人教版九年级数学24.2习题解答
- 格式:doc
- 大小:164.00 KB
- 文档页数:1
点、直线、圆与圆的位置关系_知识点+例题+练习1.点和圆的位置关系2.(1)点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:3.①点P在圆外⇔d>r4.②点P在圆上⇔d=r5.①点P在圆内⇔d<r6.(2)点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.7.(3)符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.2.确定圆的条件不在同一直线上的三点确定一个圆.注意:这里的“三个点”不是任意的三点,而是不在同一条直线上的三个点,而在同一直线上的三个点不能画一个圆.“确定”一词应理解为“有且只有”,即过不在同一条直线上的三个点有且只有一个圆,过一点可画无数个圆,过两点也能画无数个圆,过不在同一条直线上的三点能画且只能画一个圆.3.三角形的外接圆与外心(1)外接圆:经过三角形的三个顶点的圆,叫做三角形的外接圆.(2)(2)外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.(3)(3)概念说明:(4)①“接”是说明三角形的顶点在圆上,或者经过三角形的三个顶点.(5)②锐角三角形的外心在三角形的内部;直角三角形的外心为直角三角形斜边的中点;钝角三角形的外心在三角形的外部.(6)③找一个三角形的外心,就是找一个三角形的两条边的垂直平分线的交点,三角形的外接圆只有一个,而一个圆的内接三角形却有无数个.4.反证法(了解)(1)对于一个命题,当使用直接证法比较困难时,可以采用间接证法,反证法就是一个间接证法.反证法主要适合的证明类型有:①命题的结论是否定型的.②命题的结论是无限型的.③命题的结论是“至多”或“至少”型的.(2)(2)反证法的一般步骤是:(3)①假设命题的结论不成立;(4)②从这个假设出发,经过推理论证,得出矛盾;(5)③由矛盾判定假设不正确,从而肯定原命题的结论正确.5.直线和圆的位置关系(1)直线和圆的三种位置关系:①相离:一条直线和圆没有公共点.②相切:一条直线和圆只有一个公共点,叫做这条直线和圆相切,这条直线叫圆的切线,唯一的公共点叫切点.③相交:一条直线和圆有两个公共点,此时叫做这条直线和圆相交,这条直线叫圆的割线.(2)判断直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r③直线l和⊙O相离⇔d>r.6.切线的性质(1)切线的性质(2)①圆的切线垂直于经过切点的半径.(3)②经过圆心且垂直于切线的直线必经过切点.(4)③经过切点且垂直于切线的直线必经过圆心.(5)(2)切线的性质可总结如下:(6)如果一条直线符合下列三个条件中的任意两个,那么它一定满足第三个条件,这三个条件是:①直线过圆心;②直线过切点;③直线与圆的切线垂直.(7)(3)切线性质的运用(8)由定理可知,若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.7.切线的判定8.(1)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.9.(2)在应用判定定理时注意:10.①切线必须满足两个条件:a、经过半径的外端;b、垂直于这条半径,否则就不是圆的切线.11.②切线的判定定理实际上是从”圆心到直线的距离等于半径时,直线和圆相切“这个结论直接得出来的.12.③在判定一条直线为圆的切线时,当已知条件中未明确指出直线和圆是否有公共点时,常过圆心作该直线的垂线段,证明该线段的长等于半径,可简单的说成“无交点,作垂线段,证半径”;当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线,可简单地说成“有交点,作半径,证垂直”.8.切线的判定与性质(1)切线的性质①圆的切线垂直于经过切点的半径.②经过圆心且垂直于切线的直线必经过切点.③经过切点且垂直于切线的直线必经过圆心.(2)切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.(3)常见的辅助线的:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.9.切线长定理(1)圆的切线定义:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.(2)(2)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.(3)(3)注意:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.(4)(4)切线长定理包含着一些隐含结论:(5)①垂直关系三处;(6)②全等关系三对;(7)③弧相等关系两对,在一些证明求解问题中经常用到.10.三角形的内切圆与内心(1)内切圆的有关概念:与三角形各边都相切的圆叫三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.三角形的内心就是三角形三个内角角平分线的交点.(2)任何一个三角形有且仅有一个内切圆,而任一个圆都有无数个外切三角形.(3)三角形内心的性质:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.11.圆与圆的五种位置关系(1)圆与圆的五种位置关系:①外离;②外切;③相交;④内切;⑤内含.如果两个圆没有公共点,叫两圆相离.当每个圆上的点在另一个圆的外部时,叫两个圆外离,当一个圆上的点都在另一圆的内部时,叫两个圆内含,两圆同心是内含的一个特例;如果两个圆有一个公共点,叫两个圆相切,相切分为内切、外切两种;如果两个圆有两个公共点叫两个圆相交.(2)圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).12.相切两圆的性质相切两圆的性质:如果两圆相切,那么连心线必经过切点.这说明两圆的圆心和切点三点共线,为证明带来了很大方便.13.相交两圆的性质(1)相交两圆的性质:(2)相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦.(3)注意:在习题中常常通过公共弦在两圆之间建立联系.(4)(2)两圆的公切线性质:(5)两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等.(6)两个圆如果有两条(内)公切线,则它们的交点一定在连心线上.4. 判断圆的切线的方法及应用判断圆的切线的方法有三种:(1)与圆有惟一公共点的直线是圆的切线;(2)若圆心到一条直线的距离等于圆的半径,则该直线是圆的切线;(3)经过半径外端,并且垂直于这条半径的直线是圆的切线.【例4】如图,⊙O的直径AB=4,∠ABC=30°,BC=34,D是线段BC的中点.(1)试判断点D与⊙O的位置关系,并说明理由.(2)过点D作DE⊥AC,垂足为点E,求证:直线DE是⊙O的切线.【例5】如图,已知O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F,求证CD与⊙O相切.【例6】如图,半圆O为△ABC的外接半圆,AC为直径,D为劣弧上一动点,P在CB 的延长线上,且有∠BAP=∠BDA.求证:AP 是半圆O 的切线.【知识梳理】1. 直线与圆的位置关系:2. 切线的定义和性质:3.三角形与圆的特殊位置关系:4. 圆与圆的位置关系:(两圆圆心距为d ,半径分别为21,r r )相交⇔2121r r d r r +<<-; 外切⇔21r r d +=;内切⇔21r r d -=; 外离⇔21r r d +>; 内含⇔210r r d -<<【注意点】与圆的切线长有关的计算.【例题精讲】例1.⊙O 的半径是6,点O 到直线a 的距离为5,则直线a 与⊙O 的位置关系为( )A .相离B .相切C .相交D .内含例 2. 如图1,⊙O 内切于ABC △,切点分别为D E F ,,.50B ∠=°,60C ∠=°,连结OE OF DE DF ,,,,则EDF ∠等于( )A .40°B .55°C .65°D .70°例3. 如图,已知直线L 和直线L 外两定点A 、B ,且A 、B 到直线L 的距离相等,则经过A 、B 两点且圆心在L 上的圆有( )A .0个B .1个C .无数个D .0个或1个或无数个例4.已知⊙O 1半径为3cm ,⊙O 2半径为4cm ,并且⊙O 1与⊙O 2相切,则这两个圆的圆心距为( ) A.1cm B.7cm C.10cm D. 1cm 或7cm例5.两圆内切,圆心距为3,一个圆的半径为5,另一个圆的半径为 例6.两圆半径R=5,r=3,则当两圆的圆心距d 满足___ ___•时,•两圆相交;•当d•满足___ ___时,两圆不外离.例7.⊙O 半径为6.5cm ,点P 为直线L 上一点,且OP=6.5cm ,则直线与⊙O•的位置关系是____例8.如图,PA 、PB 分别与⊙O 相切于点A 、B ,⊙O 的切线EF 分别交PA 、PB 于点E 、F ,切点C 在弧AB 上,若PA 长为2,则△PEF 的周长是 _.例9. 如图,⊙M 与x 轴相交于点(20)A ,,(80)B ,,与y 轴切于点C ,则圆心M 的坐标是例10. 如图,四边形ABCD 内接于⊙A ,AC 为⊙O 的直径,弦DB ⊥AC ,垂足为M ,过点D 作⊙O 的切线交BA 的延长线于点E ,若AC=10,tan ∠DAE=43,求DB 的长.【当堂检测】1.如果两圆半径分别为3和4,圆心距为7,那么两圆位置关系是( )A .相离B .外切C .内切D .相交2.⊙A 和⊙B 相切,半径分别为8cm 和2cm ,则圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案均不对3.如图,P 是⊙O 的直径CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于( )A. 15B. 30C. 45D. 60O O2O14. 如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于( ) A )6 (B )25 (C )210 (D )2145.如图,在10×6的网格图中(每个小正方形的边长均为1个单位长).⊙A 半径为2,⊙B 半径为1,需使⊙A 与静止的⊙B 相切,那么⊙A 由图示的位置向左平移 个单位长.6. 如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于( )A. 45B. 54C. 43D. 657.⊙O 的半径为6,⊙O 的一条弦AB 长63,以3为半径⊙O 的同心圆与直线AB 的位置关系是( )A.相离B.相交C.相切D.不能确定8.如图,在ABC △中,12023AB AC A BC =∠==,°,,A ⊙与BC 相切于点D ,且交AB AC 、于M N 、两点,则图中阴影部分的面积是 (保留π).9.如图,B 是线段AC 上的一点,且AB :AC=2:5,分别以AB 、AC 为直径画圆,则小圆的面积与大圆的面积之比为_______.10. 如图,从一块直径为a+b 的圆形纸板上挖去直径分别为a 和b 的两个圆,则剩下的纸板面积是___.11. 如图,两等圆外切,并且都与一个大圆内切.若此三个圆的圆心围成的三角形的周长为18cm .则大圆的半径是______cm .12.如图,直线AB 切⊙O 于C 点,D 是⊙O 上一点,∠EDC=30º,弦EF ∥AB ,连结OC 交EF 于H 点,连结CF ,且CF=2,则HE 的长为_________.13. 如图,PA 、PB 是⊙O 的两条切线,切点分别为A 、B ,若直径AC=12cm ,∠P=60°.求弦AB 的长. 【中考连接】 一、选择题 1. 正三角形的内切圆半径为1,那么三角形的边长为( )A.2B.32C.3D.3 2.⊙O 是等边ABC △的外接圆,⊙O 的半径为2,则ABC △的边长为( )A .3B .5C .23D .253. 已知⊙O 的直径AB 与弦AC 的夹角为 30,过C 点的切线PC 与AB 延长线交于P 点.PC =5,则⊙O 的半径为 ( )A. 335 B. 635 C. 10 D. 54. AB 是⊙O 的直径,点P 在BA 的延长线上,PC 是⊙O 的切线,C 为切点,PC =26,PA =4,则⊙O 的半径等于( )A. 1B. 2C. 23D. 265.某同学制做了三个半径分别为1、2、3的圆,在某一平面内,让它们两两外O D C B ABPA OC 第3题图 第4题图 第5题图 第6题图 第8题图 第9题图 第11题图 第10题图 第12题图切,该同学把此时三个圆的圆心用线连接成三角形.你认为该三角形的形状为( )A.钝角三角形B.等边三角形C.直角三角形D.等腰三角形6.关于下列四种说法中,你认为正确的有( )①圆心距小于两圆半径之和的两圆必相交 ②两个同心圆的圆心距为零③没有公共点的两圆必外离 ④两圆连心线的长必大于两圆半径之差A.1个B.2个C.3个D.4个二、填空题 6. 如图,AB 、AC 是⊙O 的两条切线,切点分别为B 、C ,D 是优弧BC 上的一点,已知∠BAC =80°,那么∠BDC =__________度.7. 如图,AB 是⊙O 的直径,四边形ABCD 内接于⊙O ,,,的度数比为3∶2∶4,MN 是⊙O 的切线,C 是切点,则∠BCM 的度数为________.8.如图,在△ABC 中,5cm AB AC ==,cos B 35=.如果⊙O 的半径为10cm ,且经过点B 、C ,那么线段AO = cm .9.两个等圆⊙O 与⊙O ′外切,过点O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB = .10.如图6,直线AB 与⊙O 相切于点B ,BC 是⊙O 的直径,AC 交⊙O 于点D ,连结BD ,则图中直角三角形有 个.11.如图,60ACB ∠=°,半径为1cm 的O ⊙切BC 于点C ,若将O ⊙在CB 上向右滚动,则当滚动到O ⊙与CA 也相切时,圆心O 移动的水平距离是__________cm .12.如图, AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直于点D ,∠AOB =60°,B C=4cm ,则切线AB = cm.13.如图,⊙A 和⊙B 与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数1y x =图象上,则阴影部分面积等于 .14. Rt △ABC 中,9068C AC BC ∠===°,,.则△ABC的内切圆半径r =______.15.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.16.已知:⊙A 、⊙B 、⊙C 的半径分别为2、3、5,且两两相切,则AB 、BC 、CA 分别为 .17.⊙O 的圆心到直线l 的距离为d ,⊙O 的半径为r ,当d 、r 是关于x 的方程x 2-4x+m=0的两根,且直线l 与⊙O 相切时,则m 的值为_____.三、解答题18. 如图,AB 是⊙O 的弦,OA OC ⊥交AB 于点C ,过B 的直线交OC 的延长线于点E ,当BE CE =时,直线BE 与⊙O 有怎样的位置关系?请说明理由. 第3题图 第6题图 第7题图 第8题图 第10题图 第11题图 第12题图 第13题图19.如图1,在⊙O 中,AB 为⊙O 的直径,AC 是弦,4OC =,60OAC ∠=. (1)求∠AOC 的度数;(2)在图1中,P 为直径BA 延长线上的一点,当CP 与⊙O 相切时,求PO 的长;(3)如图2,一动点M 从A 点出发,在⊙O 上按A 照逆时针的方向运动,当MAO CAO S S =△△时,求动点M 所经过的弧长.第18题图。
