例1 带式运输机传动装置中的同轴式2级圆柱齿轮减速器
- 格式:doc
- 大小:44.50 KB
- 文档页数:10
机械设计基础课程设计说明书带式运输机传动装置的设计A-5-------同轴式二级圆柱齿轮减速器的设计一.设计说明用于带式运输机的同轴式二级圆柱齿轮减速器;传动装置简图如右图所示;视情况可增加一级带传动或链传动;(1)带式运输机数据运输机工作轴转矩T=5300N·m运输带工作速度v=0.9m/s运输带滚筒直径D=450mm2工作条件单班制工作,空载启动,单向、连续运转,工作中有轻微振动;运输带速度允许速度误差为±5%;3使用期限工作期限为十年,检修期间隔为三年; 4生产批量及加工条件小批量生产;2.设计任务详见基本要求1选择电动机型号;二.选择电动机型号电动机是最常用的原动机,具有结构简单、工作可靠、控制简单和维护容易等优点;电动机的选择主要包括选择其类型和结构型式、容量功率和转速、确定具体型号;选择电动机类型根据任务书要求可知:本次设计的机械属于恒功率负载特性机械,且其负载较小,故采用Y型三相异步电动机全封闭结构即可达到所需要求;2、选择电动机容量工作机所需的功率其中带式输送机的效率电动机的输出功率其中η为电动机至滚筒主动轴传动装置的总效率,包括V带传动、一对齿轮传动、两对滚动轴承及联轴器等的效率,η值计算如下:由机械设计基础课程设计表10-1查得V带传动效率,一对齿轮传动的效率,一对滚动球轴承传动效率,联轴器效率,因此所以根据选取电动机的额定功率使,并由机械设计基础课程设计表10-110查得电动机的额定功率为确定电动机转速:滚筒转速为:取V带传动的传动比范围为:取单级齿轮传动的传动比范围为:则可得合理总传动比的范围为:故电动机转速可选的范围为:在这个范围内的电动机的同步转速有和两种,综合考虑电动机和传动装置的情况再确定最后的转速,为降低电动机的重量和成本,可选择同步转速为;根据同步转速查机械设计基础课程设计表10-110确定电动机型号为,其满载转速;此外,电动机的中心高、外形尺寸、轴伸尺寸等均可查表得出;三.选择联轴器,设计减速器总传动比的计算与分配电动机确定后面,根据电动机的满载转速和工作装置的转速,就可以计算传动装置的总传动比;总传动比的分配是个比较重要的问题;它将影响到传动装置的外轮廓尺寸、重量、润滑等许多问题;1、计算总传动比2、分配各级传动比为使带传动的尺寸不至过大,满足,可取,则齿轮的传动比传动装置的运动和动力参数计算传动装置的运动和动力参数是指各轴的转速、功率和转矩,这些参数是设计传动零件齿轮和带轮和轴时所必需的已知条件;计算这些参数时,可以按从高速轴往低速轴的顺序进行;1、各轴的转速2、各轴的功率3、各轴的转矩最后,将计算结果填入下表:轴名参数电动机轴Ⅰ轴Ⅱ轴滚筒轴转速n/r/min970323.3374.3374.33功率P/KW1110.5610.199.94转矩T/N.M108.3311.91309.221277.1传动比 i3 4.351效率η0.960.9650.975传动零件的设计计算设计时,一般先作减速器箱外传动零件的设计计算,以便确定减速器内的传动比及各轴转速、转矩的精确数值,从而使所设计的减速器原始条件比较准确;第一节减速器外传动零件的设计本传动方案中,减速器外传动即电动机与减速器之间的传动,采用V带传动;V 带已经标准化、系列化,设计的主要内容是确定V带型号和根数,带轮的材料、直径和轮毂宽度、中心距等;1、求计算功率查机械设计基础表13-8得,故2、选V带型号根据,由机械设计基础图13-15查出此坐标点位于B型号区域;3、求大、小带轮基准直径查机械设计基础表13-9,应不小于125mm,现取,由机械设计基础式13-9得式中;由机械设计基础表13-9,取;4、验算带速带速在范围内,合适;5、求V带基准长度和中心距初步选取中心距由机械设计基础式13-2得带长查机械设计基础表13-2,对B型带选用;再由机械设计基础式13-16计算实际中心距6、验算小带轮包角由机械设计基础式13-1得合适;7、求V带根数由机械设计基础式13-15得令,查机械设计基础表13-3得由机械设计基础式13-9得传动比查机械设计基础表13-5得由查机械设计基础表13-7得,查机械设计基础表13-2得,由此可得取5根;8、求作用在带轮轴上的压力查机械设计基础表13-1得,故由机械设计基础式13-17得单根V带的初拉力作用在轴上的压力9、带轮结构设计带轮速度,可采用铸铁材料;小带轮直径,采用实心式;大带轮直径,采用轮辐式;传动比及运动参数的修正外传动零件设计完成后,V带的传动比随之确定;用新的传动比对减速器内轴Ⅰ的转速、转矩数值进行修正;1、对轴Ⅰ转速的修正2、对轴Ⅰ转矩的修正最后,将修正结果填入下表:轴名参数电动机轴Ⅰ轴Ⅱ轴滚筒轴转速n/r/min970316.9974.3374.33功率P/KW1110.5610.199.94转矩T/N.M108.3318.141309.221277.1传动比 i 3.06 