碳纳米管催化碳材料
- 格式:ppt
- 大小:7.21 MB
- 文档页数:41
cmk-5有序碳材料的合成及在电催化中的应用
CMK-5有序碳材料是一种以碳单胞(C60)为原基的碳纳米管(CNTs)复合材料,由国际著名的团队开发成功。
它具有良好的透明
性和电导性、抗紫外线的性质,能够耐受高温、高压和强酸性,因此
在电催化方面具有潜在的应用前景。
CMK-5有序碳材料的合成主要分两种:一种是CVD法,使用铁为活
性物质,在低温和低气压的条件下合成,可以将铁粉和C60结合在一
起形成CMK-5有序碳材料;另一种是分子间化学反应法,即使用有机
分子化合物作为活性物质,进行有序碳材料的合成,该方法可以原位
生成复合结构,简单、直接、快速、低成本。
CMK-5有序碳材料在电催化中具有重要应用。
目前,在电催化氧化
降解中,CMK-5有序碳材料可以作为电极材料发挥重要作用,其优异的
电导性和无损电极的可再生性可以帮助电催化系统提高有效利用量和
节能减排能力。
此外,CMK-5有序碳材料还可以用于催化剂的制备,它
的高比表面积可以有效地促进催化反应的有效转化,从而较大程度上
提高反应的效率。
另外,CMK-5有序碳材料还可以用于各种氧还原反应、氢还原反应以及燃料电池中的水燃料电池反应等,都可以得到良好的
应用效果。
CMK-5有序碳材料也已成为电催化领域非常重要的材料之一,其在环境污染治理、节能减排等方面已经发挥出巨大的作用。
(54)发明名称碳纳米管催化剂的制备方法、碳纳米管催化剂及其应用(57)摘要本发明提供了一种碳纳米管催化剂的制备方法、碳纳米管催化剂及其应用,该制备方法包括以下步骤:将氮源,碳纳米管,有机醇和纯水混合,超声搅拌至溶解,加热蒸发水分,冷冻干燥,煅烧,制得氮掺杂碳纳米管;将氮掺杂碳纳米管,六水合三氯化铁,碳酸钠,氟化钠和纯水混合均匀,加热,冷却,加入纯水和有机醇,固液离心分离,洗涤固体成分并干燥,将固体成分在煅烧,制得碳纳米管催化剂。
该方法制得的碳纳米管催化剂,可以利用可见光‑芬顿协同氧化,实现光生电子和空穴的高效分离,有效提高光催化剂的可见光利用率和催化活性,而且便于回收和循环使用。
C N 115555042 A1.一种碳纳米管催化剂的制备方法,其特征在于:该方法包括以下步骤:将氮源,碳纳米管,有机醇和纯水混合,超声搅拌至溶解,加热蒸发水分,冷冻干燥,在650‑750℃下煅烧,制得氮掺杂碳纳米管;将所述氮掺杂碳纳米管,六水合三氯化铁,碳酸钠,氟化钠和纯水混合均匀,加热至180‑220℃,冷却,加入纯水和有机醇,固液离心分离,洗涤固体成分并干燥,将所述固体成分在280‑320℃煅烧,制得所述碳纳米管催化剂。
2.根据权利要求1所述的碳纳米管催化剂的制备方法,其特征在于:所述氮源包括三聚氰胺和尿素中的至少一种。
3.根据权利要求1所述的碳纳米管催化剂的制备方法,其特征在于:所述有机醇包括甲醇、乙醇、异丙醇、正丁醇和正戊醇中的至少一种。
4.根据权利要求1所述的碳纳米管催化剂的制备方法,其特征在于:获得所述氮掺杂碳纳米管煅烧时,在氮气或惰性气体气氛下煅烧,煅烧内升温速度为5‑10℃/min,煅烧时间为0.9‑1.1h。
5.根据权利要求1所述的碳纳米管催化剂的制备方法,其特征在于:对所述固体成分干燥时,采用真空干燥箱在60‑70℃下干燥11‑13h。
6.根据权利要求1‑5任一项所述的碳纳米管催化剂的制备方法,其特征在于:所述固体成分煅烧时间为2.9‑3.1h。
碳材料技术在能源领域中的应用近年来,碳材料技术在能源领域中的应用越来越受到关注。
碳纳米管、碳纤维等碳材料的研究和应用,将有助于实现清洁能源的开发和利用。
本文将从碳材料的应用、碳纳米管的制备和性能、碳纤维的制备和性能等方面阐述碳材料技术在能源领域中的应用。