专题24.2 垂径定理的应用【典例1】如图,有一座圆弧形拱桥,桥下水面宽度AB为12m,拱高CD为4m.(1)求拱桥的半径;(2)有一艘宽为5m的货船,船舱顶部为长方形,并高出水面3.4m,则此货船是否能顺利通过此圆弧形拱桥,并说明理由.(1)根据垂径定理和勾股定理求解;(2)连接ON,OB,根据勾股定理即可得到结论.解:(1)如图,连接ON,OB.∵OC⊥AB,∴D为AB中点,∵AB=12m,∴BD=12AB=6m.又∵CD=4m,设OB=OC=ON=r,则OD=(r﹣4)m.在Rt△BOD中,根据勾股定理得:r2=(r﹣4)2+62,解得r=6.5.∴拱桥的半径为6.5m.(2)∵CD=4m,船舱顶部为长方形并高出水面3.4m,∴CE=4﹣3.4=0.6(m),∴OE=r﹣CE=6.5﹣0.6=5.9(m),在Rt△OEN中,EN2=ON2﹣OE2=6.52﹣5.92=7.44,∴EN m).∴MN=2EN=2×≈5.4m>5m.∴此货船能顺利通过这座拱桥.1.(2022•南海区校级一模)如图,武汉晴川桥可以近似地看作半径为250m的圆弧,桥拱和路面之间用数根钢索垂直相连,其正下方的路面AB长度为300m,那么这些钢索中最长的一根为( )A.50m B.45m C.40m D.60m【思路点拨】设圆弧的圆心为O,过O作OC⊥AB于C,交AB于D,连接OA,先由垂径定理得AC=BC=12AB=150,再由勾股定理求出OC=200,然后求出CD的长即可.【解题过程】解:设圆弧的圆心为O,过O作OC⊥AB于C,交AB于D,连接OA,如图所示:则OA=OD=250,AC=BC=12AB=150,∴OC=200,∴CD=OD﹣OC=250﹣200=50(m),即这些钢索中最长的一根为50m ,故选:A .2.(2022•旌阳区二模)筒车是我国古代发明的一种水利灌溉工具,如图1,筒车盛水桶的运行轨道是以轴心O 为圆心的圆,如图2,已知圆心O 在水面上方,且⊙O 被水面截得弦AB 长为4米,⊙O 半径长为3米.若点C 为运行轨道的最低点,则点C 到弦AB 所在直线的距离是( )A .1米B .2米C .米D .(3+米【思路点拨】连接OC ,OC 交AB 于D ,由垂径定理得AD =BD =12AB =2(米),再由勾股定理得OD 后求出CD 的长即可.【解题过程】解:连接OC ,OC 交AB 于D ,由题意得:OA =OC =3米,OC ⊥AB ,∴AD =BD =12AB =2(米),∠ADO =90°,∴OD ==∴CD=OC﹣OD=(3即点C到弦AB所在直线的距离是(3故选:C.3.(2022•宣州区二模)如图所示的是一圆弧形拱门,其中路面AB=2m,拱高CD=3m,则该拱门的半径为( )A.53m B.2m C.83m D.3m【思路点拨】取圆心为O,连接OA,由垂径定理设⊙O的半径为rm,则OC=OA=rm,由拱高CD=3m,OD=(3﹣r)m,OD⊥AB,由垂径定理得出AD=1m,由勾股定理得出方程r2=12+(3﹣r)2,解得:r=53,得出该拱门的半径为53m,即可得出答案.【解题过程】解:如图,取圆心为O,连接OA,设⊙O的半径为rm,则OC=OA=rm,∵拱高CD=3m,∴OD=(3﹣r)m,OD⊥AB,∵AB=2m,∴AD=BD=12AB=1m,∵OA2=AD2+OD2,∴r2=12+(3﹣r)2,解得:r=5 3,∴该拱门的半径为53 m,故选:A.4.(2021秋•海淀区校级期中)数学活动课上,同学们想测出一个残损轮子的半径,小的解决方案如下:如图,在轮子圆弧上任取两点A,B,连接AB,再作出AB的垂直平分线,交AB于点C,交AB于点D,测出AB,CD的长度,即可计算得出轮子的半径.现测出AB=40cm,CD=10cm,则轮子的半径为( )A.50cm B.35cm C.25cm D.20cm【思路点拨】由垂径定理,可得出BC的长;连接OB,在Rt△OBC中,可用半径OB表示出OC的长,进而可根据勾股定理求出得出轮子的半径,即可得出轮子的直径长.【解题过程】解:设圆心为O,连接OB.Rt△OBC中,BC=12AB=20cm,根据勾股定理得:OC2+BC2=OB2,即:(OB﹣10)2+202=OB2,解得:OB=25;故轮子的半径为25cm.故选:C.5.(2021秋•曾都区期中)在圆柱形油槽内装有一些油,油槽直径MN为10分米.截面如图,油面宽AB 为6分米,如果再注入一些油后,当油面宽变为8分米,油面AB上升( )A.1分米B.4分米C.3分米D.1分米或7分米【思路点拨】实质是求两条平行弦之间的距离.根据勾股定理求弦心距,作和或差分别求解.【解题过程】解:连接OA.作OG⊥AB于G,则在直角△OAG中,AG=3分米,因为OA=5cm,根据勾股定理得到:OG=4分米,即弦AB的弦心距是4分米,同理当油面宽AB为8分米时,弦心距是3分米,当油面没超过圆心O时,油上升了1分米;当油面超过圆心O时,油上升了7分米.因而油上升了1分米或7分米.故选:D.6.(2021秋•宁波期末)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=6cm,则球的半径为( )A.3cm B.134cm C.154cm D.174cm【思路点拨】设球的平面投影圆心为O,过点O作ON⊥AD于点N,延长NO交BC于点M,连接OF,由垂径定理得:NF=EN=12EF=3(cm),设OF=xcm,则OM=(4﹣x)cm,再在Rt△MOF中由勾股定理求得OF的长即可.【解题过程】解:设球的平面投影圆心为O,过点O作ON⊥AD于点N,延长NO交BC于点M,连接OF,如图所示:则NF=EN=12EF=3(cm),∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDNM是矩形,∴MN=CD=6cm,设OF=xcm,则OM=OF,∴ON=MN﹣OM=(6﹣x)cm,在Rt△ONF中,由勾股定理得:ON2+NF2=OF2,即:(6﹣x)2+32=x2,解得:x=15 4,即球的半径长是154cm,故选:C.7.(2022•鄂州)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为( )A .10cmB .15cmC .20cmD .24cm【思路点拨】连接OE ,交AB 于点F ,连接OA ,∵AC ⊥CD 、BD ⊥CD ,由矩形的判断方法得出四边形ACDB 是矩形,得出AB ∥CD ,AB =CD =16cm ,由切线的性质得出OE ⊥CD ,得出OE ⊥AB ,得出四边形EFBD 是矩形,AF =12AB =12×16=8(cm ),进而得出EF =BD =4cm ,设⊙O 的半径为rcm ,则OA =rcm ,OF =OE ﹣EF =(r ﹣4)cm ,由勾股定理得出方程r 2=82+(r ﹣4)2,解方程即可求出半径,继而求出这种铁球的直径.【解题过程】解:如图,连接OE ,交AB 于点F ,连接OA ,∵AC ⊥CD 、BD ⊥CD ,∴AC ∥BD ,∵AC =BD =4cm ,∴四边形ACDB 是平行四边形,∴四边形ACDB 是矩形,∴AB ∥CD ,AB =CD =16cm ,∵CD 切⊙O 于点E ,∴OE ⊥CD ,∴OE ⊥AB ,∴四边形EFBD 是矩形,AF =12AB =12×16=8(cm ),∴EF =BD =4cm ,设⊙O 的半径为rcm ,则OA =rcm ,OF =OE ﹣EF =(r ﹣4)cm ,在Rt△AOF中,OA2=AF2+OF2,∴r2=82+(r﹣4)2,解得:r=10,∴这种铁球的直径为20cm,故选:C.8.(2022•上海)如图所示,小区内有个圆形花坛O,点C在弦AB上,AC=11,BC=21,OC=13,则这个花坛的面积为 400π .(结果保留π)【思路点拨】根据垂径定理,勾股定理求出OB2,再根据圆面积的计算方法进行计算即可.【解题过程】解:如图,连接OB,过点O作OD⊥AB于D,∵OD⊥AB,OD过圆心,AB是弦,∴AD=BD=12AB=12(AC+BC)=12×(11+21)=16,∴CD=BC﹣BD=21﹣16=5,在Rt△COD中,OD2=OC2﹣CD2=132﹣52=144,在Rt△BOD中,OB2=OD2+BD2=144+256=400,∴S⊙O=π×OB2=400π,故答案为:400π.9.(2021秋•溧水区期末)在一个残缺的圆形工件上量得弦BC=8cm,BC的中点D到弦BC的距离DE=2cm,则这个圆形工件的半径是 5 cm.【思路点拨】由垂径定理的推论得圆心在直线DE上,设圆心为0,连接OB,半径为R,再由垂径定理得BE=CE=12 BC=4(cm),然后由勾股定理得出方程,解方程即可.【解题过程】解:∵DE⊥BC,DE平分弧BC,∴圆心在直线DE上,设圆心为O,半径为Rcm,如图,连接OB,则OD⊥BC,OE=R﹣DE=(R﹣2)cm,∴BE=CE=12BC=4(cm),在Rt△OEB中,OB2=BE2+OE2,即R2=42+(R﹣2)2,解得:R=5,即这个圆形工件的半径是5cm,故答案为:5.10.(2022•柯桥区一模)《九章算术》是中国传统数学重要的著作之一,奠定了中国传统数学的基本框架.其中卷九中记载了一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”其意思是:如图,AB为⊙O的直径,弦CD⊥AB于点E,BE=1寸,CD=1尺,那么直径AB的长为多少寸?(注:1尺=10寸)根据题意,该圆的直径为 26 寸.【思路点拨】连接OC,由直径AB与弦CD垂直,根据垂径定理得到E为CD的中点,由CD的长求出DE的长,设OC =OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得出方程,解方程求出半径,即可得出直径AB 的长.【解题过程】解:连接OC,∵弦CD⊥AB,AB为圆O的直径,∴E为CD的中点,又∵CD=10寸,∴CE=DE=12CD=5寸,设OC=OA=x寸,则AB=2x寸,OE=(x﹣1)寸,由勾股定理得:OE2+CE2=OC2,即(x﹣1)2+52=x2,解得x=13,∴AB=26寸,即直径AB的长为26寸,故答案为:26.11.(2021秋•瑞安市期末)某公路上有一隧道,顶部是圆弧形拱顶,圆心为O,隧道的水平宽AB为24m,AB离地面的高度AE=10 m,拱顶最高处C离地面的高度CD为18m,在拱顶的M,N处安装照明灯,且M,N离地面的高度相等都等于17m,则MN= 10 m.【思路点拨】根据题意和垂径定理得到CG=8m,AG=12m,CH=1m,根据勾股定理求得半径,进而利用勾股定理求得MH,即可求得MN.【解题过程】解:设CD于AB交于G,与MN交于H,∵CD=18m,AE=10m,AB=24m,HD=17m,∴CG=8m,AG=12m,CH=1m,设圆拱的半径为r,在Rt△AOG中,OA2=OG2+AG2,∴r2=(r﹣8)2+122,解得r=13,∴OC=13m,∴OH=13﹣1=12m,在Rt△MOH中,OM2=OH2+MH2,∴132=122+MH2,解得MH2=25,∴MH=5m,∴MN=10m,故答案为10.12.(2022•荆州)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB=20cm,底面直径BC=12cm,球的最高点到瓶底面的距离为32cm,则球的半径为 7.5 cm(玻璃瓶厚度忽略不计).【思路点拨】设球心为O,过O作OM⊥AD于M,连接OA,设球的半径为rcm,由垂径定理得AM=DM=12AD=6(cm)然后在Rt△OAM中,由勾股定理得出方程,解方程即可.【解题过程】解:如图,设球心为O,过O作OM⊥AD于M,连接OA,设球的半径为rcm,由题意得:AD=12cm,OM=32﹣20﹣r=(12﹣r)(cm),由垂径定理得:AM=DM=12AD=6(cm),在Rt△OAM中,由勾股定理得:AM2+OM2=OA2,即62+(12﹣r)2=r2,解得:r=7.5,即球的半径为7.5cm,故答案为:7.5.13.(2021秋•温州校级月考)如图是郑州圆形“戒指桥”,其数学模型为如图所示.已知桥面跨径AB=20米,D为圆上一点,DC⊥AB于点C,且CD=BC=14米,则该圆的半径长为 26 米.【思路点拨】过O作ON⊥AB于N,过D作DM⊥ON于M,由垂径定理得AN=BN=12AB=10(米),再证四边形DCNM是矩形,则MN=CD=14米,DM=CN=BC+BN=24(米),设该圆的半径长为r米,然后由题意列出方程组,解方程组即可.【解题过程】解:过O作ON⊥AB于N,过D作DM⊥ON于M,如图所示:则AN=BN=12AB=10(米),∠ONC=∠DMN=90°,∵DC⊥AB,∴∠DCN=90°,∴四边形DCNM是矩形,∴MN=CD=14米,DM=CN=BC+BN=24(米),设该圆的半径长为r米,由题意得:ON2=r2−102 OM2=r2−242 OM=ON−14,解得:r=26ON=24 OM=10,即该圆的半径长为26米,故答案为:26.14.(2021秋•金安区校级期末)往直径为680mm的圆柱形油槽内装入一些油以后,截面如图所示,若油面宽AB=600mm,求油的最大深度.【思路点拨】连接OB,过点O作OC⊥AB于点D,交⊙O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD 的长,进而可得出CD的长.【解题过程】解:过点O作OC⊥AB于点D,交弧AB于点C.∵OC⊥AB于点D∴BD=12AB=12×600=300mm,∵⊙O的直径为680mm∴OB=340mm…(5分)∵在Rt△ODB中,OD=160(mm),∴DC=OC﹣OD=340﹣160=180(mm);答:油的最大深度为180mm.15.(2021秋•惠城区校级期中)如图,⊙O为水管横截面,水面宽AB=24cm,水的最大深度为18cm,求⊙O的半径.【思路点拨】由垂径定理可知AD=12cm,设⊙O的半径为rcm,则OD=(18﹣r)cm,在Rt△AOd中,再利用勾股定理即可求出r的值.