-3x1+ x2+2x3 = 5 ③ x1,x2 ≥ 0,x3无约束
解:令x3 = x3’-x3”,x3’,x3” ≥ 0;
①式加上一个松弛变量x4;②式减去一个剩余变量x5; 令z’ = -z
max z’ = x1- 2x2 + 3(x3’ - x3”) + 0x4 + 0x5
x1 + x2 + (x3’ - x3”) + x4 = 7
取x3、x4为基变量,令非基变量x1= x2=0 ∴ 初始基可行解:X(0) = (0 0 3 4)T
清华大学运筹学完整
22
2、观察法
[eg.9]max z = x1 + 3x2 + 2x3 + x4
x1 + 2x2 + 3x3 = 3 3x2 + x3 + x4 = 4
x1,x2,x3,x4 ≥ 0
xj为非基变,量j 1,,n
n
xni bi aijxj j1
代入目标函数
清华大学运筹学完整
25
则
n
m
n
z c j x j c n i ( b i a ij x j )
j1
i1
j1
m
n
m
c n i b i ( c j c n i a ij ) x j
i1
j1
i1
n
Z 0 ( c j z j ) x j j1
n
Z 0 j x j j1
产品Ⅱ生产x2件。
4x1
≤ 16
这里z为利润函数,
4x2 ≤ 12
max z:表示求z的最大值。
x1,x2 ≥ 0
清华大学运筹学完整