一、碳材料的应用碳材料具有多种优异的性质,如高强度、高韧性、低密度、高化学稳定性等。
因此,在能源领域中,碳材料得到了广泛的应用。
例如:1、储能材料:石墨烯、碳纳米管等碳材料具有优异的电导性能和储能性能,可以用于电池、超级电容器等储能器件的制造。
2、太阳能电池:碳纳米管可以用于太阳能电池中的电极材料,具有高效转换太阳能成电能的效果。
3、催化剂载体:氮化石墨烯、碳纳米管等碳材料具有大比表面积和优异的物理化学性能,可以作为催化剂的载体。
4、海水淡化:石墨烯可以用于海水淡化中的膜材料,具有高效的海水淡化效果。
二、碳纳米管的制备和性能碳纳米管是一种由碳原子构成的纳米管状结构,具有很高的强度和导电性能。
碳纳米管的制备方式有化学气相沉积法、电弧放电法、化学剥离法等。
其中,化学气相沉积法是一种制备高质量碳纳米管的有效方法。
碳纳米管的性能也非常优异。
其导电性能比铜还要好,可以用于制造高性能电子器件。
此外,碳纳米管还具有优异的力学性能和光学性能,在材料科学和生物科学领域也得到了广泛的应用。
三、碳纤维的制备和性能碳纤维是由高强度的有机纤维(如聚丙烯腈纤维)经过一系列的热处理和脱除杂质工艺后制成的。
碳纤维具有优异的强度和刚度,且密度轻,是制造轻量化结构材料的重要材料。
碳纤维的制备工艺主要包括化学气相沉积法、热裂解法、湿法纺丝法等。
其中,化学气相沉积法是制备高性能碳纤维的主要方法。
碳纤维的性能也十分出色。
其比强度和比模量是金属的2~3倍,是很好的替代金属材料的轻量化结构材料。
在航空航天、汽车、体育器材等领域都得到了广泛的应用。
四、总结碳材料技术在能源领域中的应用是一个研究的热点。
一种铁系碳纳米管催化剂,其制备方法及应用本发明涉及一种铁系碳纳米管催化剂及其制备方法及应用,具体地说,本发明的技术领域是制备可应用于催化反应的碳纳米管类材料,该碳纳米管具备较高的活性、较稳定的耐候性和制备成本较低的优点。
具体来说,本发明涉及一种铁系碳纳米管催化剂,其特征在于:该碳纳米管催化剂由晶体结构密度较高的单壁和多壁碳纳米管以及
相应的稀土、过渡金属催化剂构成,形成一种二元催化体系;其中稀土可以是锶。
本发明还涉及了上述铁系碳纳米管催化剂的制备方法,该方法包括以下步骤:
步骤1:将活性碳放入一定量的稀土溶剂中,进行搅拌,使活性碳均匀溶解;
步骤2:将上述溶解液加入稀土,进行搅拌,使稀土均匀混合成发泡液;
步骤3:将发泡液加入过渡金属溶剂中,进行搅拌,使受稀土催化的发泡液均匀混合成碳纳米管构成的悬浮液;步骤4:将该悬浮液中的碳纳米管催化剂通过滤过、回收、洗涤和分级的步骤,制备出纯净的碳纳米管催化剂。
本发明还涉及上述制备出的铁系碳纳米管催化剂的应用,可以用于各种催化反应,如低压氧化、碳烃焦化、甲醛的驱动氧化和还原等。
本发明的铁系碳纳米管催化剂具有较高的活性、较稳定的耐候性和制备成本较低的优点,在催化反应中表现出了很好的性能,可以有
效提高反应效率,具有极好的应用前景。
碳纳米管的制备方法与应用碳纳米管是一种具有非常特殊性质的碳材料,它的制备方法和应用具有很大的研究价值。
本文将基于相关研究文献,探讨碳纳米管的制备方法和应用领域。
一、制备方法碳纳米管通常有两种制备方法,即“底上生长法”和“上下生长法”。
底上生长法是指在金属衬底上,利用热化学气相沉积(CVD)等方法,在高温下生长碳纳米管。
这种方法制备出的碳纳米管产量大,连续性好,但会造成衬底中金属杂质的污染。
上下生长法是指将金属催化剂沉积在碳纳米管基底上,然后在催化剂表面生长碳纳米管。
这种方法制备出的碳纳米管纯度高,但因为样品不连续,所以产量相对较低。
不同制备方法对碳纳米管的结构和性质会有所影响,因此,制备方法的选择取决于具体应用的需求。
二、应用碳纳米管在材料科学、生物医学、电子、能源等领域中具有广泛的应用。