【解题过程】解:作OD⊥AB于D,交⊙O于E,连接OA,∴AD=12AB=12×24=12cm,设⊙O的半径为rcm,则OD=ED﹣OE=(18﹣r)cm,在Rt△AOD中,由勾股定理得:OA2=OD2+AD2,即r2=(18﹣r)2+122,解得:r=13,即⊙O的半径为13cm.16.(2021秋•奈曼旗期中)如图所示,测得AB是8mm,测得钢珠顶端离零件表面的距离为8mm,求这个圆的直径.【思路点拨】过O作OC⊥AB于C,交优弧AB于D,连接AO,由垂径定理得AC=BC=12AB=4(mm),设⊙O的半径为rmm,则OC=CD﹣OD=(8﹣r)mm,然后在Rt△AOC中,由勾股定理得出方程,解方程即可.【解题过程】解:如图,过O作OC⊥AB于C,交优弧AB于D,连接AO,则AC=BC=12AB=4(mm),CD=8mm,设⊙O的半径为rmm,则OC=CD﹣OD=(8﹣r)mm,在Rt△AOC中,由勾股定理得:42+(8﹣r)2=r2,解得:r=5,即⊙O的半径为5mm,∴⊙O的直径为10mm.17.(2021秋•阜阳月考)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就,它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸).问这块圆形木材的直径(AC)是多少?”如图所示,请根据所学的知识解答上述问题.【思路点拨】设⊙O的半径为x寸.在Rt△ADO中,AD=5寸,OD=(x﹣1)寸,OA=x寸,则有x2=(x﹣1)2+52,解方程即可.【解题过程】解:设⊙O的半径为x寸,∵OE⊥AB,AB=10寸,∴AD=BD=12AB=5寸,在Rt△AOD中,OA=x,OD=x﹣1,由勾股定理得x2=(x﹣1)2+52,解得x=13,∴⊙O的直径AC=2x=26(寸),答:这块圆形木材的直径(AC)是26寸.18.(2021秋•高新区期中)某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面图;(要求尺规作图,保留作图痕迹,不写作法)(2)若这个输水管道有水部分的水面宽AB=32cm,水最深处的地方高度为8cm,求这个圆形截面的半径.【思路点拨】(1)根据尺规作图的步骤和方法做出图即可;(2)先过圆心O作半径OD⊥AB,交AB于点D,设半径为r,得出AD、OD的长,在Rt△AOD中,根据勾股定理求出这个圆形截面的半径.【解题过程】解:(1)如图所示;(2)作OD⊥AB于D,并延长交⊙O于C,则D为AB的中点,∵AB=32cm,∴AD=12AB=16.设这个圆形截面的半径为xcm,又∵CD=8cm,∴OC=x﹣8,在Rt△OAD中,∵OD2+AD2=OA2,即(x﹣8)2+162=x2,解得,x=20.∴圆形截面的半径为20cm.19.(2021秋•黔西南州期末)如图,在一座圆弧形拱桥,它的跨度AB为60m,拱高PM为18m,当洪水泛滥到跨度只有30m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有4m,即PN=4m时,试通过计算说明是否需要采取紧急措施.【思路点拨】由垂径定理可知AM=BM、A′N=B′N,利用AB=60,PM=18,可先求得圆弧所在圆的半径,再计算当PN =4时A′B′的长度,与30米进行比较大小即可.【解题过程】解:设圆弧所在圆的圆心为O,连接OA、OA′,设半径为x米,则OA=OA′=OP,由垂径定理可知AM=BM,A′N=B′N,∵AB=60米,∴AM=30米,且OM=OP﹣PM=(x﹣18)米,在Rt△AOM中,由勾股定理可得AO2=OM2+AM2,即x2=(x﹣18)2+302,解得x=34,∴ON=OP﹣PN=34﹣4=30(米),在Rt△A′ON中,由勾股定理可得A′N=16(米),∴A′B′=32米>30米,∴不需要采取紧急措施.20.(2021秋•余干县期中)如图是某蔬菜基地搭建一座圆弧型蔬菜棚,跨度AB=3.2米,拱高CD=0.8米(C为AB的中点,D为弧AB的中点).(1)求该圆弧所在圆的半径;(2)在距蔬菜棚的一端0.4米处竖立支撑杆EF,求支撑杆EF的高度.【思路点拨】(1)设弧AB所在的圆心为O,D为弧AB的中点,CD⊥AB于C,延长DC至O点,设⊙O的半径为R,利用勾股定理求出即可;(2)利用垂径定理以及勾股定理得出HF的长,再求出EF的长即可.【解题过程】解:(1)设弧AB所在的圆心为O,D为弧AB的中点,CD⊥AB于C,延长DC经过O点,则BC=12AB=1.6(米),设⊙O的半径为R,在Rt△OBC中,OB2=OC2+CB2,∴R2=(R﹣0.8)2+1.62,解得R=2,即该圆弧所在圆的半径为2米;(2)过O作OH⊥FE于H,则OH=CE=1.6﹣0.4=1.2=65(米),OF=2米,在Rt△OHF中,HF== 1.6(米),∵HE=OC=OD﹣CD=2﹣0.8=1.2(米),∴EF=HF﹣HE=1.6﹣1.2=0.4(米),即支撑杆EF的高度为0.4米.21.如图①,圆形拱门屏风是中国古代家庭中常见的装饰隔断,既美观又实用,彰显出中国元素的韵味.图②是一款拱门的示意图,其中C为AB中点,D为拱门最高点,线段CD经过圆心,已知拱门的半径为1.5m,拱门最下端AB=1.8m.(1)求拱门最高点D到地面的距离;(2)现需要给房间内搬进一个长和宽为2m,高为1.2m的桌子,已知搬桌子的两名工人在搬运时所抬高度相同,且高度为0.5m 2.236)【思路点拨】(1)如图②中,连接AO.利用勾股定理求出OC即可;(2)如图②﹣1,弦EF=2m,且EF⊥CD,连接OE.求出CJ即可.【解题过程】解:(1)如图②中,连接AO.∵CD⊥AB,CD经过圆心O,∴AC=CB=0.9m,∴OC= 1.2(m),∴CD=OD+PC=1.5+1.2=2.7(m),∴拱门最高点D到地面的距离为2.7m;(2)如图②﹣1,弦EF=2m,且EF⊥CD,连接OE.∵CD⊥EF,CD经过圆心,∴EJ=JF=1m,≈1.118,∴OJ=2∴CJ=1.2﹣1.118=0.082(m),∵0.5>0.082,∴搬运该桌子时能够通过拱门.22.(2021秋•姑苏区校级月考)诗句“君到姑苏见,人家尽枕河”所描绘的就是有东方威尼斯之称的水城苏州.小勇要帮忙船夫计算一艘货船是否能够安全通过一座圆弧形的拱桥,现测得桥下水面AB宽度16m时,拱顶高出水平面4m,货船宽12m,船舱顶部为矩形并高出水面3m.(1)请你帮助小勇求此圆弧形拱桥的半径;(2)小勇在解决这个问题时遇到困难,请你判断一下,此货船能顺利通过这座拱桥吗?说说你的理由.【思路点拨】(1)根据垂径定理和勾股定理求解;(2)连接ON,利用勾股定理求出EN,得出MN的长,即可得到结论.【解题过程】解:(1)如图,连接OB.∵OC⊥AB,∴D为AB中点,∵AB=16m,∴BD=12AB=8(m),又∵CD=4m,设OB=OC=r,则OD=(r﹣4)m.在Rt△BOD中,根据勾股定理得:r2=(r﹣4)2+82,解得r=10.答:此圆弧形拱桥的半径为10m.(2)此货船不能顺利通过这座拱桥,理由如下:连接ON,∵CD=4m,船舱顶部为长方形并高出水面3m,∴CE=4﹣3=1(m),∴OE=r﹣CE=10﹣1=9(m),在Rt△OEN中,由勾股定理得:EN∴MN=2EN=<12m.∴此货船B不能顺利通过这座拱桥.。
人教版九年级数学上册《24.2 点和圆直线和圆的位置关系》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________考点1点与圆的位置关系1. 点与圆的位置关系:设⊙O的半径为r点P到圆心的距离为OP=d点P在⇔d>r点P在⇔d=r点P在⇔d<r。
2.三点圆:不在直线上的三个点一个圆。
3.三角形的外接圆:经过三角形的三个顶点可以作一个圆这个圆叫做三角形的圆.外接圆的圆心是三角形三条边的的交点叫做这个三角形的外心。
考点2直线和圆的位置关系1.直线与圆的位置关系:(1)直线和圆有两个公共点时我们说这条直线和圆.这条直线叫做圆的线。
(2)直线和圆只有一个公共点时我们说这条直线和圆.这条直线叫做圆的线这个点叫做点。
(3)直线和圆没有公共点时我们说这条直线和圆。
(4)设⊙O的半径为r圆心O到直线l的距离d直线l和⊙O⇔d<r直线l和⊙O⇔d=r直线l和⊙O⇔d>r。
2.切线的判定定理和性质定理(1)切线的判定定理:经过半径的外端并且于这条半径的直线是圆的切线。
(2)切线的性质定理:圆的切线于过切点的半径。
3.切线长定理:(1)切线长:经过圆外一点的圆的切线上这点和点之间线段的长叫做这点到圆的切线长。
(2)切线长定理:从圆外一点可以引圆的两条切线它们的切线长这一点和圆心的连线两条切线的夹角。
4.内切圆:与三角形各边都相切的圆叫做三角形的.内切圆的圆心是三角形三条的交点叫做三角形的内心。
限时训练:一选择题:在每小题给出的选项中只有一项是符合题目要求的。
1.(2024·全国·同步练习)以点P(1,2)为圆心r为半径画圆与坐标轴恰好有三个交点则r应满足( )A. r=2或√ 5B. r=2C. r=√ 5D. 2≤r≤√ 52.(2024·全国·同步练习)如图在△ABC中O是AB边上的点以O为圆心OB为半径的⊙O与AC相切于点D BD平分∠ABC AD=√ 3OD AB=12CD的长是( )A. 2√ 3B. 2C. 3√ 3D. 4√ 33.(2024·江苏省·同步练习)下列命题中真命题的个数是( ) ①经过三点可以作一个圆②一个圆有且只有一个内接三角形③一个三角形有且只有一个外接圆④三角形的外心到三角形的三个顶点的距离相等⑤直角三角形的外心是三角形斜边的中点。
24.1~24.2一、选择题(每题4分,共28分)1.已知⊙O的直径为5,圆心O到直线AB的距离为5,则直线AB与⊙O的位置关系是()A.相交B.相切C.相离D.相交或相切2.小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图1所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是()图1A.第①块B.第②块C.第③块D.第④块3.如图2,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO =20°,那么∠C 的度数是()图2A.70°B.50°C.45°D.20°4.如图3所示,在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y 轴交于M(0,2),N(0,8)两点,则点P的坐标是()图3A.(5,3)B.(3,5)C.(5,4)D.(4,5)5.如图4,AB是⊙O的直径,MN是⊙O的切线,切点为N,若∠MNB=52°,则∠NOA的度数为()图4A.76°B.56°C.54°D.52°6.如图5,P为⊙O的直径BA延长线上一点,PC 与⊙O相切,切点为C,D是⊙O上一点,连接PD.已知PC=PD=BC.下列结论:①PD与⊙O相切;②四边形PCBD是菱形;③PO=AB;④∠PDB=120°.其中正确的有()图5A.4个B.3个C.2个D.1个24.2如图6,△ABC的三个顶点在⊙O上,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,连接AD,则∠BAD的度数是()图6A.45°B.85°C.90°D.95°二、填空题(每题5分,共20分)8.已知△ABC的周长为20,其内切圆半径R=5,则△ABC的面积为________.9.如图7,AB是⊙O的弦,点C 在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠OCB=________°.图724.3如图8所示,∠APB=30°,圆心在边PB上的⊙O的半径为1cm,OP=3cm.若⊙O在射线PB上移动,当⊙O与PA相切时,圆心O移动的距离为________cm.图8︵11.如图9,在半圆O中,AB是直径,D是半圆O上一点,C是AD 的中点,CE⊥AB 于点E,过点D的切线交EC的延长线于点G,连接AD ,分别交CE,CB 于点P,Q,连接AC.关于下列结论:①∠BAD=∠ABC ;②GP=GD;③点P是△ACQ的外心.其中正确结论的序号是________.图9三、解答题(共52分)12.(10分)如图10,点I为△ABC的内心,点D在BC上,且ID⊥BC,若∠B=44°,∠C=56°,求∠AID的度数.图1013.(12分)如图11,O为正方形ABCD的对角线AC上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点M,与AB,AD分别相交于点E,F.求证:CD与⊙O相切.图1114.(15分)如图12所示,⊙O的直径AB=10 cm,弦AC=6 cm,∠ACB的平分线交⊙O于点D.(1)求证:△ABD是等腰三角形;(2)求CD的长.图1215.(15分)已知:如图13,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,F为BC的中点,连接EF.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为3,∠EAC=60°,求AD的长.图131.C2.B [解析]圆弧上三点可以确定一个圆,只有第②块玻璃碎片上有圆弧B. 3.B[解析]∵OA =OB ,∴∠A =∠ABO =20°,∴∠COB =2∠A =40°.∵BC 是⊙O 的切线,∴∠O B C =90°,∴∠C =90°-∠C O B =50°B. 4.D[解析]过点P 作P A ⊥MN 于点A PQ ,PM ,易知PQ ⊥OQ ,所以四边形 O Q P A 为矩形,所以P Q =O A 5=P M .在R t△PM A中,易求P A =4,所以点P为(4, 5). 5.A[解析]∵MN 是⊙O 的切线,∴ON ⊥NM ,∴∠ONM =90°. ∴∠ONB =90°-∠MNB =90°-52°=38°.∵ON =OB ,∴∠B =∠ONB =38°,∴∠NOA =2∠B =76°.故选A . 6.A[解析]如图所示,连接O C ,OD ,AD. ∵PC 切⊙O 于点C ,∴OC ⊥PC. 在△POC 与△POD 中,PC =PD ,PO =PO ,OC =OD , ∴△POC ≌△POD(SSS), ∴∠CPO =∠DPO ,∠PDO =∠PCO =90°, ∴PD 与⊙O 相切,故①正确. 在△PCB 与△PDB 中,PC =PD ,∠CPB =∠DPB ,PB =PB , ∴△PCB ≌△PDB(SAS) ,∴BC =BD. 又∵PC =PD =BC , ∴PC =PD =BC =BD , ∴四边形PCBD 是菱形,故②正确.∵AB 是⊙O 的直径,∴∠ADB =90°. ∵PD =BD ,∴∠DPO =∠DBA.在△PDO 与△BDA 中,∠PDO =∠BDA =90°,PD =BD ,∠DPO =∠DBA ,∴△PDO≌△BDA(ASA),∴DO=DA,PO=BA,故③正确.∵OA=OD,∴OA=OD=DA ,即△OAD是等边三角形,∴∠AOD=60°.∵OD=OB,∴∠ODB=∠OBD=30°,∴∠PDB=∠PDO+∠ODB=90°+30°=120°,故④正确.由以上分析可知所给出的4个结论都正确.