,则x0所在的一个区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)【解答】解:函数f(x)=﹣x3﹣3x+5是连续函数,因为f(1)=1>0,f(2)=﹣8﹣6+5<0,可知f(1)f(2)<0,由零点判定定理可知,函数的零点x0所在的一个区间是(1,2).故选:B.7.(5.00分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则()A.ω=2,B.,C.ω=2,D.,【解答】解:函数的周期T=﹣=π,即=π,则ω=2,当x=时,f()=sin(2×+φ)=,即sin(+φ)=,∵|φ|<,∴﹣<φ<,则﹣<+φ<,可得:+φ=,解得:φ=,故选:A.8.(5.00分)已知函数f(x)=log a(x﹣+1)+2(a>0,a≠1)的图象经过定点P,且点P在幂函数g(x)的图象上,则g(x)的表达式为()A.g(x)=x2B. C.g(x)=x3D.【解答】解:函数y=log a(x﹣+1)+2(a>0,a≠1)的图象过定点P(,2),∵点P在幂函数f(x)的图象上,设g(x)=x n,则2=n,∴n=3,g(x)=x3,故选:C.9.(5.00分)已知函数f(x)=x2﹣2x在区间[﹣1,t]上的最大值为3,则实数t 的取值范围是()A.(1,3]B.[1,3]C.[﹣1,3]D.(﹣1,3]【解答】解:函数f(x)=x2﹣2x的对称轴为:x=1,开口向上,而且f(﹣1)=3,函数f(x)=x2﹣2x在区间[﹣1,t]上的最大值为3,又f(3)=9﹣6=3,则实数t的取值范围是:(﹣1,3].故选:D.10.(5.00分)若存在实数α∈R,,使得实数t同时满足,α≤t≤α﹣2cosβ,则t的取值范围是()A.B. C. D.[2,4]【解答】解:∵β∈[,π],∴﹣1≤cosβ≤0;∵α≤t,∴≥cos2β+cosβ,即t≥;令f(t)=,则f′(t)==;令f′(t)=0,解得sinβ=0或cosβ=0;当sinβ=0时,cosβ=﹣1,此时f(t)==,当cosβ=0时,f(t)=0为最小值;又t≤α﹣2cosβ,∴α≥t+2cosβ,∴t≤cos2β+•cosβ,即t≤;令g(t)==2f(t),则g′(t)=2f′(t)=2•;令g′(t)=0,解得sinβ=0或cosβ=0;当sinβ=0时,cosβ=﹣1,此时g(t)=2×=为最大值,当cosβ=0时,g(t)=0;综上,实数t的取值范围是[0,].故选:B.二、填空题:本大题共6小题,单空题每小题3分,多空题每小题3分,共20分.11.(3.00分)集合{1,2}的子集个数为4.【解答】解:{1,2}的子集为:∅,{1},{2},{1,2},共四个.故答案为:4.12.(3.00分)已知函数f(x)=的值为.【解答】解:∵>0∴f()=log3=﹣2∵﹣2<0∴f(﹣2)=2﹣2=故答案为.13.(3.00分)已知函数f(x)=2cos(2x+),函数g(x)的图象由函数f(x)的图象向右平移个单位而得到,则当x∈[﹣,]时,g(x)的单调递增区间是[﹣,] .【解答】解:把函数f(x)=2cos(2x+)的图象向右平移个单位,得到g(x)=2cos[2(x﹣)+]=2cos(2x﹣)的图象,令2kπ﹣π≤2x﹣≤2kπ,求得kπ﹣≤x≤kπ+,可得函数g(x)的增区间为[kπ﹣,kπ+],k∈Z.结合x∈[﹣,]时,可得g(x)的增区间为[﹣,],故答案为:[﹣,].14.(3.00分)已知定义在R上的偶函数f(x)在[0,+∞)上是减函数,且f(2)=0,若f(lnx)>0,则x的取值范围是.【解答】解:∵f(2)=0,f(lnx)>0,∴f(lnx)>f(2),∵定义在R上的偶函数f(x)在[0,+∞)上是减函数,∴f(lnx)>f(2)等价于|lnx|<2,则﹣2<lnx<2,即lne﹣2<lnx<lne2,解得,∴不等式的解集是,故答案为:.15.(4.00分)已知函数y=sinx(x∈[m,n]),值域为,则n﹣m的最大值为,最小值为.