材料科学领域中,碳纳米管可以用于制备高强度、高导电性、高导热性、高比表面积的复合材料,应用于汽车、航空、航天、建筑等领域。
碳纳米管也可以用于制备高性能电极材料,提高锂离子电池的性能。
生物医学领域中,碳纳米管可以用于制备纳米药物传递系统和纳米生物传感器,进行肿瘤治疗和疾病诊断。
电子领域中,碳纳米管可以用于制备高性能逻辑电路和摄像头,替代各种传统电子元器件。
能源领域中,碳纳米管可以用于制备高效率的太阳能电池和储能系统,减少能源的消耗和浪费。
三、未来展望随着人类对碳纳米管的认识不断加深,碳纳米管的应用领域也会不断扩展。
未来,碳纳米管可能会应用于烯烃加氢、催化还原、氧化反应等领域,成为一种重要的催化剂。
同时,碳纳米管还可以应用于激光、纳米传感器和量子计算等领域,开辟崭新的研究方向和应用前景。
四、结语作为一种前沿领域的材料,碳纳米管的制备方法和应用领域仍然具有很大的潜力。
未来,人类将会通过不懈的努力,探索碳纳米管更多的结构和性质,为人类社会的发展做出更大的贡献。
新型碳材料的研究及其应用碳是一种非常重要的元素,它在自然界中广泛存在,包括煤炭、石墨、钻石以及各种有机物。
在人类社会中,碳材料也有着非常广泛的应用,包括石墨电极、硅炭砖、活性炭、炭纤维等。
近年来,随着新型碳材料的不断研究与发展,碳材料也得到了更广泛的应用。
一、新型碳材料的研究进展随着科学技术的不断进步,新型碳材料的研究也越来越受到人们的关注。
其中,最为广泛研究的是碳纳米管、石墨烯、炭黑、碳纳米球等。
这些新型碳材料都具有不同的物化性质和特殊结构,能够应用于不同的领域。
1. 碳纳米管碳纳米管是由碳原子构成的一种管状结构,具有极高的强度和导电性能,同时具有很高的比表面积。
独特的特性使其被广泛地应用于电子器件、能源储存和生物学等领域。
由于碳纳米管的生产成本较高,因此其应用仍然受到一定的限制。
2. 石墨烯石墨烯是一种单层厚度为1原子层的碳纳米片,可以看做是从石墨精细剥离后得到的。
由于石墨烯的独特结构和电学性质,在领域中具有广泛的应用前景,包括电子器件、传感器、生物学等。
3. 炭黑炭黑是一种多孔的碳材料,在化妆品、橡胶、油漆等领域中有着重要的应用。
由于其特殊的结构和性质,炭黑具有很高的吸附能力和分散性,可以在许多领域中起到很好的应用效果。
4. 碳纳米球碳纳米球是一种球形的纳米碳材料,具有极高的比表面积和较高的力学性能。
由于其制备成本相对较低,因此在能源储存、催化剂、吸附剂等领域中被广泛地应用。
二、新型碳材料的应用前景新型碳材料具有很高的应用前景,主要表现在以下几个方面:1. 能源领域新型碳材料在能源领域中的应用具有很大的潜力。
碳纳米管和石墨烯可以用于制造高效的电极,并用于电池和超级电容器中。
碳纳米管还可以用于太阳能电池和光电器件中。
碳纳米球可以用于制造高效的锂离子电池电极材料。
2. 生物学领域新型碳材料也在生物学领域中崭露头角。
碳纳米管可以用于制造计量荧光显微镜和扫描隧道显微镜等生物学分析仪器。
碳纳米球可以用于制备生物官能团,具有在生物学中高效活性表达,高灵敏度的诊断和治疗中的应用潜力。
新型碳纳米材料在催化反应中的应用1.电催化反应碳纳米材料作为催化剂,可以在电催化反应中发挥重要作用。
首先,碳纳米材料具有优良的导电性和电化学活性,可以作为电子传输媒介。
其次,碳纳米材料具有大比表面积,能提供更多的反应活性位点。
例如,碳纳米管和石墨烯可以用作燃料电池和电解水制氢的催化剂,能有效促进氧还原反应。
2.气相催化反应碳纳米材料在气相催化反应中也具有广泛的应用。
由于其高比表面积和孔隙结构,碳纳米材料可以作为催化剂载体,提高催化剂的分散性和活性。
此外,碳纳米材料还可以通过改变其表面性质进行催化剂的选择性调控。
例如,碳纳米管可以用作催化剂载体,并通过调控管内氧原子含量来选择性催化氧化反应。