故选A.7.B8.50[解析]△ABC的面积=1×20×5=50. 29.44[解析]连接O B,如图.∵BC是⊙O的切线,∴OB⊥BC,∴∠OBA+∠CBP=90°.∵OC⊥OA,∴∠A+∠APO=90°.∵OA=OB,∠OAB=22°,∴∠OAB=∠OBA=22°.∴∠APO=∠CBP=68°.∵∠APO=∠CPB,∴∠CPB=68°,∴∠OCB=180°-∠CBP-∠CPB=180°-68°-68°=44°.10.1[解析]设当⊙O与PA相切时,切点为H,连接O H,则O H⊥PA.∵∠APB=30°,∴PO=2OH=2 cm,∴圆心O移动的距离为3-2=1(cm).11.②③[解析]如图,连接OD.∵DG是⊙O的切线,∴∠GDO=90°,∴∠GDP+∠ADO=90°.在Rt△APE中,∠EAP+∠APE=90°.∵AO=DO,∴∠OAD=∠ADO,∴∠APE=∠GPD=∠GDP,∴GP=GD.∴结论②正确.∵AB是⊙O的直径,∴∠ACB =90°,∴∠CAQ+∠AQC=90°.︵∵C是AD 的中点,∴∠CAQ=∠ABC.又∵∠ABC+∠BCE=90°,∴∠AQC=∠BCE,∴PC=PQ.∵∠ACP+∠BCE=90°,∠AQC+∠CAP=90°,∴∠CAP=∠ACP,∴AP=CP,∴AP=CP=PQ,∴点P是△ACQ的外心,∴结论③正确.︵由于不能确定BD︵与AC的大小关系,因而不能确定∠BAD与∠ABC的大小关系,∴结论①不一定正确.故②③正确.12.解:连接CI,如图所示.在△ABC中,∠B=44°,∠ACB =56°,∴∠BAC=180°-∠B-∠ACB=80°.∵点I为△ABC的内心,∴∠CAI=12∠BAC=40°,∠ACI=∠DCI=12∠ACB =28°,∴∠AIC=180°-∠CAI-∠ACI=180°-40°-28°=112°.∵ID⊥BC,∴∠CID=90°-∠DCI=90°-28°=62°.∴∠AID=∠AIC+∠CID=112°+62°=174°.13.证明:连接OM,过点O作ON⊥CD于点N.∵⊙O与BC相切于点M,∴OM⊥BC.∵在正方形ABCD中,CA平分∠BCD,ON⊥CD,OM⊥BC,∴OM=ON,∴点N在⊙O上,∴CD与⊙O相切.14.解:(1)证明:连接OD,如图.∵CD是∠ACB的平分线,∴∠ACD=∠BCD.由圆周角定理,得∠AOD=2∠ACD,∠BOD=2∠BCD,∴∠AOD=∠BOD,∴AD =BD,即△ABD是等腰三角形.(2)过点A作AE⊥CD于点E,∵AB为⊙O的直径,∴∠ADB =∠ACB =90°,∴AD =2AB=52cm. 2∵AE⊥CD,∠ACE=12∠ACB=45°,∴AE=CE=2AC=32cm. 2在Rt△AED中,DE=AD 2-AE2=42cm,∴CD=CE+DE=32+42=72(cm).15.解:(1)证明:如图,连接FO.∵F为BC的中点,O为AC的中点,∴OF是△ABC的中位线,∴OF∥AB.∵AC是⊙O的直径,∴CE⊥AE.∵OF∥AB,∴OF⊥CE,∴OF所在直线垂直平分CE,∴FC=FE,OE=OC,∴∠FEC=∠FCE,∠OEC=∠OCE.∵△ABC是直角三角形,∴∠ACB=90°,即∠OCE+∠FCE=90°,∴∠OEC+∠FEC=90°,即∠FEO=90°.又∵OE是⊙O的半径,∴EF是⊙O的切线.(2)∵⊙O的半径为3,∴AO=CO=EO=3. ∵∠EAC=60°,OA=OE,∴∠EOA=60°,∴∠COD=∠EOA=60°.∵在Rt△OCD中,∠COD=60°,OC=3,∴CD=33.∵在Rt△ACD中,∠ACD=90°,AC=6,∴AD =AC 2+CD2=62+(33)2=37.。
24.2点和圆、直线和圆的位置关系一.选择题1.如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=30°,则∠C的度数是()A.70°B.45°C.30°D.20°2.等边△ABC的三个顶点都在⊙O上,点P是圆上不与A、B、C重合的点,∠BPC的度数是()A.60°B.120°C.60°或120°D.无法确定3.在用反证法证明“三角形的最大内角不小于60°”时,假设三角形的最大内角不小于60°不成立,则有三角形的最大内角()A.小于60°B.等于60°C.大于60°D.大于或等于60°4.如图,AB,AC,BD是⊙O的切线,切点分别是P,C,D.若AC=5,BD=3,则AB 的长是()A.2B.4C.6D.85.如图,P A,PB分别与⊙O相切于点A,B、过圆上点C作⊙O的切线EF分别交P A,PB 于点E,F,若P A=4,则△PEF的周长是()A.4B.8C.10D.126.如图,点A,B,D在⊙O上,∠A=15°,BC是⊙O的切线,点B为切点,OD的延长线交BC于点C,若BC的长为2,则DC的长是()A.1B.4﹣2C.2D.4﹣47.如图,已知Rt△ABC中,∠ACB=90°,E为AB上一点,以AE为直径作⊙O与BC相切于点D,连接ED并延长交AC的延长线于点F,若AE=5,AC=4,则BE的长为()A.B.C.D.8.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为()A.8B.10C.13D.149.如图,⊙O的直径AB=8cm,AM和BN是它的两条切线,切点分别为A、B,DE切⊙O 于E,交AM于D,交BN于C.设AD=x,BC=y,则y与x的函数图象是()A.xy=16B.y=2x C.y=2x2D.xy=810.如图,AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,过点O作OD⊥AC交⊙O于点D,连接CD,若∠P=30°,AP=12,则CD的长为()A.2B.3C.2D.4二.填空题11.如图,在平面直角坐标系xoy中,A(8,0),⊙O半径为3,B为⊙O上任意一点,P 是AB的中点,则OP的最小值是.12.为了测量一个光盘的半径,小周同学把直尺、光盘和三角板按图所示放置于桌面上,并测量出AB=3cm,这张光盘的半径是.13.如图是一块△ABC余料,已知AB=20cm,BC=7cm,AC=15cm,现将余料裁剪成一个圆形材料,则该圆的最大面积是.14.如图,Rt△OAB中,∠OAB=90°,OA=8cm,AB=6cm,以O为圆心,4cm为半径作⊙O,点C为⊙O上一个动点,连接BC,D是BC的中点,连接AD,则线段AD的最大值是cm.15.如图,在直角坐标系中,一直线l经过点M(,1)与x轴、y轴分别交于A、B两点,且MA=MB,可求得△ABO的内切圆⊙O1的半径r1=﹣1;若⊙O2与⊙O1、l、y 轴分别相切,⊙O3与⊙O2、l、y轴分别相切,…,按此规律,则⊙O2014的半径r2014=.三.解答题16.如图,BC是半⊙O的直径,A是⊙O上一点,过点A的切线交CB的延长线于点P,过点B的切线交CA的延长线于点E,AP与BE相交于点F.(1)求证:BF=EF;(2)若AF=,半⊙O的半径为2,求P A的长度.17.如图,以Rt△ABC的直角边AB为直径的⊙O交斜边AC于点D,过点D作⊙O的切线与BC交于点E,弦DM与AB垂直,垂足为H.(1)求证:E为BC的中点;(2)若⊙O的面积为12π,两个三角形△AHD和△BMH的外接圆面积之比为3,求△DEC的内切圆面积S1和四边形OBED的外接圆面积S2的比.18.在平面内,给定不在同一条直线上的点A,B,C,如图所示,点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,∠ABC的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DE⊥BA,垂足为E,作DF⊥BC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.19.已知AB是⊙O的直径,C,D是⊙O上AB同侧的两点,∠BAC=25°(Ⅰ)如图①,若OD⊥AB,求∠ABC和∠ODC的大小;(Ⅱ)如图②,过点C作⊙O的切线,交AB延长线于点E,若OD∥EC,求∠ACD的大小.参考答案与试题解析一.选择题1.【解答】解:∵BC是⊙O的切线,OB是⊙O的半径,∴∠OBC=90°,∵OA=OB,∴∠A=∠ABO=30°,∴∠BOC=60°,∴∠C=30°.故选:C.2.【解答】解:如图,∵△ABC为等边三角形,∴∠A=60°,∴∠BPC=∠A=60°,∵∠A+∠P′=180°,∴∠P′=180°﹣60°=120°,∴当P点在上时,∠BPC=120°.故选:C.3.【解答】解:在用反证法证明“三角形的最大内角不小于60°”时,假设三角形的最大内角不小于60°不成立,则有三角形的最大内角小于60°.故选:A.4.【解答】解:∵AB,AC,BD是⊙O的切线,切点分别是P,C,D.∴AP=AC,BD=BP,∴AB=AP+BP=AC+BD,∵AC=5,BD=3,∴AB=5+3=8.故选:D.5.【解答】解:∵P A、PB分别与⊙O相切于点A、B,⊙O的切线EF分别交P A、PB于点E、F,切点C在弧AB上,∴AE=CE,FB=CF,P A=PB=4,∴△PEF的周长=PE+EF+PF=P A+PB=8.故选:B.6.【解答】解:∵BC是⊙O的切线,点B为切点,∴OB⊥BC,∵∠A=15°,∴∠BOC=2∠A=30°,∵BC=2,∴OC=2BC=4,OB=OD=2,∴DC=OC﹣OD=4﹣2.故选:B.7.【解答】解:连接OD,如图,∵⊙O与BC相切于点D,∴OD⊥BC,∵∠ACB=90°,∴OD∥AC,∴△BOD∽△BAC,∴=,即=,∴BE =.故选:B .8.【解答】解:连接PE 、PF 、PG ,AP ,由题意可知:∠PEC =∠PF A =PGA =90°,∴S △PBC =BCPE =×4×2=4,∴由切线长定理可知:S △PFC +S △PBG =S △PBC =4,∴S 四边形AFPG =S △ABC +S △PFC +S △PBG +S △PBC =5+4+4=13,∴由切线长定理可知:S △APG =S 四边形AFPG =, ∴=×AGPG ,∴AG =, 由切线长定理可知:CE =CF ,BE =BG ,∴△ABC 的周长为AC +AB +CE +BE=AC +AB +CF +BG=AF +AG=2AG=13,故选:C .9.【解答】解:作DF ⊥BN 交BC 于F ,∵AM和BN是⊙O的两条切线,∴AB⊥AD,AB⊥BC,又∵DF⊥BN,∴∠BAD=∠ABC=∠BFD=90°,∴四边形ABFD是矩形,∴BF=AD=x,DF=AB=8,∵BC=y,∴FC=BC﹣BF=y﹣x;∵AM和BN是⊙O的两条切线,DE切⊙O于E,∴DE=DA=x,CE=CB=y,则DC=DE+CE=x+y,在Rt△DFC中,DC2=DF2+CF2,∴(x+y)2=64+(x﹣y)2,∴xy=16故选:A.10.【解答】解:∵PC为切线,∴OC⊥PC,∴∠PCO=90°,∵∠P=30°,∴OP=2OC,∠POC=90°﹣∠P=60°,∵AP=12,即OA+OP=12,∴3OC=12,解得OC=4,∴∠AOC=120°,∵OD⊥AC,∴=,∴∠AOD=∠COD=60°,而OD=OC,∴△OCD为等边三角形,∴CD=OC=4.故选:D.二.填空题(共5小题)11.【解答】解:根据题意,当P在⊙O内,且OP+P A=OA时,OP有最小值,如图,∵A(8,0),⊙O半径为3,∴OA=8,OB=3,∴AB=8+3=11,∵P是AB的中点,∴AP=5,5,∴OP=OA﹣AP=8﹣5.5=2.5,∴OP的最小值是2.5,故答案为2.5.12.【解答】解:作OB⊥AB,连接OA,∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC,∴∠OAB=∠CAB=60°∵AB=3cm,∴OA=6cm,∴由勾股定理得OB=3cm,∴光盘的半径是3cm.故答案为:3cm.13.【解答】解:如图1所示,S=r(AB+BC+AC)=r×42=21r,△ABC过点A作AD⊥BC交BC的延长线于点D,如图2,设CD=x,由勾股定理得:在Rt△ABD中,AD2=AB2﹣BD2=400﹣(7+x)2,在Rt△ACD中,AD2=AC2﹣x2=225﹣x2,∴400﹣(7+x)2=225﹣x2,解得:x=9,∴AD=12,=BC×AD=×7×12=42,∴S△ABC∴21r=42,∴r=2,该圆的最大面积为:S=πr2=π22=4π(cm2),故答案为:4πcm2.14.【解答】解:由题意知OB=10连接OC ,作直角△ABO 斜边中线OE ,连接ED ,则DE =OC =2,AE =OB =5. 因为AD <DE +AE ,所以当DE 、AE 共线时AD =AE +DE 最大为7cm .故答案为:7.15.【解答】解:连接OO 1、AO 1、BO 1,作O 1 D ⊥OB 于D ,O 1 E ⊥AB 于E ,O 1 F ⊥OA 于F ,如图所示:则O 1 D =O 1 E =O 1 F =r 1,∵M 是AB 的中点,∴B (0,2),A (2,0),则S △OO 1B =×OB ×r 1=r 1,S △AO 1O =×AO ×r 1=r 1S △AO 1B =×AB ×r 1=××r 1=2r 1S △AOB =×2×2=2;∵S △AOB =S △OO 1B +S △AO 1O +S △AO 1B =(3+)r 1=2, ∴r 1==﹣1;同理得:r 2=,r 3=…∴r n =,依此类推可得:⊙O 2014的半径r 2014=;故答案为:.三.解答题(共4小题)16.【解答】(1)证明:连接OA,∵AF、BF为半⊙O的切线,∴AF=BF,∠F AO=∠EBC=90°,∴∠E+∠C=∠EAF+∠OAC=90°,∵OA=OC,∴∠C=∠OAC,∴∠E=∠EAF,∴AF=EF,∴BF=EF;(2)解:连接AB,∵AF、BF为半⊙O的切线,∴∠OAP=∠OBE=90°,且BF=AF=1.5,又∵tan∠P=,即,∴PB=,∵∠P AE+∠OAC=∠AEB+∠OCA=90°,且∠OAC=∠OCA,∴∠P AE=∠AEB,∠P=∠P,∴△APB∽△CP A,∴,即P A2=PBPC,∴,解得P A=.17.【解答】解:(1)连接BD、OE,∵AB是直径,则∠ADB=90°=∠ADO+∠ODB,∵DE是切线,∴∠ODE=90°=∠EDB+∠BDO,∴∠EDB=∠ADO=∠CAB,∵∠ABC=90°,即BC是圆的切线,∴∠DBC=∠CAB,∴∠EDB=∠EBD,而∠BDC=90°,∴E为BC的中点;(2)△AHD和△BMH的外接圆面积之比为3,则两个三角形的外接圆的直径分别为AD、BM,∴AD:BM=,而△ADH∽△MBH,∴DH:BH=,则DH=HM,∴HM:BH=,∴∠BMH=30°=∠BAC,∴∠C=60°,DE是直角三角形的中线,∴DE=CE,∴△DEC为等边三角形,⊙O的面积:12π=(AB)2π,则AB=4,∠CAB=30°,∴BD=2,BC=4,AC=8,而OE=AC=4,四边形OBED的外接圆面积S2=π(2)2=4π,等边三角形△DEC边长为2,则其内切圆的半径为:,面积为,故△DEC的内切圆面积S1和四边形OBED的外接圆面积S2的比为:.18.