4.351效率η0.960.9650.975减速器内传动零件的设计减速器内的传动零件主要是指齿轮轴;本传动方案中的减速器采用直齿圆柱齿轮进行传动;直齿圆柱齿轮传动设计需要确定齿轮的材料、模数、齿数、分度圆、顶圆和根圆、齿宽和中心距等;1、选择材料及确定许用应力小齿轮用调质,齿面硬度,,机械设计基础表11-1,大齿轮用调质,齿面硬度,,机械设计基础表11-1;由机械设计基础表11-5,取,,2、按齿面接触强度设计设齿轮齿面按7级精度制造;取载荷系数机械设计基础表11-3,齿宽系数机械设计基础表11-6;小齿轮上的转矩取机械设计基础表11-4齿数取,则;故实际传动比;模数齿宽,取,,这里取;按机械设计基础表4-1取,小齿轮实际的分度圆直径,大齿轮实际的分度圆直径;齿顶高齿根高小齿轮齿顶圆直径小齿轮齿根圆直径大齿轮齿顶圆直径大齿轮齿根圆直径中心距3、验算轮齿弯曲强度齿形系数机械设计基础图11-8,机械设计基础图11-9 ,由机械设计基础式11-54、齿轮的圆周速度对照机械设计基础表11-2可知选用7级精度是合宜的;轴Ⅱ运动参数的修正内传动零件设计完成后,齿轮的传动比随之确定;用新的传动比对减速器内轴Ⅱ的转速、转矩数值进行修正;1、对轴Ⅱ、工作装置转速的修正2、对轴Ⅱ、工作装置转矩的修正最后,将修正结果填入下表:轴名参数电动机轴Ⅰ轴Ⅱ轴滚筒轴转速n/r/min970316.9974.0474.04功率P/KW1110.5610.199.94转矩T/N.M108.3318.141314.351282.1传动比 i 3.06 4.281效率η0.960.9650.975轴的设计计算第一节高速轴Ⅰ的计算已知轴Ⅰ传递的功率,转速,小齿轮的齿宽,齿数,模数,压力角,载荷平稳;1、初步估算轴的直径查机械设计基础表14-1轴的常用材料及其主要力学性能表,选取45号钢作为轴Ⅰ的材料,并进行调质处理;查机械设计基础表14-2常用材料的值和C值,取;由机械设计基础式14-2得考虑到有键槽的存在,轴径加大5%左右即取;2、轴的结构设计1确定轴的结构方案右轴承从轴的右端装入,靠轴肩定位;齿轮和左轴承从轴的左端装入,齿轮右侧端面靠轴肩定位,齿轮和左轴承之间用定位套筒使左轴承右端面得以定位,左右轴承均采用轴承端盖,齿轮采用普通平键得到圆周固定;2确定轴的各段直径轴结构示意图1轴段安装带轮,轴径取不大于70mm的标准值,这里取;2轴段安装轴承端盖,取;3轴段安装轴承,轴径为轴承内径的大小 ;查机械设计基础课程设计续表10-35:选取深沟球轴承6311,轴承内径,外径,轴承宽;这里取;轴两端安装轴承处轴径相等,则6段取;4轴段安装齿轮,齿轮内径,齿轮的轴向定位轴肩,取;3确定轴的各段长度结合绘图后确定各轴段长度如下:1轴段的长度取根据带轮结构及尺寸;2轴段总长度根据外装式轴承端盖的结构尺寸,起厚度,还有箱体的厚度取10mm;3轴段轴承的宽挡油环的长度和;4轴段因为小齿轮的齿宽为80mm,轴段的长度应比零件的轮毂短2-3mm,5轴段长度15mm;6轴段轴承的宽挡油环的长度和;3、按弯扭合成强度对轴Ⅰ的强度进行校核已知:转矩,小齿轮分度圆直径;圆周力径向力法向力1绘制轴受力简图如下2绘制垂直面弯矩图如下垂直面内的轴承支反力:水平面内的轴承支反力:由两边对称,知截面C的弯矩也对称;截面C在垂直面弯矩为3绘制水平面弯矩图如下截面C在水平面上弯矩为:4绘制合弯矩图如上5绘制扭矩图如上扭矩:6当量弯矩计算扭矩产生的扭转力按脉动循环变化,取α=0.6,截面C处的当量弯矩:7校核危险截面C的强度判定危险截面为第四段轴的中心面,轴的材料选用45钢,调质处理,查机械设计基础表14-1得;查机械设计基础表14-3查得则:∴该轴强度足够;第二节低速轴Ⅱ的计算已知轴Ⅱ传递的功率,转速,大齿轮的齿宽,齿数,模数,压力角,载荷平稳;1、初步估算轴的直径查机械设计基础表14-1轴的常用材料及其主要力学性能表,选取45号钢作为轴Ⅰ的材料,并进行正火处理;查机械设计基础表14-2常用材料的值和C值,取;由机械设计基础式14-2得根据联轴器结构及尺寸,取;2、轴的结构设计1确定轴的结构方案右轴承从轴的右端装入,靠轴肩定位;齿轮和左轴承从轴的左端装入,齿轮右侧端面靠轴肩定位,齿轮和左轴承之间用定位套筒使左轴承右端面得以定位,左右轴承均采用轴承端盖,齿轮采用普通平键得到圆周固定;(2)确定轴的各段直径轴结构示意图由图中个零件配合尺寸关系知;,,,;3确定轴的各段长度结合绘图后确定各轴段长度如下:1轴段的长度取根据联轴器结构及尺寸;2轴段总长度根据外装式轴承端盖的结构尺寸,其厚度,还有箱体的厚度取10mm;3轴段轴承的宽挡油环的长度和;4轴段因为大齿轮的齿宽为75mm,轴段的长度应比零件的轮毂短2-3mm;5轴段;6轴段;3、按弯扭合成强度对轴Ⅱ的强度进行校核已知:转矩:,大齿轮分度圆直径;圆周力径向力法向力(1)绘制轴受力简图如下(2)绘制垂直面弯矩图如下垂直面内的轴承支反力:水平面内的轴承支反力:由两边对称,知截面C的弯矩也对称;截面C在垂直面弯矩为3绘制水平面弯矩图如下截面C在水平面上弯矩为:(4)绘制合弯矩图如上5绘制扭矩图如上扭矩:6当量弯矩计算扭矩产生的扭转力按脉动循环变化,取α=0.6,截面C处的当量弯矩:7校核危险截面C的强度判定危险截面为第四段轴的中心面,轴的材料选用45钢,正火处理,查机械设计基础表14-1得;查机械设计基础表14-3查得则:∴该轴强度足够;键的选择与强度验算1、高速轴Ⅰ上键的选择与校核(1)最小直径处:1选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