【解答】解:∵函数y=sinx的定义域为[m,n],值域为,结合正弦函数y=sinx的图象与性质,不妨取m=﹣,n=,此时n﹣m取得最大值为.取m=﹣,n=,n﹣m取得最小值为,故答案为,.16.(4.00分)在等腰△ABC中,AD是底边BC上的中线,若•=m,AD=λBC,则当m=2时,实数λ的值是±,当λ∈(,)时,实数m的取值范围为(,2).【解答】解:以D为原点,以BC边所在的直线为x轴,以中线AD所在的直线为y轴建立直角坐标系,不妨设B(a,0),C(﹣a,0),a>0∵AD=λBC=2λa∴A(0,2λa),∴=(a,﹣2λa),=(0,﹣2λa),=(﹣a,﹣2λa),∴•=4λ2a2,=﹣a2+4λ2a2,∵•=m,∴4λ2a2=﹣ma2+4mλ2a2,即m=(4m﹣4)λ2,当m=2时,λ2=,解得λ=±,∵AD=λBC∴λ=,由m=(4m﹣4)λ2,得m==1+∵m=1+在(,)上递减,∴m∈(,2)故答案为:.,(,2)三、解答题:本大题共5小题,共50分.解答应写出文字说明,证明过程或演算步骤.17.(8.00分)已知函数.(Ⅰ)判断f(x)的奇偶性,并加以证明;(Ⅱ)求方程的实数解.【解答】解:(Ⅰ)因为函数f(x)的定义域为R,且,所以f(x)是定义在R上的奇函数;…(4分)(Ⅱ)∵,∴2x=3,x=log23.所以方程的实数解为x=log23.…(8分)18.(10.00分)已知=(cosα,sinα),=(cosβ,sinβ),<α<β<.(Ⅰ)若,求;(Ⅱ)设=(1,0),若,求α,β的值.【解答】解:(Ⅰ)∵;∴;∴;∴,;(Ⅱ)∵;∴,即;解得,;∵;∴,.19.(10.00分)已知集合A={x|x2﹣2x﹣3<0},B={x|2a﹣1<x<a+1},a∈R.(Ⅰ)若B⊆A,求实数a的取值范围;(Ⅱ)设函数,若实数x0满足f(x0)∈A,求实数x0取值的集合.【解答】解:(Ⅰ)A={x|﹣1<x<3},若B=∅,则2a﹣1≥a+1,解得a≥2,满足B⊆A,若B≠∅,则a<2,要使B⊆A,只要解得0≤a<2,综上,实数a的取值范围是[0,+∞);…(5分)(Ⅱ)由题意,,即,∴,或,k∈Z,∴,或,k∈Z.则实数x0取值的集合是,或,k∈Z}.…(10分)20.(10.00分)已知A为锐角△ABC的内角,且sinA﹣2cosA=a(a∈R).(Ⅰ)若a=﹣1,求tanA的值;(Ⅱ)若a<0,且函数f(x)=(sinA)•x2﹣(2cosA)•x+1在区间[1,2]上是增函数,求sin2A﹣sinA•cosA的取值范围.【解答】解:(Ⅰ)锐角△ABC中,a=﹣1,由题意可得,求得,或(舍去),∴.(Ⅱ)若a<0,由题意可得sinA﹣2cosA<0,得tanA<2,又,tanA≥1,∴1≤tanA<2,∴=,令t=tanA+1,2≤t<3,∴,∵y=在[2,3)上递增,∴,∴.即sin2A﹣sinA•cosA的取值范围为.21.(12.00分)已知函数f(x)=|x2﹣2x﹣3|,g(x)=x+a.(Ⅰ)求函数y=f(x)的单调递增区间;(只需写出结论即可)(Ⅱ)设函数h(x)=f(x)﹣g(x),若h(x)在区间(﹣1,3)上有两个不同的零点,求实数a的取值范围;(Ⅲ)若存在实数m∈[2,5],使得对于任意的x1∈[0,2],x2∈[﹣2,﹣1],都有f(x1)﹣m≥g(2)﹣5成立,求实数a的最大值.【解答】解:(Ⅰ)函数y=f(x)的单调递增区间为[﹣1,1],[3,+∞);(不要求写出具体过程)…(3分)(Ⅱ)∵﹣1<x<3,∴h(x)=f(x)﹣g(x)=|x2﹣2x﹣3|﹣x﹣a=﹣x2+x+3﹣a,由题意知,即得;…(7分)(Ⅲ)设函数F(x)=f(x)﹣m,G(x)=g(2x)﹣5,由题意,F(x)在[0,2]上的最小值不小于G(x)在[﹣2,﹣1]上的最大值,F(x)=|x2﹣2x﹣3|﹣m=﹣x2+2x+3﹣m=﹣(x﹣1)2+4﹣m(0≤x≤2),当x=0,或x=2时,F(x)min=3﹣m,G(x)=g(2x)﹣5=2x+a﹣5在区间[﹣2,﹣1]单调递增,当x=﹣1时,,∴存在m∈[2,5],使得成立,即,∴.∴a的最大值为.…(12分)。