【解答】(1)证明:∵到点O的距离等于a的所有点组成图形G,∴图形G为△ABC的外接圆⊙O,∵BD平分∠ABC,∴∠ABD=∠CBD,∴=,∴AD=CD;(2)如图,∵AD=CM,AD=CD,∴CD=CM,∵DM⊥BC,∴BC垂直平分DM,∴BC为直径,∴∠BAC=90°,∵=,∴OD⊥AC,∴OD∥AB,∵DE⊥AB,∴OD⊥DE,∴DE为⊙O的切线,∴直线DE与图形G的公共点个数为1.19.【解答】解:(Ⅰ)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=25°,∴∠ABC=65°,∵OD⊥AB,∴∠AOD=90°,∴∠ACD=∠AOD==45°,∵OA=OC,∴∠OAC=∠OCA=25°,∴∠OCD=∠OCA+∠ACD=70°,∵OD=OC,∴∠ODC=∠OCD=70°;(Ⅱ)连接OC,∵EC是⊙O的切线,∴OC⊥EC,∴∠OCE=90°,∵∠BAC=25°,∴∠COE=2∠BAC=50°,∴∠OEC=4024.3正多边形和圆一.选择题1.半径为R的圆内接正六边形边长为()A.R B.R C.R D.2R2.如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b=3cm,则螺帽边长a等于()A.cm B.2cm C.2cm D.cm3.如图,AD,BE,CF是正六边形ABCDEF的对角线,图中平行四边形的个数有()A.2个B.4个C.6个D.8个4.正六边形具备而菱形不具备的性质是()A.对角线互相平分B.对角线互相垂直C.对角线相等D.每条对角线平分一组对边5.如图,在正五边形ABCDE中,对角线AD,AC与EB分别交于点M,N,则下列结论正确的是()A.EM:AE=2:B.MN:EM=:C.AM:MN=:D.MN:DC=:26.如图,用若干个全等的正五边形可以拼成一个环状,图中所示的是前3个正五边形的拼接情况,要完全拼成一个圆环还需要的正五边形个数是()A.5B.6C.7D.87.正六边形的边心距为,这个正六边形的面积为()A.B.C.D.128.第六届世界数学团体锦标赛于2015年11月25日至11月29日在北京举行,其会徽如图所示,它的内围与外围分别是由七个与四边形ABCD全等的四边形和七个与四边形BEFC 全等的四边形依次环绕而成的正七边形.设AD=a,AB=b,CF=c,EF=d,则该会徽内外两个正七边形的周长之和为()A.7(a+b+c﹣d)B.7(a+b﹣c+d)C.7(a﹣b+c+d)D.7(b+c+d﹣a)9.用一枚直径为25mm的硬币完全覆盖一个正六边形,则这个正六边形的最大边长是()A.mm B.mm C.mm D.mm 10.如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是()A.△OAB是等边三角形B.弦AC的长等于圆内接正十二边形的边长C.OC平分弦ABD.∠BAC=30°二.填空题11.如图,⊙O的半径为1,作两条互相垂直的直径AB、CD,弦AC是⊙O的内接正四边形的一条边.若以A为圆心,以1为半径画弧,交⊙O于点E,F,连接AE、CE,弦EC 是该圆内接正n边形的一边,则该正n边形的面积为.12.如图,圆O的周长是1cm,正五边形ABCDE的边长是4cm,圆O从A点出发,沿A →B→C→D→E→A顺时针在正五边形的边上滚动,当回到出发点时,则圆O共滚动了周.13.如图,⊙O的半径为,以⊙O的内接正八边形的一边向⊙O内作正方形ABCD,则正方形ABCD的面积为.14.如图,A,B,C是⊙O上顺次三点,若AC,AB,BC分别是⊙O内接正三角形,正方形,正n边形的一边,则n=.15.如图,在平面直角坐标系中,正六边形OABCDE边长是6,则它的外接圆心P的坐标是.三.解答题16.已知正方形的面积为2平方厘米,求它的半径长、边心距和边长.17.如图,已知P为正方形ABCD的外接圆的劣弧上任意一点,求证:为定值.18.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为10;求图中阴影部分的面积.19.如图,正方形ABCD内接于⊙O,M为的中点,连接BM,CM.(1)求证:BM=CM;(2)求∠BOM的度数.参考答案与试题解析一.选择题1.【解答】解:如图,ABCDEF是⊙O的内接正六边形,连接OA,OB,则三角形AOB是等边三角形,所以AB=OA=R.故选:B.2.【解答】解:如图,连接AC,过点B作BD⊥AC于D,由正六边形,得∠ABC=120°,AB=BC=a,∴∠BCD=∠BAC=30°,由AC=3,得CD=1.5,Rt△ABD中,∵∠BAD=30°,∴AB=2BD=a,∴AD==a,即a=1.5,∴a=(cm),故选:A.3.【解答】解:如图,∵AD,BE,CF是正六边形ABCDEF的对角线,∴OA=OE=AF=EF,∴四边形AOEF是平行四边形,同理:四边形DEFO,四边形ABCO,四边形BCDO,四边形CDEO,四边形F ABOD都是平行四边形,共6个,故选:C.4.【解答】解:A、正六边形和菱形均具有,故不正确;B、正六边形和菱形均具有,故不正确;C、正六边形具有,而菱形不具有,故正确;D、正六边形和菱形均具有,故不正确;故选:C.5.【解答】证明:∵五边形ABCDE是正五边形,∴DE=AE=AB,∠AED=∠EAB=108°,∴∠ADE=∠AEM=36°,∴△AME∽△AED,∴,∴AE2=ADAM,∵AE=DE=DM,∴DM2=ADAM,设AE=DE=DM=2,∴22=AM(AM+2),∴AM=﹣1,(负值设去),∴EM=BN=AM=﹣1,AD=+1,∵BE=AD,∴MN=BE﹣ME﹣BN=3﹣,∴MN:CD=:2,故选:D.6.【解答】解:如图,圆心角为∠1,∵五边形的内角和为:(5﹣2)×180°=3×180°=540°,∴五边形的每一个内角为:540°÷5=108°,∴∠1=108°×2﹣180°=216°﹣180°=36°,∵360°÷36°=10,∵360°÷36°=10,∴他要完成这一圆环共需10个全等的五边形.∴要完全拼成一个圆环还需要的正五边形个数是:10﹣3=7.故选:C.7.【解答】解:如图,连接OA、OB;过点O作OG⊥AB于点G.在Rt△AOG中,OG=,∠AOG=30°,∵OG=OA cos 30°,∴OA===2,∴这个正六边形的面积=6S=6××2×=6.△OAB故选:C.8.【解答】解:如图,∵它的内围与外围分别是由七个与四边形ABCD全等的四边形和七个与四边形BEFC全等的四边形依次环绕而成的正七边形,∴AM=BM﹣AB=AD﹣AB=a﹣b,FN=EF+EN=EF+CF=c+d,∴内外两个正七边形的周长之和为7(a﹣b)+7(c+d)=7(a﹣b+c+d),故选:C.9.【解答】解:根据题意得:圆内接半径r为mm,如图所示:则OB=,∴BD=OB sin30°=×=(mm),则BC=2×=(cm),完全覆盖住的正六边形的边长最大为mm.故选:A.10.【解答】解:∵OA=AB=OB,∴△OAB是等边三角形,选项A正确,∴∠AOB=60°,∵OC⊥AB,∴∠AOC=∠BOC=30°,AC=BC,弧AC=弧BC,∴=12,∠BAC=∠BOC=15°,∴选项B、C正确,选项D错误,故选:D.二.填空题(共5小题)11.【解答】解:如图,连接OE,根据题意可知:AB⊥CD,AE=AO=EO,∴∠AOC=90°,∠AOE=60°,∴∠EOC=30°,∴EC是该圆内接正12边形的一边,∵△COE是顶角为30度的等腰三角形,作EG⊥OC于点G,∴EG=OE=,=12×OCEG=12×1×=3.∴正12边形的面积为:12S△COE故答案为:3.12.【解答】解:圆O从A点出发,沿A→B→C→D→E→A顺时针在正五边形的边上滚动,∵圆O的周长是1cm,正五边形ABCDE的边长是4cm,∴圆在边上转了4×5=20圈,而圆从一边转到另一边时,圆心绕五边形的一个顶点旋转了五边形的一个外角的度数,∴圆绕五个顶点共旋转了360°,即它转了一圈,∴圆回到原出发位置时,共转了21圈.故答案为:21.13.【解答】解:连接OA、OD,过A作AE⊥OD于E,如图所示:则∠AEO=∠AED=90°,∵∠AOD是正八边形的中心角,∴∠AOD==45°,∴△AOE是等腰直角三角形,∴AE=OE=OA=1,∴DE=OD﹣OE=﹣1,∴AD2=AE2+DE2=1+(﹣1)2=4﹣2,∴正方形ABCD的面积=AD2=4﹣2,故答案为:4﹣2.14.【解答】解:如图,连接OA,OC,OB.∵若AC、AB分别是⊙O内接正三角形、正方形的一边,∴∠AOC=120°,∠AOB=90°,∴∠BOC=∠AOC﹣∠AOB=30°,由题意得30°=,∴n=12,故答案为:12.15.【解答】解:连接P A,P A,∵正六边形OABCDE的外接圆心是P,∴∠OP A==60°,PO=P A,∴△POA是等边三角形,∴PO=P A=OA=6,过P作PH⊥OA于H,则∠OPH=∠OP A=30°,OH=OA=3,∴PH===3,∴P的坐标是(3,3),故答案为:(3,3).三.解答题(共4小题)16.【解答】解:∵正方形的面积为2,∴正方形的边长为AB=,边心距OC=AB=,对角线长为2,∴半径为1,∴正方形的半径为1,边心距为,边长为.17.【解答】解:延长P A到E,使AE=PC,连接BE,∵∠BAE+∠BAP=180°,∠BAP+∠PCB=180°,∴∠BAE=∠PCB,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,在△ABE和△CBP中,,∴△ABE≌△CBP(SAS),∴∠ABE=∠CBP,BE=BP,∴∠ABE+∠ABP=∠ABP+∠CBP=90°,∴△BEP是等腰直角三角形,∴P A+PC=PE=PB.即:=,∴为定值.18.【解答】解:连接CO、DO,∴S阴影部分=6(S扇形OCD﹣S正三角形OCD)=6(﹣25)=100π﹣150.19.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵M为的中点,∴=,∴=,∴BM=CM;(2)解:连接OA、OB、OM,∵四边形ABCD是正方形,∴∠AOB=90°,∵M为的中点,∴∠AOM=45°,∴∠BOM=∠AOB+∠AOM=135°.24.4弧长和扇形面积一.选择题1.圆锥的母线长为9,底面圆的直径为8,则圆锥的侧面积为()A.18πB.36πC.54πD.72π2.钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过长度()cm A.πB.πC.πD.π3.一个圆锥的侧面积是6π,母线长为3,则此圆锥的底面半径为()A.πB.2C.3D.44.已知扇形的圆心角为120°,半径为5cm,则此扇形的弧长为()A.πcm B.πcm C.πcm D.πcm5.一个扇形的圆心角为120°,半径为,则这个扇形的面积是()A.B.4πC.2πD.π6.如图所示,分别以n边形的顶点为圆心,以2cm为半径画圆,则图中阴影部分的面积之和为()A.πcm2B.2πcm2C.4πcm2D.nπcm27.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD,若AC=10,∠BAC=30°,则图中阴影部分的面积为()A.5πB.7.5πC.D.π8.如图,正方形ABCD中,分别以B、D为圆心,以正方形的边长2为半径画弧,形成树叶形(阴影)图案,则树叶形图案的面积为()A.B.π﹣2C.2π﹣2D.2π﹣49.如图,在△ABC中,∠C=90°,AB=,分别以A、B为圆心,AC,BC为半径在△ABC的外侧构造扇形CAE,扇形CBD,且点E,C,D在同一条直线上,若BC=2AC,且的长度恰好是的倍,则图中阴影部分的面积为()A.πB.πC.πD.π10.如图,Rt△ABC中,∠ACB=90°,在以AB的中点O为坐标原点,AB所在直线为x 轴建立的平面直角坐标系中,将△ABC绕点B顺时针旋转,使点A旋转至y轴的正半轴上的A′处,若AO=OB=1,则阴影部分面积为()A.πB.π﹣1C.+1D.二.填空题11.圆锥的底面半径为5,母线长为7,则圆锥的侧面积为.12.圆锥的高为3cm,底面半径为2cm,则圆锥的侧面积是cm2.13.如图,圆锥的母线长l为10cm,侧面积为50πcm2,则圆锥的底面圆半径r=cm.14.如图,半径为10的扇形AOB中,∠AOB=90°,C为上一点,CD⊥OA,CE⊥OB,垂足分别为D、E.若∠CDE=36°,则图中阴影部分的面积为.15.如图,在扇形OAB中,点C在上,∠AOB=90°,∠ABC=30°,AD⊥BC于点D,连接AC,若OA=2,则图中阴影部分的面积为.三.解答题16.如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB、AC于M、N两点,求图中阴影部分的面积.(保留π)17.已知:如图,C为半圆O上一点,AC=CE,过点C作直径AB的垂线CP,弦AE分别交PC、CB于点D、F.(1)求证:AD=CD;(2)若DF=,∠CAE=30°,求阴影部分的面积.18.如图,在正方形ABCD中,AB=4,O为对角线BD的中点,分别以OB,OD为直径作⊙O1,⊙O2.(1)求⊙O1的半径;(2)求图中阴影部分的面积.19.如图1,正方形ABCD是一个6×6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD中点处的光点P按图2的程序移动.(1)请在图1中画出光点P经过的路径;(2)求光点P经过的路径总长(结果保留π).参考答案与试题解析一.选择题1.【解答】解:∵底面圆的直径为8,∴底面圆的半径为4,∴圆锥的侧面积=×4×2π×9=36π.故选:B.2.【解答】解:分针40分钟转过的度数为:360°×=240°,分针针端转过长度==cm,故选:B.3.【解答】解:设圆锥的底面半径为r,根据题意得2πr3=6π,解得r=2,即圆锥的底面半径为2.故选:B.4.【解答】解:l==π(cm).故选:B.5.【解答】解:由扇形面积公式得:,故选:A.6.【解答】解:∵n边形的外角和为360°,半径为2cm,==4πcm2,∴S阴影故选:C.7.【解答】解:∵AC是直径,∴∠ABC=90°,∵∠BAC=30°,AC=10,∴BC=AC=5,AB=BC=5,∠ACB=60°,∵OC=OB,∴△OBC 是等边三角形,∴∠BOC =∠AOD =60°,∵S △AOD =S △DOC =S △BOC =S △AOB ,∴S 阴=2S 扇形OAD=2×= 故选:C .8.【解答】解:观察图形可知:S 树叶形图案=2S 扇形﹣S 正方形=2×﹣22=2π﹣4故选:D .9.【解答】解:如图,连接ED ,作AM ⊥EC 于M ,BN ⊥CD 于N .∵BC =2AC ,∴设AC =x ,BC =2x ,∵∠C =90°,∴x 2+(2x )2=5,∴x =1,2x =2,AC =1,BC =2,∵∠AMC =∠BNC =∠ACB =90°,∴∠ACM +∠CAM =90°,∠ACM +∠BCN =90°,∴∠BCN =∠CAM ,∵∠CBN +∠BCN =90°,∴∠CAM +∠CBN =90°,∵AE =AC ,AM ⊥EC ,BC =BD ,BN ⊥CD ,∴∠CAE =2∠CAM ,∠CBD =2∠CBN ,∴∠CAE +∠CBD =180°, ∵的长度恰好是的倍,设∠CBD =m ,∠CAE =n ,∴=×,∴4m =5n ,∵m +n =180°,∴m =100°,n =80°,∴S 阴=+=,故选:B .10.