3强度校核:轴所受转矩;查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键;(2)齿轮处1)选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3)强度校核:查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键;2、低速轴Ⅱ上键的选择与校核1最小直径处1选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3强度校核:轴所受转矩;查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键2齿轮处:1选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3)强度校核:查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键;滚动轴承的选择及联轴器的选择第一节滚动轴承的选择根据设计条件,轴承预计寿命:小时1、计算高速轴处的轴承对于高速轴处的轴承选择,首先考虑深沟球轴承;初选用6311型深沟球轴承,其内径为55mm,外径为120mm,宽度为29mm,极限转速脂:5300r/min;极限转速油:6700r/min;因轴承工作温度不高、载荷平稳,查机械设计基础表16-8及表16-9,取;由于轴向力的影响可以忽略不计,即,取X=1,Y=0.则当量动载荷,转速n=316.99r/min,小时,;由机械设计基础式16-3得:所需径向基本额定动载荷查机械设计基础课程设计表10-35得:,故选用6311型深沟球轴承符合要求;2、计算低速轴处的轴承对于低速轴处的轴承选择,考虑深沟球轴承,初选6018型深沟球轴承,其内径为90mm,外径为140mm,宽度为24mm,极限转速脂:4300r/min;极限转速油:5300r/min;因轴承工作温度不高、载荷平稳,查机械设计基础表16-8及表16-9,取;由于轴向力的影响可以忽略不计,即,取X=1,Y=0.则当量=74.04r/min,小动载荷,转速n2时,;由机械设计基础式16-3得:所需径向基本额定动载荷查机械设计基础课程设计表10-35得:,故选6018型深沟球轴承符合要求;第二节联轴器的选择轴Ⅰ与V带轮通过键连接来传递力和扭矩,不需用联轴器;轴Ⅱ与滚筒之间用联轴器联接实现力和扭矩的传递;需选用合适的联轴器;考虑此运输机的功率不大,工作平稳,考虑结构简单、安装方便,故选择弹性柱销联轴器;计算转矩按下式计算:式中 T——名义转矩;N·mm;——工作情况系数;KA取K=1.5,则A=74.04r/min输出轴输出段直径为d=80mm;轴Ⅱ的转速为n2查机械设计课程上机与设计表14-5,可选择YL14或YLD14型弹性联轴器;第七章减速器润滑与密封1、润滑齿轮圆周速度,采用油池润滑,圆柱齿轮浸入油的深度约一个齿高,大齿轮的齿顶到油底面的距离≥30~60mm;选择油面的高度为40mm;并考虑轴承的润滑方式,计算:高速轴:低速轴:;所以选用脂润滑,润滑脂的加入量为轴承空隙体积的,采用稠度较小润滑脂;2、密封为了防止润滑油或脂漏出和箱体外杂质、水及灰尘等侵入,减速器在轴的伸出处、箱体的结合面处和轴承盖、窥视孔及放油孔与箱体的结合面处需要密封;轴伸出处的滚动轴承密封装置采用毛毡圈密封,由机械原理课程上机与设计表15-15可得,其中输入轴按密封圈密封处直径:,选择毛毡圈尺寸:;输出轴按密封圈密封处直径:;选择毛毡圈尺寸:;第八章减速器附件选择1、轴承端盖轴承端盖全部采用外装式轴承端盖,并根据机械设计课程上机与设计表13-4与表15-3进行选择;1、高速轴的轴承端盖轴承外径,螺栓直径,端盖上螺栓数目6;,,,,,取,,取;2、低速轴的轴承端盖:轴承外径,螺栓直径,端盖上螺栓数目6;,,,,,取,, 取2、通气器减速器工作时,由于箱体内部温度升高,气体膨胀,压力增大,使得箱体内外压力不等;为使箱体内受热膨胀的气体自由排出,以保持箱体内外压力平衡,不致使润滑油沿分箱面或轴伸密封件处向外渗漏,需要顶部或直接在窥视孔盖板上设置通气器;本设计将通气器安装在窥视孔盖板上;选用通气帽根据机械设计课程上机与设计表15-5进行选择;3、窥视孔窥视孔用于检查传动零件的啮合、润滑及齿轮损坏情况,并兼做注油孔,可向减速器箱体内注入润滑油,观察孔应设置在减速器箱盖上方的适当位置,以便直接进行观察并使手能伸入箱体内进行操作,平时观察孔用盖板盖住;查机械设计基础课程设计表5-16,取窥视孔孔盖的结构尺寸如下:150200100150M620 6个124、油标为指示减速器内油面的高度符合要求,以便保持箱内正常的油量,在减速器箱体上需设置油面指示装置;本设计选用长形油标,油标尺中心线与水平面成45度,注意加工油标凸台和安装油标时,不与箱体凸缘或吊钩相干涉;查机械设计课程上机与设计表15-10,选择A80 GB1161油标;5、放油孔及放油螺塞为排放减速器箱体内油污和便于清洗箱体内部,在箱座油池的最低处设置放油孔,箱体内底面做成斜面、向放油孔方向倾斜1度到2度,油孔附近作成凹坑,以便污油排尽;平时用放油螺塞将放油孔堵住圆柱螺纹油塞自身不能8、地脚螺栓为防止减速器倾倒和振动,减速器底座下部凸缘应设有地脚螺钉与地基连接;地脚螺钉为M24 取4个;9、箱体设计箱盖壁厚:10mm,箱座底凸缘厚度:10mm,地脚螺钉直径:24mm;数目:4个,轴承旁联结螺栓直径:16mm;。