此外,碳纳米带可以用作催化剂,通过改变其宽度、长度和形状等结构参数来调控气相催化反应的选择性和活性。
3.液相催化反应碳纳米材料在液相催化反应中也展现出了独特的催化性能。
由于其大比表面积和高度可调控的结构特性,碳纳米材料具有较好的触媒载体性能,可以改善催化剂的稳定性和选择性。
此外,碳纳米材料还能够通过改变其表面化学性质来调控催化反应的速率和选择性。
例如,石墨烯和碳纳米管可以作为催化剂载体,并通过表面官能团修饰来调控催化反应的选择性和活性。
4.其他应用领域除了上述应用领域,碳纳米材料还在其他领域展现出了潜力。
例如,碳纳米管可以用作催化剂载体,在环境污染治理领域具有广泛的应用前景。
此外,由于碳纳米材料具有较低的毒性和良好的生物相容性,还可以应用于生物催化反应和药物催化反应等领域。
总之,新型碳纳米材料在催化反应中具有广泛的应用潜力。
碳纳米材料以其独特的结构和性质,可以用作催化剂载体、反应活性位点和选择性调控因子等,有效提高催化反应的效率和选择性。
随着碳纳米材料的研究不断深入,相信在催化领域中会有更多新的应用和进展。
碳材料电催化海水
碳材料在电催化海水处理中具有很大的潜力。
由于海水中含有很多的离子和溶解物,对于电催化材料来说,良好的导电性和催化活性是非常重要的。
一种常见的碳材料是碳纳米管,其具有良好的导电性和化学稳定性,能够在电化学反应中提供电子传递的通道。
碳纳米管还具有大的比表面积,可以提供更多的反应活性位点,从而提高催化活性和海水处理效率。
另一种常见的碳材料是石墨烯,它是由单个碳原子层构成的二维材料。
石墨烯具有卓越的电导率和催化活性,可以用于海水中有机物的氧化或还原反应,从而实现海水处理的目的。
此外,碳纳米颗粒和碳纳米纤维等碳材料也广泛应用于电催化海水处理中。
这些材料具有特殊的结构和化学性质,可以调控其催化活性和选择性,实现对不同污染物的高效处理。
总之,碳材料的电催化性能使其成为一种非常有潜力的海水处理材料。
未来的研究应该进一步优化碳材料的结构和性能,以实现更高效的海水处理和资源回收。
碳纳米管的功能碳纳米管是一种由碳原子排列而成的纳米材料,具有高强度、高导电性、高热导性等特点,应用领域广泛。
下面将从各方面介绍碳纳米管的功能。
1. 电子学领域:碳纳米管是一种理想的纳米导体,在微电子器件、半导体照明等领域得到广泛应用。
它具有良好的电子传输性能,传输速度快,抗干扰性强,特别适合在高速电子器件中应用。
碳纳米管晶体管、电路板等元件已经被广泛应用于电脑、手机等各种电子设备中。
2. 新型材料领域:碳纳米管具有极高的强度和韧性,比钢铁更为坚固,是一种理想的新型材料。
碳纳米管可以用于制造高强度、高韧性的材料,如碳纳米管增强塑料、碳纳米管复合材料、碳纤维增强复合材料等。
这些材料在飞机、汽车、船舶、建筑等领域有广泛的应用。
3. 催化剂领域:碳纳米管可以作为催化剂载体,提高反应速率和选择性,从而在催化剂领域得到广泛应用。
碳纳米管与金属或金属氧化物复合可以用于氧化还原反应、制备化学品等。
此外,碳纳米管还可与DNA等生物大分子结合,用于生物催化反应等应用。
4. 生物医学领域:碳纳米管具有良好的生物相容性,可以用于生物医学领域中的诊断和治疗。
比如,将碳纳米管表面修饰成靶向特定癌细胞的分子后,可以用作肿瘤靶向治疗。
此外,还可以将药物包裹在碳纳米管内,可以减少药物的毒性和副作用,提高药物的疗效性。
5. 传感器领域:碳纳米管可以用作传感器的探针,具有高灵敏度和高选择性。
比如,利用碳纳米管的电导率随吸附分子量的变化,可以将其应用于气体、溶液等分子的检测。
碳纳米管还可以用于传感器的导电元件,提高了传感器的灵敏度和精度。
综上所述,碳纳米管具有多种功能,并在各个领域都有广泛的应用前景。
随着科技的不断发展,碳纳米管的应用将会越来越广泛,也将会带来更多的前沿研究和技术突破。