【解答】解:∵∠ACB =90°,OA =OB =1,∴AC =BC =, ∴△ABC 是等腰直角三角形,∴AB =2OA =2,∵△ABC 绕点B 顺时针旋转点A 在A ′处,∴BA ′=AB =2,∴BA ′=2OB ,∴∠OA ′B =30°,∴∠A ′BA =60°,即旋转角为60°,S 阴影=S 扇形BAA ′+S △A ′BC ′﹣S △ABC ﹣S 扇形BCC ′,=S 扇形ABA ′﹣S 扇形CBC ′, =﹣, =﹣=.故选:D .二.填空题(共5小题)11.【解答】解:根据题意得,圆锥的侧面积=×2π×5×7=35π. 故答案为35π.12.【解答】解:∵圆锥的底面半径为2cm ,高为3cm , ∴圆锥的母线长为cm ,∴圆锥的侧面积为π×2×=2π(cm ).故答案为:2π.13.【解答】解:∵圆锥的母线长是10cm,侧面积是50πcm2,∴圆锥的侧面展开扇形的弧长为:l===10π(cm),∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r===5(cm),故答案为:5.14.【解答】解:连接OC,∵∠AOB=90°,CD⊥OA,CE⊥OB,∴四边形CDOE是矩形,∴CD∥OE,∴∠DEO=∠CDE=36°,由矩形CDOE易得到△DOE≌△CEO,∴∠COB=∠DEO=36°∴图中阴影部分的面积=扇形OBC的面积,∵S==10π扇形OBC∴图中阴影部分的面积=10π,故答案为10π.15.【解答】解:连接OC,作CM⊥OB于M,∵∠AOB=90°,OA=OB=2,∴∠ABO=∠OAB=45°,AB=2,∵∠ABC=30°,AD⊥BC于点D,∴AD==,BD=AB=,∵∠ABO=45°,∠ABC=30°,∴∠OBC=75°,∵OB =OC ,∴∠OCB =∠OBC =75°,∴∠BOC =30°,∴∠AOC =60°,CM =OC ==1,∴S 阴影=S △ABD +S △AOB ﹣S 扇形OAB +(S 扇形OBC ﹣S △BOC )=S △ABD +S △AOB ﹣S 扇形OAC ﹣S △BOC =+×﹣﹣ =1+﹣π.故答案为1+﹣π.三.解答题(共4小题)16.【解答】解:连接AD ,在△ABC 中,AB =AC ,∠A =120°,BC =2,⊙A 与BC 相切于点D ,则AD ⊥BC ,,,∴∠B =30°,,∴S △ABC ﹣S 扇形AMN =.17.【解答】(1)证明:∵AC=CE,∴弧AC=弧CE,∴∠CAE=∠B.∵CP⊥AB,∴∠CPB=90°∴∠B+∠BCP=90°.∵AB是直径,∴∠ACB=90°.∴∠ACP+∠BCP=90°.∴∠B=∠ACP.∴∠CAE=∠ACP.(2)解:连接OC,∵∠CAE=30°,∴∠ACD=30°,∠COA=60°.∴∠CDF=60°.∵AB是直径,∴∠ACB=90°.∴∠BCP=60°.∴∠BCP=∠DCF=∠CFD=60°.∴AD=CD=DF=.∴DP=AD sin30°=.∴CP=CD+DP=2.(5分)∴S阴影=S扇形﹣S△AOC=﹣=.(6分)18.【解答】解:(1)在正方形ABCD中,AB=AD=4,∠A=90°,∴BD==4∴BO1=BD=∴⊙O1的半径=.(2)设线段AB与圆O1的另一个交点是E,连接O1E ∵BD为正方形ABCD的对角线∴∠ABO=45°∵O1E=O1B∴∠BEO1=∠EBO1=45°∴∠BO1E=90°∴S1=S扇形O1BE ﹣S△O1BE==﹣1根据图形的对称性得:S1=S2=S3=S4∴S阴影=4S1=2π﹣4.19.【解答】解:(1)如图;(2)∵,∴点P经过的路径总长为6π.。
点和圆的位置关系精练题1.在平面内,⊙O 的半径为5cm ,点P 到圆心O 的距离为3cm ,则点P 与⊙O 的位置关系是 .答案:点P 在⊙O 内.2.⊙O 的半径为5,圆心的坐标为(0,0),点P 的坐标为(4,2),则点P 与⊙O 的位置关系是( )A .点P 在圆内B .点P 在圆外C .点P 在圆上D .点P 在⊙O 内或在⊙O 外答案:A .3.如图,在Rt △ABC 中,∠ACB =90°,AC =6,AB =10,CD 是斜边AB 上的中线,以AC 为直径作⊙O ,设线段CD 的中点为P ,则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 外C .点P 在⊙O 上D .无法确定BA答案:A .4.下列条件:①已知半径;②过矩形四边的中点;③过已知直线l 上两点和直线l 外一点;④过双曲线6y x=第一象限图像上三点,其中只能确定一个圆的是 ( )A .①②B .②③C .③④D .②④答案:C .5.下列命题是假命题的是 ( )A .三角形的外心到三角形各顶点的距离相等B .三角形的外心到三边的距离相等C .三角形的外心一定在三角形一边的中垂线上D .三角形任意两边的中垂线的交点是这个三角形的外心答案:B .6.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a >b ),则此圆的半径为( )A .2a b +B .2a b -C .2a b +或2a b - D .a b +或a b - 答案:C .7.已知矩形ABCD 的边AB =15,BC =20,以B 为圆心作圆,使A 、C 、D 三点至少有一点在⊙B 内,且至少有一点在⊙B 外,则⊙B 的半径r 的取值范围是( )A .r >15B .15<r <20C .15<r <25D .20<r <25 答案:C .8.用反证法证明一个命题时,第一步很重要,请写出下列命题证明时的第一步假设:⑴三角形中至少有一个角不小于60°.第一步假设为 .⑵梯形的对角线不能互相平分.第一步假设为 .⑶三角形中至多只有一个角为钝角.第一步假设为 .答案⑴三角形中三个角都小于60° ⑵梯形的对角线互相平分 ⑶三角形中至少有两个角为钝角9.若O 为△ABC 的外心,且 ∠BOC =60°,则∠BAC = .分析:本题没有给出图形,根据题意可画出符合题意的图形,可以看出,三角形的顶点A 可能在优弧BC 上,此时∠BAC =12BOC ∠=30°;也可能在劣弧BC 上,此时∠BAC =11(360)(36060)15022BOC ︒-∠=︒-︒=︒.答案:30°或150°10.用圆规、直尺作图,不写作法,但要保留作图痕迹.某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面,请你补全这个输水管道的圆形截面.答案:略11.如图,△ABC 中,BD ,CE 是△ABC 的高,试说明B ,C ,D ,E 四点在同一个圆上.ABC D E解:如图,取BC 的中点O ,连接OD ,OE , O ED C BA则OB =OC =12BC . 又因为BD ,CE 是△ABC 的高,所以OE =OD =12BC =OB =OC . 所以B ,C ,D ,E 四点在以O 为圆心,OB 为半径的圆上.12.如图,在△ABC 中,∠ACB =90°,CD ⊥AB ,∠A =30°,AC =3,以C为圆心,为半径画⊙C ,指出点A ,B ,D 与⊙C 的位置关系.若要使⊙C 经过点D ,则这个圆的半径应为多长?D CBA解:由∠ACB =90°,∠A =30°,AC =3,可求得BCAB=CD =32,由已知得r BC =r ,CA >r ,CD <r .所以点A在⊙C外,点B在⊙C上,点D在⊙C内.因为要使⊙C经过点D,所以当r=CD=1.5时,⊙C经过点D.13.已知:如图,在△ABC中,点D是∠BAC的角平分线上一点,BD⊥AD与点D,过点D作DE∥AC交AB于点E,求证:点E是过A,B,D三点的圆的圆心.ED CBA解答:因为点D在∠BAC的平分线上,所以∠1=∠2,A32 1BCDE又因为DE∥AC,所以∠2=∠3,所以∠1=∠3,所以AE=DE.又因为BD⊥AD于点D,所以∠ADB=90°.所以∠EBD+∠1=∠EDB+∠3=90°.所以∠EBD=∠EDB.所以BE=DE.所以AE=BE=DE.因为过A,B,D三点确定一个圆,又∠ADB=90°,所以AB是A,B,D所在圆的直径.所以点E是A,B,D所在圆的圆心.14.如图,直线AB⊥CD于点O,线段PQ=a(定值),现在让线段PQ的两个端点Q、P分别在直线AB、CD上任意滑动,试探求线段PQ的中点M一定在什么图形上移动,写出你探求的结果,并在图上画出来.解:因为AB⊥CD,M为PQ的中点,所以OM=12 PQ.又因为PQ=a为定值,所以OM=12a为定值.线段PQ的中点M在以O为圆心,12a为半径的圆上.15.如图,公路MN和公路PQ在P点交汇,且∠QPN=30°,点A处有一所中学,AP=160m,假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由;若受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少?解:如图,过A作AB⊥MN于B,因为AP=160,∠APB=30°所以AB=80.因为80<100,所以学校会受到影响.DC B A QP NM设MN 上有点C 、D ,且AC =AD =100,则拖拉机在CD 之间时学校受到影响,在R t △ABC 中,AC =100,AB =80,则BC =60.同理BD =60,所以CD =120.180km/h=5m/s120÷5=24(秒)答:学校会受到影响,影响时间为24秒16.在等腰△ABC 中,B 、C 为定点,且AC =AB ,D 为BC 的中点,以BC 为直径作⊙D .问:⑴∠A 等于多少度时,点A 在⊙D 上?⑵∠A 等于多少度时,点A 在⊙D 内部?⑶∠A 等于多少度时,点A 在⊙D 外部?解:A 2A 1D CB A⑴因为点A 在⊙D 上,且AD 为BC 的中线,AB =AC ,所以AD ⊥BC ,所以BD =DC =AD ,所以∠BAD =12∠BAC =45°.所以∠BAC =90°.即∠BAC=90°时,点A在⊙D上.⑵因为点A1在⊙D内,所以∠B A1D>∠BAD.所以∠B A1C>∠BAC,即∠B A1C>90°.所以当∠B A1C的度数大于90°且小于180°时,点A在⊙D内部.⑶与⑵类似,当顶点A的度数大于0°且小于90°时,点A在⊙D外部.。
24.2 点和圆、直线和圆的位置关系一、选择题(本大题共10道小题)1. 下列直线中,一定是圆的切线的是()A.与圆有公共点的直线B.垂直于圆的半径的直线C.到圆心的距离等于半径的直线D.经过圆的直径一端的直线2. 下列说法中,正确的是()A.垂直于半径的直线是圆的切线B.经过半径的外端且垂直于这条半径的直线是圆的切线C.经过半径的端点且垂直于这条半径的直线是圆的切线D.到圆心的距离等于直径的直线是圆的切线3. 如图,P是⊙O外一点,OP交⊙O于点A,OA=AP.甲、乙两人想作一条经过点P且与⊙O相切的直线,其作法如下:甲:以点A为圆心,AP长为半径画弧,交⊙O于点B,则直线BP即为所求.乙:过点A作直线MN⊥OP,以点O为圆心,OP长为半径画弧,交射线AM于点B,连接OB,交⊙O于点C,直线CP即为所求.对于甲、乙两人的作法,下列判断正确的是()A.甲正确,乙错误B.乙正确,甲错误C.两人都正确D.两人都错误4. 已知⊙O的半径为5 cm,圆心O到直线l的距离为5 cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定5. 如图,AB为⊙O的切线,切点为A,连接AO,BO,BO与⊙O交于点C,延长BO与⊙O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°6. 如图,AB是⊙O的直径,BC交⊙O于点D,DE⊥AC于点E,要使DE是⊙O的切线,还需补充一个条件,则补充的条件不正确的是()A.DE=DO B.AB=ACC.CD=DB D.AC∥OD7.如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠A OD的度数为( )A. 70°B. 35°C.20°D. 40°8. 2020·黄石模拟如图,在平面直角坐标系中,A(-2,2),B(8,2),C(6,6),点P为△ABC的外接圆的圆心,将△ABC绕点O逆时针旋转90°,点P的对应点P′的坐标为()A.(-2,3) B.(-3,2)C.(2,-3) D.(3,-2)9. 如图,数轴上有A,B,C三点,点A,C关于点B对称,以原点O为圆心作圆,若点A,B,C分别在⊙O外、⊙O内、⊙O上,则原点O的位置应该在()图A.点A与点B之间靠近点AB.点A与点B之间靠近点BC.点B与点C之间靠近点BD.点B与点C之间靠近点C10. 如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值为()A.5 B.4 2 C.4.75 D.4.8二、填空题(本大题共7道小题)11. 如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是__________.12. 如图,∠APB=30°,⊙O的半径为1 cm,圆心O在直线PB上,OP=3 cm,若⊙O沿BP方向移动,当⊙O与直线PA相切时,圆心O移动的距离为__________.13. 如图,半圆的圆心O 与坐标原点重合,半圆的半径为1,直线l 的解析式为y =x +t .若直线l 与半圆只有一个公共点,则t 的取值范围是________.14. 如图,⊙O 的半径为1,正方形ABCD 的对角线长为6,OA =4.若将⊙O 绕点A 按顺时针方向旋转360°,则在旋转的过程中,⊙O 与正方形ABCD 的边只有一个公共点的情况一共出现( )A .3次B .4次C .5次D .6次15. 如图所示,在半圆O 中,AB 是直径,D是半圆O 上一点,C 是AD ︵的中点,CE ⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE ,CB 于点P ,Q ,连接AC ,有下列结论:①∠BAD =∠ABC ;②GP =GD ;③点P 是△ACQ 的外心.其中正确的结论是________(只需填写序号).16.如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连接PM ,以点P 为圆心,PM 长为半径作⊙P .当⊙P 与正方形ABCD 的边相切时,BP 的长为________.17. 如图,⊙M的圆心为M(-2,2),半径为2,直线AB过点A(0,-2),B(2,0),则⊙M关于y轴对称的⊙M′与直线AB的位置关系是________.三、解答题(本大题共4道小题)18. 如图,点O在∠APB的平分线上,⊙O与P A相切于点C.求证:直线PB与⊙O相切.19.