第一篇设计任务篇一、设计题目带式输送机传送装置用同轴式二级圆柱斜齿轮减速器的设计二、设计要求:1、输送带工作拉力F=5.2kN2、输送带工作速度v=1.8m/s3、滚筒直径D=630mm4、工作情况:两班制,连续单向转动,载荷较平稳5、使用折旧期:10年6、检修期间隔:四年一大修,两年一中修,半年一小修7、制造条件及生产批量:一般机械厂制造,小批量生产(八级精度)第二篇 设计说明篇一、选择电动机1)电动机功率计算P 工作机功率 :w P =1000FV =5200 1.81000⨯=9.36 kw电动机需要功率: P d = P w /η 总效率 :1238.....ηηηηη=其中,η1_________运输机处联轴器效率,为0.99 η2_________III 轴轴承效率,为0.98η3_________低速级齿轮啮合效率,为0.97 η4_________ II 轴轴承效率,为0.98 η5_________高速级齿轮啮合效率,为0.97 η6__________ I 轴轴承效率,为0.98 η7_________电机处联轴器效率,为0.99 η8_________链传动效率,为0.96 故,η=0.83P d =9.36/0.83=11.28 kw 2)电动机转速计算 工作机转速n w : 因:(m/s) 1000*60DnV π=则 D100060V w n π⨯⨯==54.6 r/min电动机转速: n d= n w*i总其中:i总=8~40 i总为减速器总传动比故n d=437~2184 r/min3)选定电动机根据求出的P、n查手册。
选定电动机:型号:Y160L—4、同步转速n=1500r/min、满载转速nm=1460r/min、额定功率P额=15kw二、传动比的分配i总=n m/n w=1460/54.6=26.7取链传动传动比2.1其中,i总=i高*i低,且i高=i低故,i总= i低2=26.7/4故,i低=i高=2.6三、计算各轴的n,P,T1)各轴转速电动机轴:n m为1460 r/minI轴: n I =n m=1460 r/minII轴: n II =n I/i高=562 r/minIII轴:n III=n II/i低=216 r/min2)各轴输入功率电动机轴: P d=P w/ŋ总=11.28kwI 轴: P I = P d *ŋ7=11.17kw II 轴: P I I = P I * ŋ56=10.62kw III 轴: P III =P II *ŋ34=10.1kw 3)各轴扭矩T 各轴的输入扭矩计算 I 轴的转矩11111.179550955073.11460P T N mn ==⨯=∙Ⅱ轴的转矩22210.6295509550180.5562p T N mn ==⨯=∙Ⅲ轴的转矩33310.195509550446.6216p T N mn ==⨯=∙功率、转速、转矩表四、齿轮的设计计算(一)、高速级齿轮的设计计算 1、选精度等级、材料及齿数。
目录1.题目及总体分析 (2)2.各主要部件选择 (2)3.选择电动机 (3)4.分配传动比 (4)5.传动系统的运动和动力参数计算 (4)6.设计V带传动 (5)7.设计高速级齿轮 (6)8.设计低速级圆柱斜齿传动 (11)9.斜齿圆柱齿轮上作用力的计算 (15)10.减速器轴及轴承装置、键的设计 (16)Ⅱ轴(高速轴)及其轴承装置、键的设计 (18)Ⅳ轴(低速轴)及其轴承装置、键的设计 (23)Ⅲ轴(中间轴)及其轴承装置、键的设计 (29)11.润滑与密封 (34)12.箱体结构尺寸 (34)13.主要附件作用及形式 (35)14.设计总结 (37)15.参考文献 (39)一、题目及总体分析题目:设计一带式输送机传动装置工作条件:连续单向运转,工作时有轻微振动,使用期10年(每年300个工作日),小批量生产,两班制工作,输送机工作轴转速允许误差为±5%。
带式输送机的传动效率为0.96.带式输送机传动简图如下:图示:1为电动机,2皮带轮,3为减速器,4为高速级齿轮传动,5为低速级齿轮传动,6为联轴器,7为输送机滚筒。
辅助件有:观察孔盖,油标和油尺,放油螺塞,通气孔,吊环螺钉,吊耳和吊钩,定位销,启盖螺钉,轴承套,密封圈等.。
二、各主要部件选择三.选择电动机四.分配传动比五、传动系统的运动和动力参数计算六、设计V带传动七、设计高速级齿轮cos14=2.74a=158mm八、设计低速级圆柱斜齿传动九、斜齿圆柱齿轮上作用力的计算十、减速器轴及轴承装置、键的设计高速轴中间轴低速轴1.Ⅱ轴(高速轴)及其轴承装置、键的设计2.Ⅳ轴(低速轴)及其轴承装置、键的设计同轴式减速器箱体内壁宽度与高速轴和低速轴的长度有关;而中间轴的长度由箱体内壁宽度、高速轴和低速轴共同确定,故先设计低速轴,然后设计中间轴。
中间轴的设计及其轴承装置、键的设计(5 )键连接。