如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,P是CD的延长线上一点,且AP=AC.(1)求证:P A是⊙O的切线;(2)若PD=5,求⊙O的直径.20. 在Rt△ABC中,∠C=90°,AB=13,AC=5.(1)以点A为圆心,4为半径的⊙A与直线BC的位置关系是________;(2)以点B为圆心的⊙B与直线AC相交,求⊙B的半径r的取值范围;(3)以点C为圆心,R为半径的⊙C与直线AB相切,求R的值.21. 如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.求证:直线DM是⊙O的切线.人教版九年级数学24.2 点和圆、直线和圆的位置关系同步训练-答案一、选择题(本大题共10道小题)1. 【答案】C2. 【答案】B3. 【答案】C[解析] 对于甲的作法:连接OB,如图①.∵OA=AP,∴OP为⊙A的直径,∴∠OBP=90°,即OB⊥PB,∴PB为⊙O的切线,∴甲的作法正确.对于乙的作法:如图②,∵MN ⊥OP ,∴∠OAB =90°.在△OAB 和△OCP 中,⎩⎨⎧OA =OC ,∠AOB =∠COP ,OB =OP ,∴△OAB ≌△OCP ,∴∠OAB =∠OCP =90°,即OC ⊥PC , ∴PC 为⊙O 的切线, ∴乙的作法正确.4. 【答案】B5. 【答案】D[解析] ∵AB 为⊙O 的切线,∴∠OAB =90°.∵∠ABO =36°,∴∠AOB =90°-∠ABO =54°. ∴∠ADC =12∠AOB =27°.故选D.6. 【答案】A7.【答案】D 【解析】∵AB 是⊙O 的直径,AC 切⊙O 于点A ,∴∠BAC =90°,∵∠C =70°,∴∠B =20°,∴∠AOD =∠B +∠BDO =2∠B =2×20°=40°.8. 【答案】A9. 【答案】C[解析] 如图.10. 【答案】D[解析] 如图,设PQ的中点为F,⊙F与AB 的切点为D,连接FD,FC,CD.∵AB=10,AC=8,BC=6,∴∠ACB=90°,∴PQ为⊙F的直径.∵⊙F与AB相切,∴FD⊥AB,FC+FD=PQ,而FC+FD≥CD,∴当CD为Rt△ABC的斜边AB上的高且点F在CD上时,PQ有最小值,为CD 的长,即CD为⊙F的直径.∵S△ABC =12BC·AC=12CD·AB,∴CD=4.8.故PQ的最小值为4.8.二、填空题(本大题共7道小题)11. 【答案】3<r<5[解析] 连接BD.在Rt△ABD中,AB=4,AD=3,则BD=32+42=5.由题图可知3<r<5.12. 【答案】1 cm或5 cm[解析] 当⊙O与直线PA相切时,点O到直线PA的距离为1 cm.∵∠APB=30°,∴PO=2 cm,∴圆心O移动的距离为3-2=1(cm)或3+2=5(cm).13. 【答案】t=2或-1≤t<1[解析] 若直线与半圆只有一个公共点,则有两种情况:直线和半圆相切于点C或从直线过点A开始到直线过点B结束(不包括直线过点A).直线y=x+t与x轴所形成的锐角是45°.当点O到直线l的距离OC=1时,直线l与半圆O相切,设直线l与y轴交于点D,则OD=2,即t= 2.当直线过点A时,把A(-1,0)代入直线l的解析式,得t=y-x=1.当直线过点B时,把B(1,0)代入直线l的解析式,得t=y-x=-1.即当t =2或-1≤t <1时,直线和半圆只有一个公共点. 故答案为t =2或-1≤t <1.14. 【答案】B[解析] ∵正方形ABCD 的对角线长为6,∴它的边长为3 2.如图,⊙O 与正方形ABCD 的边AB ,AD 只有一个公共点的情况各有1次,与边BC ,CD 只有一个公共点的情况各有1次,∴在旋转的过程中,⊙O 与正方形ABCD 的边只有一个公共点的情况一共出现4次.15. 【答案】②③[解析] ∵在半圆O 中,AB 是直径,D 是半圆O 上一点,C 是AD ︵的中点,∴AC ︵=DC ︵,但不一定等于DB ︵,∴∠BAD 与∠ABC 不一定相等,故①错误. 如图,连接OD ,则OD ⊥GD ,∠OAD =∠ODA .∵∠ODA +∠GDP =90°,∠OAD +∠GPD =∠OAD +∠APE =90°,∴∠GPD =∠GDP ,∴GP =GD ,故②正确. 补全⊙O ,延长CE 交⊙O 于点F . ∵CE ⊥AB ,∴A 为FC ︵的中点,即AF ︵=AC ︵. 又∵C 为AD ︵的中点,∴CD ︵=AC ︵,∴AF ︵=CD ︵, ∴∠CAP =∠ACP ,∴AP =CP . ∵AB 为⊙O 的直径,∴∠ACQ =90°,∴∠ACP +∠PCQ =90°,∠CAP +∠PQC =90°, ∴∠PCQ =∠PQC ,∴PC =PQ ,∴AP =PQ ,即P 为Rt △ACQ 的斜边AQ 的中点, ∴点P 为Rt △ACQ 的外心,故③正确.16. 【答案】3或4 3 [解析] 如图①,当⊙P 与CD 边相切时,设PC =PM =x .在Rt △PBM 中,∵PM2=BM2+BP2,∴x2=42+(8-x)2,∴x=5,∴PC=5,∴BP=BC-PC=8-5=3.如图②,当⊙P与AD边相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形,∴PM=PK=CD=2BM,∴BM=4,PM=8,在Rt△PBM中,BP=82-42=4 3.综上所述,BP的长为3或4 3.17. 【答案】相交[解析] ∵⊙M的圆心为M(-2,2),则⊙M关于y轴对称的⊙M′的圆心为M′(2,2).因为M′B=2>点M′到直线AB的距离,所以直线AB与⊙M′相交.三、解答题(本大题共4道小题)18. 【答案】证明:如图,连接OC,过点O作OD⊥PB于点D.∵⊙O与P A相切于点C,∴OC⊥P A.∵点O在∠APB的平分线上,OC⊥P A,OD⊥PB,∴OD=OC,∴直线PB与⊙O相切.19. 【答案】解:(1)证明:如图,连接OA.∵∠B=60°,∴∠AOC=2∠B=120°.又∵OA=OC,∴∠OAC=∠OCA=30°.又∵AP=AC,∴∠P=∠OCA=30°,∴∠OAP=∠AOC-∠P=90°,∴OA⊥P A.又∵OA是⊙O的半径,∴P A是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD.又∵OA=OD,∴PD=OD=OA.∵PD=5,∴2OA=2PD=2 5,∴⊙O的直径为2 5.20. 【答案】解:(1)∵AC⊥BC,而AC>4,∴以点A为圆心,4为半径的⊙A与直线BC相离.故答案为相离.(2)BC=AB2-AC2=12.∵BC⊥AC,∴当⊙B 的半径大于BC 的长时,以点B 为圆心的⊙B 与直线AC 相交,即r >12.(3)如图,过点C 作CD ⊥AB 于点D . ∵12CD ·AB =12AC ·BC ,∴CD =5×1213=6013.即当R =6013时,以点C 为圆心,R 为半径的⊙C 与直线AB 相切.21. 【答案】证明:如图,作直径DG ,连接BG .∵点E 是△ABC 的内心,∴AD 平分∠BAC ,∴∠BAD =∠DAC.∵∠G =∠BAD ,∠BDM =∠DAC ,∴∠BDM =∠G .∵DG 为⊙O 的直径,∴∠GBD =90°,∴∠G +∠BDG =90°,∴∠BDM +∠BDG =90°,即∠MDG =90°.又∵OD 是⊙O 的半径,∴直线DM 是⊙O 的切线.24.3正多边形和圆一、选择题1.如图,四边形ABCD 是⊙O 的内接四边形,AB 为⊙0直径,点C 为劣弧BD 的中点,若∠DAB=40°,则∠ABC=( ).A .140°B .40°C .70°D .50° 2.如图,圆O 是△ABC 的外接圆,连接OA 、OC ,∠OAC =20°,则∠ABC 的度数为( )A .140°B .110°C .70°D .40° 3.如图,已知△ABC 为⊙O 的内接三角形,AB >AC .E 为BAC 的中点,过E 作EF ⊥AB 于F .若AF =1,AC =4,∠C =60°,则⊙O 的面积是( )A .8πB .10πC .12πD .18π4.如图,四边形ABCD 内接于O ,9AB =,15AD =,120BCD ∠=︒,弦AC 平分BAD ∠,则AC 的长是( )A .73B .83C .12D .135.如图,AB 为⊙O 的直径,点C 为圆上一点,∠BAC =20°,将劣弧AC 沿弦AC 所在的直线翻折,交AB 于点D ,则弧AD 的度数等于( )A .40°B .50C .80°D .1006.如图,等边△ABD与等边△ACE,连接BE、CD,BE的延长线与CD交于点F,下列结论:(1)BE=CD ;(2)AF平分∠EAC ;(3)∠BFD=60°;(4)AF+FD=BF 其中正确的有()A.1个B.2个C.3个D.4个7.正方形ABCD中,对角线AC、BD交于O,Q为CD上任意一点,AQ交BD于M,过M作MN⊥AM交BC于N,连AN、QN.下列结论:①MA=MN;②∠AQD=∠AQN;③S△AQN=1 2 S五边形ABNQD;④QN是以A为圆心,以AB为半径的圆的切线.其中正确的结论有()A.①②③④B.只有①③④C.只有②③④D.只有①②8.如图,在菱形ABCD中,点P是BC边上一动点,连结AP,AP的垂直平分线交BD于点G,交AP于点E,在P点由B点到C点的运动过程中,∠APG的大小变化情况是( )A.变大B.先变大后变小C.先变小后变大D.不变9.如图,矩形ABCD为⊙O的内接四边形,AB=2,BC=3,点E为BC上一点,且BE=1,延长AE交⊙O于点F,则线段AF的长为()A.755B.5C5D35210.在四边形ABCD 中,M 、N 分别是CD 、BC 的中点, 且AM ⊥CD ,AN ⊥BC ,已知∠MAN=74°,∠DBC=41°,则∠ADB 度数为( ).A .15°B .17°C .16°D .32°二、填空题11.如图,C 为半圆O 上一点,AB 为直径,且AB 2a =,COA 60∠=.延长AB 到P ,使1BP AB 2=,连CP 交半圆于D ,过P 作AP 的垂线交AD 的延长线于H ,则PH 的长度为________.12.如图,边长为4的正方形ABCD 内接于⊙O,点E 是弧AB 上的一动点(不与点A 、B 重合),点F 是弧BC 上的一点,连接OE ,OF ,分别与交AB ,BC 于点G ,H ,且∠EOF=90°,连接GH ,有下列结论:①弧AE=弧BF ;②△OGH 是等腰直角三角形;③四边形OGBH 的面积随着点E 位置的变化而变化;④△GBH 周长的最小值为4+22.其中正确的是_____.(把你认为正确结论的序号都填上)13.如图,在Rt △ABC 中,∠BAC =90°,BC =5,AB =3,点D 是线段BC 上一动点,连接AD ,以AD 为边作△ADE ∽△ABC ,点N 是AC 的中点,连接NE ,当线段NE 最短时,线段CD 的长为_____.14.如图,四边形ABCD 内接于⊙O ,∠1+∠2=64°,∠3+∠4=__________°.15.如图,边长一定的正方形ABCD ,Q 为CD 上一个动点,AQ 交BD 于点M ,过M 作MN ⊥AQ 交BC 于点N ,作NP ⊥BD 于点P ,连接NQ ,下列结论:①AM =MN ;②MP =12BD ;③BN +DQ =NQ ;④+AB BN BM为定值2.一定成立的是_____.三、解答题16.如图,四边形ABCD 是O 的内接四边形,42BC =,45BAC ∠=,75ABC ∠=,求AB 的长.17.如图,已知∠MON=120°,点A ,B 分别在OM ,ON 上,且OA =OB =a ,将射线OM 绕点O 逆时针旋转得到OM′,旋转角为α(0120α≤<︒︒且60α≠︒),作点A 关于直线OM′的对称点C ,画直线BC 交于OM′与点D ,连接AC ,AD .有下列结论:有下列结论:①∠BDO + ∠ACD = 90°;②∠ACB 的大小不会随着a 的变化而变化;③当 30︒=α时,四边形OADC 为正方形;④ACD ∆面积的最大值为23a .其中正确的是________________.(把你认为正确结论的序号都填上) 18.我们定义:有一组邻边相等且有一组对角互补的凸四边形叫做等补四边形 (1)概念理解①根据上述定义举一个等补四边形的例子:②如图1,四边形ABCD 中,对角线BD 平分∠ABC ,∠A +∠C =180°,求证:四边形ABCD 是等补四边形(2)性质探究:③小明在探究时发现,由于等补四边形有一组对角互补,可得等补四边形的四个顶点共圆,如图2,等补四边形ABCD 内接于⊙O ,AB =AD ,则∠ACD ∠ACB (填“>”“<”或“=“);④若将两条相等的邻边叫做等补四边形的“等边”,等边所夹的角叫做“等边角”,它所对的角叫做“等边补角”连接它们顶点的对角线叫做“等补对角线”,请用语言表述③中结论:(3)问题解决在等补四边形ABCD 中,AB =BC =2,等边角∠ABC =120°,等补对角线BD 与等边垂直,求CD 的长.19. 定义:在凸四边形中,我们把两组对边乘积的和等于对角线的乘积的四边形称为“完美四边形”(1)在正方形、矩形、菱形中,一定是“完美四边形”的是______.(2)如图1,在△ABC 中,AB=2,BC=52,AC=3,D 为平面内一点,以A 、B 、C 、D 四点为顶点构成的四边形为“完美四边形”,若DA ,DC 的长是关于x 的一元二次方程x 2-(m+3)x+14(5m 2-2m+13)=0(其中m 为常数)的两个根,求线段BD 的长度.(3)如图2,在“完美四边形”EFGH 中,∠F=90°,EF=6,FG=8,求“完美四边形”EFGH 面积的最大值.20.如图,O 是ABC 的外接圆,ABC 的外角DAC ∠的平分线交O 于点E ,连接CE 、BE .(1)求证:BE CE =;(2)若60CAB ∠=︒,23BC =,求劣弧BC 的长度.21.(1)已知:如图1,AB 是O 的直径,点P 为O 上一点(且点P 不与A 、B 重合)连接PA ,PB ,APB ∠的角平分线PC 交O 于点C .①若86PA PB ==,,求AB 的长②求证:2PA PB PC +=(2)如图2,在正方形ABCD 中,2AB 2=,若点P 满足3PC =,且90APC ∠=︒,请直接写出点B 到AP 的距离.22.如图(1) ,折叠平行四边形ABCD ,使得,B D 分别落在,BC CD 边上的,B D ''点,,AE AF 为折痕(1)若AE AF =,证明:平行四边形ABCD 是菱形;(2)若110BCD ︒∠= ,求B AD ''∠的大小;(3)如图(2) ,以,AE AF 为邻边作平行四边形AEGF ,若AE EC =,求CGE ∠的大小23.在平面直角坐标系xOy 中,已知(0,2)A ,动点P 在3y x =的图像上运动(不与O 重合),连接AP ,过点P 作PQ AP ⊥,交x 轴于点Q ,连接AQ .(1)求线段AP 长度的取值范围;(2)试问:点P 运动过程中,QAP ∠是否问定值?如果是,求出该值;如果不是,请说明理由.(3)当OPQ ∆为等腰三角形时,求点Q 的坐标.【参考答案】1.C 2.B 3.C 4.B 5.D 6.C 7.A 8.D 9.A 10.C 11312.①②④13.411014.6415.①②③④16.17.①②④18.(1)①正方形;②略;(2)③=;④等补四边形的“等补对角线”平分“等边补角”;(3)CD 的值为2或4.19.(1)正方形、矩形;(2)3;(3)49.20.(1)略;(2)43π 21.(1)①10AB =,②略;(2)72或12 22.(1)略;(2)30°;(3)45°.23.(1)AP ≥(2)QAP ∠为定值,QAP ∠=30°;(3)14,0)Q ,24,0)Q ,3(0)Q -,4,0)Q。