联轴器与轴段1的键为齿轮与轴段4的键为由结构设计得出低速轴上各个零件的数据如下图5.轴的受力分析1)画轴的受力简图目的过程分析结论3.3轴(中间轴)及其轴承装置、键的设计150MP aC=73200N,由轴承内部轴向力计算公式,轴承A=1153.1N十一、润滑与密封十二、箱体结构尺寸十三、主要附件及作用形式十四、设计心得总结此次占用了三周的时间来进行《机械设计》的课程设计,开题的题目是减速器,虽然表面上似乎并不复杂,但是在这三周的设计过程中感觉到,一个减速器远远并非想象中的那么简单。
机械工程学院机械设计课程设计说明书设计题目:同轴式二级圆柱齿轮减速器专业:机械设计制造及其自动化班级:姓名:学号指导教师:2016年 6月 30日目录一、设计任务书 0二、传动方案的拟定及说明 0三、电动机的选择 (1)四、计算传动装置总传动比和分配各级传动比 (2)五、计算传动装置的运动和动力参数 (3)六、传动件的设计计算 (4)七、轴的设计计算 (10)八、滚动轴承的选择及计算 (28)九、键联接的选择及校核计算 (33)十、联轴器的选择 (35)十一、减速器附件的选择和箱体的设计 (35)十二、润滑与密封 (36)十三、设计小结 (37)十四、参考资料 (38)设计计算及说明结果一、设计任务书题目:用于带式输送机传动装置的同轴式二级圆柱齿轮减速器。
1.基本数据:已知输送带的工作拉力F=2800N,输送带速度v=1.2m/s,及卷筒直径D=360mm;2.工作情况:两班制工作,连续单向运转,载荷较平稳3.工作寿面:使用期限为10年,每年300个工作日,每日工作16小时;4.制作条件及生产批量:中等规模机械厂制造,可加工7-8级齿轮,小批量生产:5.部件:(1)电动机(2)减速器(3)联轴器(4)输送带(5)输送带鼓轮6.设计工作量:(1)绘制减速器装配图一张(A0或A1)。
(2)绘制减速器零件图2两张。
(3)编写设计说明书1份。
二、传动方案的拟定及说明如图一所示,传动方案采用同轴式二级圆柱齿轮减速箱,减速器的轴向尺寸较大,中间轴较长,刚度较差。
常用于输入和输出轴同轴线的场合。
图一带式输送机传动系统简图1—电动机; 2,4—联轴器; 3—减速器; 5—滚筒;6—输送带七、轴的设计计算1. 高速轴的设计(1) 高速轴上的功率、转速和转矩转速(min /r ) 高速轴功率(kw ) 转矩T (m N ⋅)960 3.96 39.39(2) 作用在轴上的力已知高速级齿轮的分度圆直径为d =98.75mm ,根据《机械设计》(轴的设计计算部分未作说明皆查此书)式(10-14),则NF F Ntg F F Nd TF t a n t rt 66.10820tan 77.797tan 53.298553113cos 2077.797cos tan 77.7971075.9839.39223=︒⨯==='''︒︒⨯===⨯⨯==-ββα(3) 初步确定轴的最小直径先按式(15-2)初步估算轴的最小直径。
带式输送机的同轴式二级圆柱齿轮减速器设计摘要:设计二级圆柱齿轮减速器,根据所给的设计数据,从选择电动机到齿轮轴等零件的选择逐步进行了计算及研究,选择了最优的设计方案和尺寸,完成了对减速器的设计,并且在设计之后运用了cad和proe等软件,对圆柱齿轮减速器绘制了装配图和三维图。
关键词:减速器、齿轮传动、AutoCAD、 Pro/e1 主要的设计数据及任务本次设计的是圆柱齿轮减速器,设计任务如老师所给的。
1.1 设计内容(1)在设计减速器过程中,传动装置的设计包括了传动方案的确定,传动装置如何进行运动,其中还有动力参数的计算,其后还包括了电动机的选择和传动比的分配;(2)设计中需要选择合适的联轴器和传动零件设计计算;(3)减速器的设计中减速器的装配图和零件图绘制(应用AutoCAD软件);(4)减速器的三维实体造型(应用ProE或其它软件)本次毕业设计选用的三维软件是solidworks;(5)编写设计说明书;(6)完成论文综述(5000字以上)和外文翻译(英文期刊论文翻译成中文,至少翻译3000字);(7)提交设计图纸及毕业论文。
1.2 总体布置简图根据所给的图形,减速器的基本结构和传动简图如图下所示:图1 减速器简图1.3 工作情况连续单向运转,工作时有轻微的振动1.4 原始数据根据设计任务书上的所给的基本数据再结合一般减速器的设计要求,本次设计的原始基本数据如下表所示:表1 减速器原始设计数据2 同轴式二级圆柱齿轮减速器整体设计2.1 传动方案的拟定及说明根据上图所给的齿轮减速器布置简图我们可以选择采用起到过载保护作用的V 带,同轴式二级圆柱齿轮减速箱,因为选择同轴式可以使减速器横向尺寸变得较小。
根据原始数据可以得到同轴式二级圆柱齿轮减速器输出轴的转速根据公式有:601000601000 1.462.213/min 430w v n r πD π⨯⨯⨯===⨯2.2电动机的选择2.2.1电动机类型选择按照说明书所给的工作条件和工作要求,我们查表后可以选用Y(IP44)系列三相异步电动机。
用于带式运输机传动装置中的同轴式二级圆柱齿轮减速器课程设计目录设计任务书 (1)传动方案的拟定及说明 (4)电动机的选择 (4)计算传动装置的运动和动力参数 (5)传动件的设计计算 (5)轴的设计计算 (8)滚动轴承的选择及计算 (14)键联接的选择及校核计算 (16)连轴器的选择 (16)减速器附件的选择 (17)润滑与密封 (18)设计小结 (18)参考资料目录 (18)机械设计课程设计任务书题目:设计一用于带式运输机传动装置中的同轴式二级圆柱齿轮减速器一.总体布置简图1—电动机;2—联轴器;3—齿轮减速器;4—带式运输机;5—鼓轮;6—联轴器二.工作情况:载荷平稳、单向旋转三.原始数据鼓轮的扭矩T(N·m):850鼓轮的直径D(mm):350运输带速度V(m/s):0.7带速允许偏差(%):5使用年限(年):5工作制度(班/日):2四.设计内容1.电动机的选择与运动参数计算;2.斜齿轮传动设计计算3.轴的设计4.滚动轴承的选择5.键和连轴器的选择与校核;6.装配图、零件图的绘制7.设计计算说明书的编写五.设计任务1.减速器总装配图一张2.齿轮、轴零件图各一张3.设计说明书一份六.设计进度1、第一阶段:总体计算和传动件参数计算2、第二阶段:轴与轴系零件的设计3、第三阶段:轴、轴承、联轴器、键的校核及草图绘制4、第四阶段:装配图、零件图的绘制及计算说明书的编写传动方案的拟定及说明由题目所知传动机构类型为:同轴式二级圆柱齿轮减速器。
故只要对本传动机构进行分析论证。
本传动机构的特点是:减速器横向尺寸较小,两大吃论浸油深度可以大致相同。
结构较复杂,轴向尺寸大,中间轴较长、刚度差,中间轴承润滑较困难。
电动机的选择1.电动机类型和结构的选择因为本传动的工作状况是:载荷平稳、单向旋转。
所以选用常用的封闭式Y (IP44)系列的电动机。
2.电动机容量的选择1) 工作机所需功率P wP w =3.4kW2) 电动机的输出功率 Pd =Pw/ηη=轴承’联齿轴承联ηηηηη23=0.904 Pd =3.76kW3.电动机转速的选择nd =(i1’·i2’…in ’)nw初选为同步转速为1000r/min 的电动机4.电动机型号的确定由表20-1查出电动机型号为Y132M1-6,其额定功率为4kW ,满载转速960r/min 。
带式运输机同轴式二级圆柱齿轮减速器
目录
一、题目及总体分析 (2)
二、各主要部件选择 (2)
三、选择电动机 (3)
四、分配传动比 (3)
五、传动系统的运动和动力参数计算 (4)
六、设计V带和带轮 (6)
七、齿轮的设计 (9)
八、传动轴和传动轴承的设计 (16)
(a) 低速轴、传动轴承以及联轴器的设计 (16)
(b)高速轴以及传动轴承的设计 (23)
(c) 中间轴以及传动轴承的设计 (25)
九轴承的选择和校核计算………………………………………
28
十键连接的选择与校核计算……………………………………
30
十一、轴承端盖的设计与选择 (31)
十二、滚动轴承的润滑和密封 (32)
十三、联轴器的选择 (32)
十四、其它结构设计 (33)
十五、参考文献 (36)
一、题目及总体分析
题目:设计一个带式输送机传动装置
给定条件:由电动机驱动,输送带的牵引力为5800N,输送带的速度为0.75ms,输送带滚筒的直径为410mm。
工作条件:连续单向运转,工作时有轻微振动,使用期10年(每年300个工作日),小批量生产,两班制工作,输送机工作轴转速允许误差为±5%。
带式输送机的传动效率为0.96。
传动装置组成:由电动机、减速器、联轴器、v带、卷筒、运输带等组成。
减速器采用二级圆柱同级减速器。
整体布置如下:
1.1 带式输送机传动简图
二、各主要部件选择
三、选择电动机
四、分配传动比
五、传动系统的运动和动力参数计算。
引言国外减速器现状?齿轮减速器在各行各业中十分广泛地使用着,是一种不可缺少的机械传动装置。
当前减速器普遍存在着体积大、重量大,或者传动比大而机械效率过低的问国外的减速器,以德国、丹麦和日本处于领先地位,特别在材料和制造工艺方面占据优势,减速器工作可靠性好,使用寿命长。
但其传动形式仍以定轴齿轮传动为主,体积和重量问题,也未解决好。
最近报导,日本住友重工研制的FA型高精度减速器,美国Alan-Newton公司研制的X-Y式减速器,在传动原理和结构上与本项目类似或相近,都为目前先进的齿轮减速器。
当今的减速器是向着大功率、大传动比、小体积、高机械效率以及使用寿命长的方向发展。
因此,除了不断改进材料品质、提高工艺水平外,还在传动原理和传动结构上深入探讨和创新,平动齿轮传动原理的出现就是一例。
减速器与电动机的连体结构,也是大力开拓的形式,并已生产多种结构形式和多种功率型号的产品。
目前,超小型的减速器的研究成果尚不明显。
在医疗、生物工程、机器人等领域中,微型发动机已基本研制成功,美国和荷兰近期研制分子发动机的尺寸在纳米级范围如能辅以纳米级的减速器,则应用前景远大。
1.国内减速器现状?国内的减速器多以齿轮传动、蜗杆传动为主,但普遍存在着功率与重量比小,或者传动比大而机械效率过低的问题。
另外,材料品质和工艺水平上还有许多弱点,特别是大型的减速器问题更突出,使用寿命不长。
国内使用的大型减速器(500kw以上),多从国外(如丹麦、德国等)进口,花去不少的外汇。
60年代开始生产的少齿差传动、摆线针轮传动、谐波传动等减速器具有传动比大,体积小、机械效率高等优点?。
但受其传动的理论的限制,不能传递过大的功率,功率一般都要小于40kw。