人教版九年级数学24.2 点和圆、直线和圆的位置关系一、选择题(本大题共10道小题)1. 如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则☉O的半径为()A.2B.3C.4D.4-2. 已知⊙O的半径为5 cm,圆心O到直线l的距离为5 cm,则直线l与⊙O的位置关系为()A.相交B.相切C.相离D.无法确定3.如图,AP为⊙O的切线,P为切点,若∠A=20°,C、D为圆周上两点,且∠PD C=60°,则∠OBC等于( )A. 55°B. 65°C. 70°D. 75°4.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°.过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是( )A. 25°B. 40°C. 50°D. 65°5. 如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABE B.△ACFC.△ABD D.△ADE6. 已知⊙O的面积为9π cm2,若点O到直线l的距离为π cm,则直线l与⊙O 的位置关系是()A.相交B.相切C.相离D.无法确定7. 如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与图中7×4方格中的格点相连,连线能够与该圆弧相切的格点有()A.1个B.2个C.3个D.4个8. 如图,一个边长为4 cm的等边三角形ABC的高与⊙O的直径相等.⊙O与BC相切于点C,与AC相交于点E,则CE的长为()A.4 cm B.3 cm C.2 cm D.1.5 cm9. 如图,在正三角形网格中,△ABC的顶点都在格点上,点P,Q,M是AB与网格线的交点,则△ABC的外心是()A.点P B.点Q C.点M D.点N10. 如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O的半径为()A.2 3 B.3 C.4 D.4- 3二、填空题(本大题共8道小题)11. 如图,P A,PB是☉O的切线,A,B为切点,点C,D在☉O上.若∠P=102°,则∠A+∠C=.12. 如图,⊙M的圆心在一次函数y=12x+2的图象上运动,半径为1.当⊙M与y轴相切时,点M的坐标为__________.13. 如图,点P在⊙O外,PA,PB分别与⊙O相切于A,B两点,∠P=50°,则∠AOB=________°.14. 如图0,PA ,PB 分别切⊙O 于点A ,B ,PA =6,CD 切⊙O 于点E ,分别交PA ,PB 于C ,D 两点,则△PCD 的周长是________.15. 2019·兴化期中已知等边三角形ABC 的边长为2,D 为BC 的中点,连接AD .点O 在线段AD 上运动(不与端点A ,D 重合),以点O 为圆心,33为半径作圆,当⊙O 与△ABC 的边有且只有两个公共点时,DO 的取值范围为________.16. 如图所示,在半圆O 中,AB 是直径,D是半圆O 上一点,C 是AD ︵的中点,CE ⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE ,CB 于点P ,Q ,连接AC ,有下列结论:①∠BAD =∠ABC ;②GP =GD ;③点P 是△ACQ 的外心.其中正确的结论是________(只需填写序号).17. 如图,AB 是⊙O的直径,OA =1,AC 是⊙O 的弦,过点C 的切线交AB 的延长线于点D.若BD =2-1,则∠ACD =________°.18. 在Rt △ABC 中,∠C =90°,AC =6,BC =8.若以C 为圆心,R 为半径所作的圆与斜边AB 只有一个公共点,则R 的取值范围是______________.三、解答题(本大题共4道小题)19.如图,已知:AB 是⊙O 的直径,点C 在⊙O 上,CD 是⊙O 的切线,AD ⊥CD 于点D .E 是AB 延长线上一点,CE 交⊙O 于点F ,连接OC ,AC .(1)求证:AC 平分∠DAO . (2)若∠DAO =105°,∠E =30°. ①求∠OCE 的度数.②若⊙O 的半径为22,求线段EF 的长.20. 在平面直角坐标系中,圆心P 的坐标为(-3,4),以r 为半径在坐标平面内作圆:(1)当r 为何值时,⊙P 与坐标轴有1个公共点? (2)当r 为何值时,⊙P 与坐标轴有2个公共点? (3)当r 为何值时,⊙P 与坐标轴有3个公共点? (4)当r 为何值时,⊙P 与坐标轴有4个公共点?21. 如图,在等腰三角形ABC 中,AB =AC.以AC 为直径作⊙O 交BC 于点D ,过点D 作DE ⊥AB ,垂足为E. (1)求证:DE 是⊙O 的切线.(2)若DE =3,∠C =30°,求AD ︵的长.22. 如图,已知⊙P的圆心P 在直线y =2x -1上运动.(1)若⊙P 的半径为2,当⊙P 与x 轴相切时,求点P 的坐标;(2)若⊙P 的半径为2,当⊙P 与y 轴相切时,求点P 的坐标; (3)若⊙P 与x 轴和y 轴都相切,则⊙P 的半径是多少?人教版 九年级数学 24.2 点和圆、直线和圆的位置关系-答案一、选择题(本大题共10道小题)1. 【答案】A [解析]设☉O 与AC 的切点为E ,连接AO ,OE ,∵等边三角形ABC 的边长为8,∴AC=8,∠C=∠BAC=60°.∵圆分别与边AB ,AC 相切,∴∠BAO=∠CAO=∠BAC=30°,∴∠AOC=90°,∴OC=AC=4.∵OE ⊥AC ,∴OE=OC=2,∴☉O 的半径为2.故选A .2. 【答案】B3.【答案】B【解析】连接OP ,如解图,则OP ⊥AP .∵∠D =60°,∴∠COP =120°,∵∠A =20°,∠APO =90°,∴∠AOP =70°,∴∠AOC =50°,∵OB =OC ,∴∠OBC =180°-50°2=65°.解图4.【答案】B【解析】∵∠A =25°,∠ACB =90°,∴∠ABC =65°.如解图,连接OC .∵OB =O C ,∴∠ABC =∠BCO =65°.∵CD 是⊙的切线,∴OC ⊥CD ,∴∠OCD =90°,∴∠BCD=90°-∠BCO=25°,∴∠D=∠ABC-∠BCD=65°-25°=40°.解图5. 【答案】B6. 【答案】C[解析] 由题意可知,圆的半径为3 cm.∵圆心到直线l的距离为π cm >圆的半径3 cm,∴直线l与⊙O相离.故选C.7. 【答案】C[解析] 如图,连接AB,BC,作AB,BC的垂直平分线,可得点A,B,C所在的圆的圆心为O′(2,0).只有当∠O′BF=∠O′BD+∠DBF=90°时,BF与圆相切,此时△BO′D≌△FBE,EF=DB=2,此时点F的坐标为(5,1).作过点B,F的直线,直线BF经过格点(1,3),(7,0),此两点亦符合要求.即与点B的连线,能够与该圆弧相切的格点是(5,1)或(1,3)或(7,0),共3个.8. 【答案】B[解析] 如图,连接OC,并过点O作OF⊥CE于点F.∵△ABC为等边三角形,边长为4 cm,∴△ABC的高为2 3 cm,∴OC= 3 cm.又∵⊙O与BC相切于点C,∠ACB=60°,∴∠OCF=30°.在Rt△OFC中,可得FC=32cm,∴CE=2FC=3 cm.9. 【答案】B[解析] 由题意可知∠BCN=60°,∠ACN=30°,∴∠ACB=∠ACN+∠BCN=90°,∴△ABC是直角三角形,∴△ABC的外心是斜边AB的中点.∵Q是AB的中点,∴△ABC的外心是点Q.10. 【答案】A[解析] 如图,设⊙O与AC的切点为E,连接AO,OE.∵等边三角形ABC的边长为8,∴AC=8,∠C=∠BAC=60°.∵⊙O分别与边AB,AC相切,∴∠OEC=90°,∠BAO=∠CAO=12∠BAC=30°,∴∠AOC=90°,∴OC=12AC=4.在Rt△OCE中,∠OEC=90°,∠C=60°,∴∠COE=30°,∴CE=12OC=2,∴OE=2 3,∴⊙O的半径为2 3.二、填空题(本大题共8道小题)11. 【答案】219°[解析]连接AB,∵P A,PB是☉O的切线,∴P A=PB.∵∠P=102°,∴∠P AB=∠PBA=(180°-102°)=39°.∵∠DAB+∠C=180°,∴∠P AD+∠C=∠P AB+∠DAB+∠C=180°+39°=219°.12. 【答案】(1,52)或(-1,32) [解析] ∵⊙M 的圆心在一次函数y =12x +2的图象上运动,∴设当⊙M 与y 轴相切时圆心M 的坐标为(x ,12x +2).∵⊙M 的半径为1,∴x =1或x =-1,当x =1时,y =52,当x =-1时,y =32.∴点M 的坐标为(1,52)或(-1,32).13. 【答案】13014. 【答案】12[解析] ∵PA ,PB 分别切⊙O 于A ,B 两点,CD 切⊙O 于点E ,∴PB =PA =6,CA =CE ,DB =DE ,∴△PCD 的周长=PC +CD +PD =PC +CE +DE +PD =PC +CA +DB +PD =PA +PB =12.15. 【答案】0<DO <33或2 33<DO <3 [解析] ∵等边三角形ABC 的边长为2,D为BC 的中点,∴AD ⊥BC ,BD =1,AD = 3. 分四种情况讨论:(1)如图①所示,当0<DO <33时,⊙O 与△ABC 的BC 边有且只有两个公共点,(2)如图②所示,当DO =33时, ⊙O 与△ABC 的边有三个公共点;(3)如图③所示,当⊙O 经过△ABC 的顶点A 时,⊙O 与△ABC 的边有三个公共点,则当33<DO ≤2 33时,⊙O 与△ABC 的边有四个或三个公共点.(4)如图④所示,当2 33<DO <3时,⊙O 与△ABC 的边有两个公共点.综上,当0<DO <33或2 33<DO <3时,⊙O 与△ABC 的边只有两个公共点. 故答案为0<DO <33或2 33<DO < 3.16. 【答案】②③[解析] ∵在半圆O 中,AB 是直径,D 是半圆O 上一点,C 是AD ︵的中点,∴AC ︵=DC ︵,但不一定等于DB ︵,∴∠BAD 与∠ABC 不一定相等,故①错误. 如图,连接OD ,则OD ⊥GD ,∠OAD =∠ODA .∵∠ODA +∠GDP =90°,∠OAD +∠GPD =∠OAD +∠APE=90°,∴∠GPD =∠GDP ,∴GP =GD ,故②正确.补全⊙O ,延长CE 交⊙O 于点F .∵CE ⊥AB ,∴A 为FC ︵的中点,即AF ︵=AC ︵.又∵C 为AD ︵的中点,∴CD ︵=AC ︵,∴AF ︵=CD ︵,∴∠CAP =∠ACP ,∴AP =CP .∵AB 为⊙O 的直径,∴∠ACQ =90°,∴∠ACP +∠PCQ =90°,∠CAP +∠PQC =90°,∴∠PCQ =∠PQC ,∴PC =PQ ,∴AP =PQ ,即P 为Rt △ACQ 的斜边AQ 的中点,∴点P 为Rt △ACQ 的外心,故③正确.17. 【答案】112.5 [解析] 如图,连接OC.∵CD 是⊙O 的切线,∴OC ⊥CD.∵BD =2-1,OA =OB =OC =1,∴OD =2,∴CD =OD2-OC2=(2)2-12=1,∴OC =CD ,∴∠DOC =45°.∵OA =OC ,∴∠OAC =∠OCA ,∴∠OCA =12∠DOC =22.5°,∴∠ACD =∠OCA +∠OCD =22.5°+90°=112.5°.18. 【答案】R =4.8或6<R ≤8 [解析] 当⊙C 与AB 相切时,如图①,过点C 作CD ⊥AB 于点D .根据勾股定理,得AB =AC 2+BC 2=62+82=10.根据三角形的面积公式,得12AB ·CD =12AC ·BC ,解得CD =4.8,所以R =4.8;当⊙C 与AB相交时,如图②,此时R 大于AC 的长,而小于或等于BC 的长,即6<R ≤8.三、解答题(本大题共4道小题)19. 【答案】【思维教练】(1)证明AC是∠DAO的角平分线即证明∠DAC=∠OAC,由圆的性质知OA=OC,得∠OCA=∠OAC,由切线性质得OC⊥CD,即OC∥AD,得∠OCA=∠CAD,即可得证;(2)①△OCE内角和为180°,∠E已知,由(1)OC ∥AD得∠COE=∠DAO,即可求解;②EF=GE-FG,由∠OCE=45°,OC=22,考虑构造直角三角形OGC,求出CG,即FG,GE在Rt△OGE中,OG=CG,∠E=30°,得出GE,从而求出EF.(1)证明:∵直线CD与⊙O相切,∴OC⊥CD.又∵AD⊥CD.∴AD∥OC.∴∠DAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA,∴∠DAC=∠OAC.∴AC平分∠DAO.(3分)(2)解:①∵AD∥OC,∴∠EOC=∠DAO=105°.∵∠E=30°,∴∠OCE=45°.(6分)②作OG⊥CE于点G,可得FG=CG.∵OC=22,∠OCE=45°,∴OG=2,∴FG=2.∵在Rt△OGE中,∠E=30°,∴GE=2 3.∴EF=GE-FG=23-2.(10分)20. 【答案】解:(1)根据题意,知⊙P和y轴相切,则r=3.(2)根据题意,知⊙P和y轴相交,和x轴相离,则3<r<4.(3)根据题意,知⊙P和x轴相切或经过坐标原点,则r=4或r=5.(4)根据题意,知⊙P和x轴相交且不经过坐标原点,则r>4且r≠5.21. 【答案】解:(1)证明:如图,连接OD.∵OC =OD ,AB =AC ,∴∠1=∠C ,∠C =∠B ,∴∠1=∠B ,∴OD ∥AB.∵DE ⊥AB ,∴OD ⊥DE.又∵OD 是⊙O 的半径,∴DE 是⊙O 的切线.(2)连接AD.∵AC 为⊙O 的直径,∴∠ADC =90°.∵AB =AC ,∴∠B =∠C =30°,BD =CD.∴∠AOD =60°.∵DE =3,∴CD =BD =2DE =2 3,∴AD =2,AC =4,∴OC =2,∴AD ︵的长=120180π×2=23π.22. 【答案】解:(1)当⊙P 与x 轴相切时,点P 的纵坐标为2或-2,∴2=2x -1或-2=2x -1,解得x =32或x =-12,∴点P 的坐标为(32,2)或(-12,-2).(2)当⊙P 与y 轴相切时,点P 的横坐标为2或-2,∴y =2×2-1=3或y =2×(-2)-1=-5,∴点P 的坐标为(2,3)或(-2,-5).(3)当⊙P 与x 轴和y 轴都相切时,点P 的横坐标与纵坐标的绝对值相等, 即x =y 或y =-x ,∴x =2x -1,解得x =1,y =1;或-x =2x -1,解得x =13,y =-13.∴点P 的坐标为(1,1)或(13,-13),即⊙P 的半径是1或13.。