由于在传动的理论上、工艺水平和材料品质方面没有突破,因此,没能从根本上解决传递功率大、传动比大、体积小、重量轻、机械效率高等这些基本要求。
90年代初期,国内出现的三环(齿轮)减速器,是一种外平动齿轮传动的减速器,它可实现较大的传动比,传递载荷的能力也大。
机械设计课程设计带式运输机传动装置中的同轴式二级圆柱齿轮减速器机械设计课程--带式运输机传动装置中的同轴式二级圆柱齿轮减速器目录设计任务书 (1)传动方案的拟定及说明 (4)电动机的选择 (4)计算传动装置的运动和动力参数 (5)传动件的设计计算 (5)轴的设计计算 (8)滚动轴承的选择及计算 (14)键联接的选择及校核计算 (16)连轴器的选择 (16)减速器附件的选择 (17)润滑与密封 (18)设计小结 (18)参考资料目录 (18)机械设计课程设计任务书题目:设计一用于带式运输机传动装置中的同轴式二级圆柱齿轮减速器一.总体布置简图1—电动机;2—联轴器;3—齿轮减速器;4—带式运输机;5—鼓轮;6—联轴器二.工作情况:载荷平稳、单向旋转三.原始数据鼓轮的扭矩T(N?m):850鼓轮的直径D(mm):350运输带速度V(m/s):0.7带速允许偏差(%):5使用年限(年):5工作制度(班/日):2四.设计内容1. 电动机的选择与运动参数计算;2. 斜齿轮传动设计计算3. 轴的设计4. 滚动轴承的选择5. 键和连轴器的选择与校核;6. 装配图、零件图的绘制7. 设计计算说明书的编写五.设计任务1.减速器总装配图一张2.齿轮、轴零件图各一张3.设计说明书一份六.设计进度1、第一阶段:总体计算和传动件参数计算2、第二阶段:轴与轴系零件的设计3、第三阶段:轴、轴承、联轴器、键的校核及草图绘制4、第四阶段:装配图、零件图的绘制及计算说明书的编写传动方案的拟定及说明由题目所知传动机构类型为:同轴式二级圆柱齿轮减速器。
故只要对本传动机构进行分析论证。
本传动机构的特点是:减速器横向尺寸较小,两大吃论浸油深度可以大致相同。
结构较复杂,轴向尺寸大,中间轴较长、刚度差,中间轴承润滑较困难。
电动机的选择1.电动机类型和结构的选择因为本传动的工作状况是:载荷平稳、单向旋转。
所以选用常用的封闭式Y(IP44)系列的电动机。
2.电动机容量的选择1)工作机所需功率PwPw=3.4kW2)电动机的输出功率Pd=Pw/ηη==0.904Pd=3.76kW3.电动机转速的选择nd=(i1’?i2’…in’)nw初选为同步转速为1000r/min的电动机4.电动机型号的确定由表20-1查出电动机型号为Y132M1-6,其额定功率为4kW,满载转速960r/min。
基本符合题目所需的要求计算传动装置的运动和动力参数传动装置的总传动比及其分配1.计算总传动比由电动机的满载转速nm和工作机主动轴转速nw可确定传动装置应有的总传动比为:i=nm/nwnw=38.4i=25.142.合理分配各级传动比由于减速箱是同轴式布置,所以i1=i2。
因为i=25.14,取i=25,i1=i2=5速度偏差为0.5%<5%,所以可行。
各轴转速、输入功率、输入转矩项目电动机轴高速轴I 中间轴II 低速轴III 鼓轮转速(r/min) 960 960 192 38.4 38.4功率(kW) 4 3.96 3.84 3.72 3.57转矩(N?m) 39.8 39.4 191 925.2 888.4传动比 1 1 5 5 1效率 1 0.99 0.97 0.97 0.97传动件设计计算1.选精度等级、材料及齿数1)材料及热处理;选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。
2)精度等级选用7级精度;3)试选小齿轮齿数z1=20,大齿轮齿数z2=100的;4)选取螺旋角。
初选螺旋角β=14°2.按齿面接触强度设计因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算按式(10—21)试算,即dt≥1)确定公式内的各计算数值(1)试选Kt=1.6(2)由图10-30选取区域系数ZH=2.433(3)由表10-7选取尺宽系数φd=1(4)由图10-26查得εα1=0.75,εα2=0.87,则εα=εα1+εα2=1.62(5)由表10-6查得材料的弹性影响系数ZE=189.8Mpa(6)由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa;大齿轮的解除疲劳强度极限σHlim2=550MPa;(7)由式10-13计算应力循环次数N1=60n1jLh=60×192×1×(2×8×300×5)=3.32×10e8N2=N1/5=6.64×107(8)由图10-19查得接触疲劳寿命系数KHN1=0.95;KHN2=0.98(9)计算接触疲劳许用应力取失效概率为1%,安全系数S=1,由式(10-12)得[σH]1==0.95×600MPa=570MPa[σH]2==0.98×550MPa=539MPa[σH]=[σH]1+[σH]2/2=554.5MPa2)计算(1)试算小齿轮分度圆直径d1td1t≥ = =67.85(2)计算圆周速度v= = =0.68m/s(3)计算齿宽b及模数mntb=φdd1t=1×67.85mm=67.85mmmnt= = =3.39h=2.25mnt=2.25×3.39mm=7.63mmb/h=67.85/7.63=8.89(4)计算纵向重合度εβεβ= =0.318×1×tan14 =1.59(5)计算载荷系数K已知载荷平稳,所以取KA=1根据v=0.68m/s,7级精度,由图10—8查得动载系数KV=1.11;由表10—4查的KHβ的计算公式和直齿轮的相同,故 KHβ=1.12+0.18(1+0.6×1 )1×1 +0.23×10 67.85=1.42由表10—13查得KFβ=1.36由表10—3查得KHα=KHα=1.4。
故载荷系数K=KAKVKHαKHβ=1×1.03×1.4×1.42=2.05(6)按实际的载荷系数校正所得的分度圆直径,由式(10—10a)得d1= = mm=73.6mm(7)计算模数mnmn = mm=3.743.按齿根弯曲强度设计由式(10—17 mn≥1)确定计算参数(1)计算载荷系数K=KAKVKFαKFβ=1×1.03×1.4×1.36=1.96(2)根据纵向重合度εβ=0.318φdz1tanβ=1.59,从图10-28查得螺旋角影响系数 Yβ=0。
88(3)计算当量齿数z1=z1/cos β=20/cos 14 =21.89z2=z2/cos β=100/cos 14 =109.47(4)查取齿型系数由表10-5查得YFa1=2.724;Yfa2=2.172(5)查取应力校正系数由表10-5查得Ysa1=1.569;Ysa2=1.798(6)计算[σF]σF1=500MpaσF2=380MPaKFN1=0.95KFN2=0.98[σF1]=339.29Mpa[σF2]=266MPa(7)计算大、小齿轮的并加以比较= =0.0126= =0.01468大齿轮的数值大。
2)设计计算mn≥ =2.4mn=2.54.几何尺寸计算1)计算中心距z1 =32.9,取z1=33z2=165a =255.07mma圆整后取255mm2)按圆整后的中心距修正螺旋角β=arcos =13 55’50”3)计算大、小齿轮的分度圆直径d1 =85.00mmd2 =425mm4)计算齿轮宽度b=φdd1b=85mmB1=90mm,B2=85mm5)结构设计以大齿轮为例。
因齿轮齿顶圆直径大于160mm,而又小于500mm,故以选用腹板式为宜。
其他有关尺寸参看大齿轮零件图。
轴的设计计算拟定输入轴齿轮为右旋II轴:1.初步确定轴的最小直径d≥ = =34.2mm2.求作用在齿轮上的受力Ft1= =899NFr1=Ft =337NFa1=Fttanβ=223N;Ft2=4494NFr2=1685NFa2=1115N3.轴的结构设计1)拟定轴上零件的装配方案i. I-II段轴用于安装轴承30307,故取直径为35mm。
ii. II-III段轴肩用于固定轴承,查手册得到直径为44mm。
iii. III-IV段为小齿轮,外径90mm。
iv. IV-V段分隔两齿轮,直径为55mm。
v. V-VI段安装大齿轮,直径为40mm。
vi. VI-VIII段安装套筒和轴承,直径为35mm。
2)根据轴向定位的要求确定轴的各段直径和长度1. I-II段轴承宽度为22.75mm,所以长度为22.75mm。
2. II-III段轴肩考虑到齿轮和箱体的间隙12mm,轴承和箱体的间隙4mm,所以长度为16mm。
3. III-IV段为小齿轮,长度就等于小齿轮宽度90mm。
4. IV-V段用于隔开两个齿轮,长度为120mm。
5. V-VI段用于安装大齿轮,长度略小于齿轮的宽度,为83mm。
6. VI-VIII长度为44mm。
4.求轴上的载荷66 207.5 63.5Fr1=1418.5NFr2=603.5N查得轴承30307的Y值为1.6Fd1=443NFd2=189N因为两个齿轮旋向都是左旋。
故:Fa1=638NFa2=189N5.精确校核轴的疲劳强度1)判断危险截面由于截面IV处受的载荷较大,直径较小,所以判断为危险截面2)截面IV右侧的截面上的转切应力为由于轴选用40cr,调质处理,所以([2]P355表15-1)a) 综合系数的计算由,经直线插入,知道因轴肩而形成的理论应力集中为,,([2]P38附表3-2经直线插入)轴的材料敏感系数为,,([2]P37附图3-1)故有效应力集中系数为查得尺寸系数为,扭转尺寸系数为,([2]P37附图3-2)([2]P39附图3-3)轴采用磨削加工,表面质量系数为,([2]P40附图3-4)轴表面未经强化处理,即,则综合系数值为b) 碳钢系数的确定碳钢的特性系数取为,c) 安全系数的计算轴的疲劳安全系数为故轴的选用安全。
I轴:1.作用在齿轮上的力FH1=FH2=337/2=168.5Fv1=Fv2=889/2=444.52.初步确定轴的最小直径3.轴的结构设计1)确定轴上零件的装配方案2)根据轴向定位的要求确定轴的各段直径和长度d) 由于联轴器一端连接电动机,另一端连接输入轴,所以该段直径尺寸受到电动机外伸轴直径尺寸的限制,选为25mm。
e) 考虑到联轴器的轴向定位可靠,定位轴肩高度应达2.5mm,所以该段直径选为30。
f) 该段轴要安装轴承,考虑到轴肩要有2mm的圆角,则轴承选用30207型,即该段直径定为35mm。